SMASH PRODUCTS AND COMODULES OF LINEAR MAPS

By

K. -H. Ulbrich*

Let G be a finite group and A be a G-graded algebra over a commutative ring k. Consider the G-graded right A-module $U=\bigoplus_{\sigma \in G} A(\sigma)$ where $A(\sigma)=A$ has grading shifted by σ. Năstăsescu and Rodinò [5] proved that

$$
\begin{equation*}
\operatorname{End}_{A-g r}(U) * G \cong \operatorname{End}_{A}(U) \text {, and } A \# k[G]^{*} \cong \operatorname{End}_{A-g r}(U) \tag{1}
\end{equation*}
$$

where $\operatorname{End}_{A-g r}(U)$ denotes the algebra of graded A-endomorphisms of U, and $*$ means crossed product, [5], Theorems 1.2 and 1.3. The proofs are given by some explicit matrix computations relying on a graded isomorphism $\operatorname{End}_{A}(U) \cong$ $M_{n}(A), n=|G|$, [5], Prop. 1.1. The first isomorphism of (1) has recently been generalized to

$$
\begin{equation*}
\operatorname{End}_{A-g r}(U) * G \cong \operatorname{END}_{A}(U), \quad[2], \text { Thm. 3.3, } \tag{2}
\end{equation*}
$$

for not necessarily finite groups G. The purpose of this paper is to give Hopf algebraic versions of (1) and (2). Write $H=k[G]$. First note that the above crossed products are also smash products. Furthermore, a G-graded k-module is the same as an H-comodule, and the A-isomorphism

$$
U \xrightarrow[\longrightarrow]{\sim} H \otimes A, \quad a(\sigma) \longmapsto \sigma^{-1} \otimes a(\sigma), \quad a(\sigma) \in A(\sigma),
$$

is H-colinear where $H \otimes A$ has coaction $\alpha: H \otimes A \rightarrow H \otimes A \otimes H$ defined by

$$
\begin{equation*}
\alpha(h \otimes a)=\Sigma h_{(1)} \otimes a_{(0)} \otimes h_{(2)} a_{(1)}, \quad h \in H, \quad a \in A \tag{3}
\end{equation*}
$$

Now let H be any Hopf algebra over k and set $U=H \otimes A$ for a right H-comodule algebra A. Let $\operatorname{End}_{A}^{H}(U)$ be the algebra of right A-linear maps $U \rightarrow U$ which are colinear with respect to (3). We shall generalize (1), for H finite over k, to

$$
\begin{equation*}
\operatorname{End}_{A}^{H}(U) \# H \cong \operatorname{End}_{A}(U) \text { and } A \# H^{*} \cong \operatorname{End}_{A}^{H}(U) . \tag{4}
\end{equation*}
$$

It was pointed out in [5] that (1) implies the duality theorems of Cohen and Montgomery [4]. Correspondingly, (4) may be viewed as an improvement of the duality result for finite Hopf algebras [3], Cor. 2.7. Note that the second

[^0]isomorphism of (4) gives a natural interpretation for an arbitrary smash product by a finite Hopf algebra.

Comodules of the form $\operatorname{HOM}_{A}(M, N)$ seem not have been considered yet for Hopf algebras others than $k[G]$. We introduce them here for arbitrary, projective Hopf algebras in section 2. We can then generalize (2) (and the first isomorphism of (4)) to

$$
\operatorname{End}_{A}^{H}(U) \# H \cong \operatorname{END}_{A}(U)
$$

for projective Hopf algebras. This turns out to be a special case of Theorem 2.4 which also includes [2], Thm. 3.6 (1), and shows that the finiteness conditions assumed there are not necessary.

Throughout the following, H denotes a Hopf algebra over a commutative ring k, and A a right H-comodule algebra. Recall that a Hopf A-module is a right A-module M supplied with a right H-comodule structure $\alpha: M \rightarrow M \otimes H$ such that

$$
\begin{equation*}
\alpha(m a)=\sum m_{(0)} a_{(0)} \otimes m_{(1)} a_{(1)}, \quad m \in M, \quad a \in A \tag{5}
\end{equation*}
$$

In case $H=A$, the descent theorem for Hopf H-modules says that the H-(co)linear map

$$
M^{H} \otimes H \longrightarrow M, \quad m \otimes h \longmapsto m h,
$$

is an isomorphism ([1], Thm. 3.1.8). Here $M^{H}=\{m \in M \mid \alpha(m)=m \otimes 1\}$. If H is finite over k, a right H-module M is a Hopf H-module iff M is a left H^{*}-module satisfying

$$
g(m h)=\Sigma\left(g_{(1)} m\right)\left(g_{(2)} h\right), \quad g \in H^{*}, m \in M, h \in H
$$

As usual, $H^{*}=\operatorname{Hom}_{k}(H, k)$ denotes the dual Hopf algebra (for H finite over k), and H is viewed as a left H^{*}-module by $g h=\Sigma h_{(1)}\left\langle g, h_{(2)}\right\rangle$. For a left H module algebra B the smash product algebra $B \# H$ is $B \otimes H$ with multiplication defined by

$$
\left(b^{\prime} \otimes h\right)\left(b \otimes h^{\prime}\right)=\sum b^{\prime}\left(h_{(1)} b\right) \otimes h_{(2)} h^{\prime}
$$

for $b, b^{\prime} \in B, h, h^{\prime} \in H$. The antipode and counit of a Hopf algebra will be denoted by λ and ε, respectively. We write $\otimes=\otimes_{k}$.

1. Let M be a left H - and right A-module such that

$$
\begin{equation*}
(h m) a=h(m a), \quad h \in H, m \in M, a \in A . \tag{6}
\end{equation*}
$$

For $h \in H$ and $\phi \in \operatorname{End}_{A}(M)$ define $h \psi \in \operatorname{End}_{A}(M)$ by

$$
\begin{equation*}
(h \psi)(m)=\Sigma h_{(1)} \psi\left(\lambda\left(h_{(2)}\right) m\right), \quad m \in M . \tag{7}
\end{equation*}
$$

Then $\operatorname{End}_{4}(M)$ is a left H-module algebra [6], and

$$
\operatorname{End}_{A}(M) \# H \longrightarrow \operatorname{End}_{A}(M), \quad \phi \otimes h \longmapsto \psi h^{\prime \prime},
$$

is a homomorphism of k-algebras, where $(\psi h)(m)=\phi(h m)$. Assume that M has also a right H-comodule structure $\alpha: M \rightarrow M \otimes H$ satisfying

$$
\begin{equation*}
\alpha(h m)=\Sigma h_{(1)} m_{(0)} \otimes h_{(2)} m_{(1)}, \quad h \in H, m \in M . \tag{8}
\end{equation*}
$$

Let $\operatorname{End}_{A}^{H}(M)$ be the k-algebra of A-linear and H-colinear maps $M \rightarrow M$.
Lemma 1.1. $\operatorname{End}_{\boldsymbol{A}}^{H}(M)$ is an H-submodule algebra of $\operatorname{End}_{A}(M)$.
The easy proof is left to the reader.
In the following we consider $M=H \otimes A=U$ with H-comodule structure defined by (3); U is naturally a left H - and right A-module satisfying (5), (6) and (8).

Lemma 1.2. Suppose the antipode λ of H is bijective. Then

$$
\begin{equation*}
\chi: \operatorname{End}_{A}^{H}(U) \longrightarrow \operatorname{Hom}_{k}(H, A), \quad \chi(\phi)(h)=(\varepsilon \otimes 1) \phi(h \otimes 1), \tag{9}
\end{equation*}
$$

is an isomorphism of k-modules.
Proof. Define $\operatorname{Hom}_{k}(H, A) \rightarrow \operatorname{End}_{A}^{H}(U), v \mapsto \tilde{v}$, by

$$
\tilde{v}(h \otimes a)=\sum h_{(2)} \lambda^{-1}\left(v\left(h_{(1)}\right)_{(1)}\right) \otimes v\left(h_{(1)}\right)_{(0)} a,
$$

for $h \in H, a \in A$. It is easy to see that \tilde{v} is H-colinear. Clearly $\chi(\tilde{v})=v$. Let $\phi \in \operatorname{End}_{A}^{H}(U), h \in H$, and write $\phi(h \otimes 1)=\sum h_{i} \otimes a_{i}$. The colinearity of ϕ implies for $v=\chi(\phi)$

$$
\sum a_{i(0)} \otimes h_{i} a_{i(1)}=\sum v\left(h_{(1)}\right) \otimes h_{(2)}
$$

Therefore

$$
\begin{aligned}
\phi(h \otimes 1) & =\sum h_{i} a_{i(2)} \lambda^{-1}\left(a_{i(1)}\right) \otimes a_{i(0)} \\
& =\Sigma h_{(2)} \lambda^{-1}\left(v\left(h_{(1)}\right)_{(1)}\right) \otimes v\left(h_{(1)}\right)_{(0)}
\end{aligned}
$$

Remark 1. If the comodule structure of A is trivial then (9) is an algebra map where $\operatorname{Hom}_{k}(H, A)$ has the opposite convolution product. (The bijectivity of λ is not needed in this case.)

Suppose now that H is finite over k. For $a \in A$ and $g \in H^{*}$ define a^{0}, g^{0} : $U \rightarrow U$ by

$$
\begin{aligned}
& a^{0}(h \otimes b)=\sum h \lambda^{-1}\left(a_{(1)}\right) \otimes a_{(0)} b, \\
& g^{0}(h \otimes b)=g^{0}(h) \otimes b=\sum h_{(2)}\left\langle g, h_{(1)}\right\rangle \otimes b,
\end{aligned}
$$

for $h \in H, b \in A$. It is not difficult to see that a^{0} and g^{0} are H-colinear. Furthermore, $\left(a a^{\prime}\right)^{0}=a^{0} a^{\prime 0}$, while $\left(g g^{\prime}\right)^{0}=g^{\prime 0} g^{0}$. Note that $g^{0}(h)=g h$ if H is cocommutative.

Theorem 1.3. Let H be a finitely generated and projective Hopf algebra over k, A a right H-comodule algebra, and $U=H \otimes A$ with comodule structure defined by (3). Then

$$
\begin{equation*}
\operatorname{End}_{A}^{H}(U) \# H \longrightarrow \operatorname{End}_{A}(U), \quad \phi \otimes h \longmapsto \phi h, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
A \# H^{*} \longrightarrow \operatorname{End}_{A}^{H}(U), \quad a \otimes g \longmapsto a^{0} \lambda(g)^{0} \tag{11}
\end{equation*}
$$

are isomorphisms of k-algebras.
Proof. That (10) is bijective is a special case of Theorem 2.4 below. It may be worth, however, to give here a separate proof for the finite case. We claim that the right H-module $\operatorname{End}_{A}(U)$ is a Hopf module satisfying

$$
\begin{equation*}
\operatorname{End}_{A}^{H}(U)=\operatorname{End}_{A}(U)^{H} . \tag{12}
\end{equation*}
$$

It suffices to exhibit a corresponding left H^{*}-module structure. View A and U as left H^{*}-modules in the natural way. Then

$$
g u=\Sigma g_{(1)} h \otimes g_{(2)} a, \quad \text { for } u=h \otimes a, g \in H^{*} .
$$

Now $\operatorname{End}_{A}(U)$ becomes a left H^{*}-module by the formula (7), (with h replaced by $\left.g \in H^{*}\right)$. That $g \psi$ is A-linear follows in the present case from $g(u a)=$ $\Sigma\left(g_{(1)} u\right)\left(g_{(2)} a\right), u \in U, a \in A$. Furthermore, we have $g(h u)=\Sigma\left(g_{(1)} h\right)\left(g_{(2)} u\right)$ for $h \in H, u \in U$, and this implies $g(\psi h)=\Sigma\left(g_{(1)} \psi\right)\left(g_{(2)} h\right)$, as is easy to see. Thus $\operatorname{End}_{A}(U)$ is a Hopf H-module. If $\phi \in \operatorname{End}_{A}(U)$ is H^{*}-linear, then clearly $g \phi=\varepsilon(g) \phi$ for all $g \in H^{*}$. Conversely, if the latter holds, then

$$
g(\phi(u))=\Sigma\left(g_{(1)} \phi\right)\left(g_{(2)} u\right)=\Sigma \varepsilon\left(g_{(1)}\right) \phi\left(g_{(2)} u\right)=\phi(g u),
$$

so that ϕ is H^{*}-linear. Hence (12) holds, and (10) is an isomorphism by the descent theorem for Hopf modules.

The composite of (11) and (9) gives the map

$$
A \otimes H^{*} \longrightarrow \operatorname{Hom}_{k}(H, A), \quad a \otimes g \longmapsto(h \mapsto a\langle\lambda(g), h\rangle) .
$$

This is bijective, since H is finite over k. Hence (11) is an isomorphism by Lemma 1.2. That (11) is an algebra map follows from

$$
g^{0} a^{0}=\sum\left(\lambda^{-1}\left(g_{(2)}\right) a\right)^{0} g_{(1)}^{0},
$$

which may be verified by evaluating on elements $h \otimes 1$.
2. We assume throughout the following that H is projective over k. As before, A denotes a right H-comodule algebra. We want to define comodules $\mathrm{HOM}_{A}(M, N)$ which generalize those defined for graded modules.

Fix Hopf A-modules M and N. For $\phi \in \operatorname{Hom}_{A}(M, N)$ define $\alpha(\psi) \in$ $\operatorname{Hom}_{A}(M, N \otimes H)$ by

$$
\begin{equation*}
\alpha(\psi)(m)=\Sigma \psi\left(m_{(0)}\right)_{(0)} \otimes \psi\left(m_{(0)}\right)_{(1)} \lambda\left(m_{(1)}\right), \quad m \in M \tag{13}
\end{equation*}
$$

(That $\alpha(\psi)$ is A-linear follows from (5).) Evidently,

$$
\begin{equation*}
(1 \otimes \varepsilon) \alpha(\psi)=\phi, \quad \phi \in \operatorname{Hom}_{A}(M, N) . \tag{14}
\end{equation*}
$$

Lemma 2.1. Let $\psi \in \operatorname{Hom}_{A}(M, N)$. Then ψ is H-colinear if and only if $\alpha(\psi)(m)=\psi(m) \otimes 1$ for all $m \in M$.

Proof. " $\Rightarrow "$: This is obvious. " \models ": We have, by (13) with m replaced by $m_{(0)}$,

$$
\begin{aligned}
\Sigma \phi\left(m_{(0)}\right) \otimes m_{(1)} & =\Sigma \psi\left(m_{(0)}\right)_{(0)} \otimes \psi\left(m_{(0)}\right)_{(1)} \lambda\left(m_{(1)}\right) m_{(2)} \\
& =\Sigma \psi(m)_{(0)} \otimes \psi(m)_{(1)}
\end{aligned}
$$

Define the k-module $\operatorname{HOM}_{A}(M, N)$ to consist of all $\psi \in \operatorname{Hom}_{A}(M, N)$ for which there exists an element $\Sigma \psi_{(0)} \otimes \psi_{(1)} \in \operatorname{Hom}_{A}(M, N) \otimes H$ such that

$$
\alpha(\psi)(m)=\Sigma \psi_{(0)}(m) \otimes \psi_{(1)}, \quad m \in M .
$$

Note that, since H is projective, $\operatorname{Hom}_{A}(M, N) \otimes H$ may be viewed as a submodule of $\operatorname{Hom}_{A}(M, N \otimes H)$, and we may simply write

$$
\alpha(\psi)=\sum \psi_{(0)} \otimes \psi_{(1)}, \quad \phi \in \operatorname{HOM}_{A}(M, N)
$$

Clearly, $\operatorname{HOM}_{A}(M, N)=\operatorname{Hom}_{A}(M, N)$ if H is finite over k.
Lemma 2.2. Let $\psi \in \operatorname{HOM}_{A}(M, N)$. Then $\alpha(\psi) \in \operatorname{HOM}_{A}(M, N) \otimes H$, and $\operatorname{HOM}_{A}(M, N)$ is a right H-comodule. Furthermore, $\operatorname{END}_{A}(M)=\operatorname{HOM}_{A}(M, M)$ is a right H-comodule algebra.

Proof. Let $m \in M$. We have by definition of $\alpha\left(\psi_{(0)}\right)$, and by (13) with m
replaced by $m_{(0)}$,

$$
\begin{aligned}
\Sigma \alpha\left(\psi_{(0)}\right)(m) \otimes \psi_{(1)} & =\Sigma \psi_{(0)}\left(m_{(0)}\right)_{(0)} \otimes \psi_{(0)}\left(m_{(0)}\right)_{(1)} \lambda\left(m_{(1)}\right) \otimes \psi_{(1)} \\
& =\Sigma \psi_{\left(m_{(0)}\right){ }_{(0)} \otimes \psi\left(m_{(0)}\right)_{(1)} \lambda\left(m_{(2)}\right) \otimes \psi\left(m_{(0)}\right)_{(2)} \lambda\left(m_{(1)}\right)} \\
& =\Sigma \psi_{(0)}(m) \otimes \psi_{(1)} \otimes \psi_{(2)} .
\end{aligned}
$$

Thus $(\alpha \otimes 1) \alpha(\psi)=(1 \otimes \delta) \alpha(\psi)$ for δ the comultiplication of H. This also implies that $\alpha(\psi)$ lies in $\operatorname{HOM}_{A}(M, N) \otimes H$. For, $\operatorname{HOM}_{A}(M, N)$ is the pull back for a and the canonical map $\kappa: \operatorname{Hom}_{A}(M, N) \otimes H \rightarrow \operatorname{Hom}_{A}(M, N \otimes H)$, and (-) $\otimes H$ preserves finite limits since H is flat. Thus $\operatorname{HOM}_{A}(M, N) \otimes H$ is the pull back for $\alpha \otimes i d_{H}$ and $\kappa \otimes i d_{H}$, and $(\alpha \otimes 1) \alpha(\psi) \in \operatorname{Im}(\kappa \otimes 1)$ implies $\alpha(\psi) \in \operatorname{HOM}_{A}(M, N) \otimes H$.

Next let $\phi, \phi \in \mathrm{END}_{A}(M)$. The definition of $\Sigma \psi_{(0)} \otimes \psi_{(1)}$ implies

$$
\Sigma \psi\left(m_{(0)}\right) \otimes \lambda\left(m_{(1)}\right)=\Sigma \psi_{(0)}(m)_{(0)} \otimes \lambda\left(\psi_{(0)}(m)_{(1)}\right) \psi_{(1)}
$$

From this we conclude

$$
\begin{aligned}
\alpha(\phi \psi)(m) & =\Sigma\left(\phi \psi\left(m_{(0)}\right)\right)_{(0)} \otimes\left(\phi \psi\left(m_{(0)}\right)\right)_{(1)} \lambda\left(m_{(1)}\right) \\
& =\Sigma \phi\left(\psi_{(0)}(m)_{(0)}\right)_{(0)} \otimes \phi\left(\phi_{(0)}(m)_{(0)}\right)_{(1)} \lambda\left(\psi_{(0)}(m)_{(1)}\right) \psi_{(1)} \\
& =\Sigma \phi_{(0)} \psi_{(0)}(m) \otimes \phi_{(1)} \psi_{(1)}
\end{aligned}
$$

Hence $\alpha(\phi \psi)=\alpha(\phi) \alpha(\psi)$, and this completes the proof.
Example. Let $H=k[G]$ for a group G. Hence A is a G-graded k-algebra, and $M=\underset{\sigma}{\oplus} M_{\sigma}, N=\bigoplus_{\sigma} N_{\sigma}$ are G-graded right A-modules. Let $\psi \in \operatorname{Hom}_{A}(M, N)$ and $m_{\sigma} \in M_{\sigma}$. Then

$$
\alpha(\psi)\left(m_{\sigma}\right)=\sum_{\rho} \psi\left(m_{\sigma}\right)_{\rho} \otimes \rho \sigma^{-1}=\sum_{\tau} \psi\left(m_{\sigma}\right)_{\tau \sigma} \otimes \tau
$$

This shows $\phi \in \operatorname{HOM}_{A}(M, N)$ iff $\psi=\sum_{\tau} \psi_{\tau} \in \bigoplus_{\tau} H_{\tau}$ (see (14)) with

$$
H_{\tau}=\left\{\psi_{\tau} \in \operatorname{Hom}_{A}(M, N) \mid \psi_{\tau}\left(M_{\sigma}\right) \subset N_{\tau \sigma}, \sigma \in G\right\},
$$

and in this case $\alpha(\psi)=\sum_{\tau} \psi_{\tau} \otimes \tau$. Hence our definition of $\operatorname{HOM}_{A}(M, N)$ coincides for $H=k[G]$ with the usual one for graded modules.

Suppose in the following that M is also a left H-module satisfying (6) and (8); hence $\operatorname{Hom}_{A}(M, N)$ is a right H-module with $(\psi h)(m)=\psi(h m)$.

Lemma 2.3. Let $\phi \in \operatorname{HOM}_{A}(M, N)$ and $h \in H$. Then

$$
\alpha(\psi h)=\Sigma \psi_{(0)} h_{(1)} \otimes \psi_{(1)} h_{(2)} .
$$

In particular, $\psi h \in \operatorname{HOM}_{A}(M, N)$.
Proof. From (8) (with h replaced by $h_{(1)}$) one obtains

$$
\sum\left(h_{(1)} m\right)_{(0)} \otimes \lambda\left(\left(h_{(1)} m\right)_{(1)}\right) h_{(2)}=\Sigma h m_{(0)} \otimes \lambda\left(m_{(1)}\right) .
$$

This implies

$$
\begin{aligned}
\alpha(\psi h)(m) & =\Sigma \psi\left(h m_{(0)}\right)_{(0)} \otimes \psi\left(h m_{(0)}\right)_{(1)} \lambda\left(m_{(1)}\right) \\
& =\Sigma \psi\left(\left(h_{(1)} m\right)_{(0)}\right)_{(0)} \otimes \psi\left(\left(h_{(1)} m\right)_{(0)}\right)_{(1)} \lambda\left(\left(h_{(1)} m\right)_{(1)}\right) h_{(2)} \\
& =\Sigma \psi_{(0)}\left(h_{(1)} m\right) \otimes \psi_{(1)} h_{(2)} .
\end{aligned}
$$

Theorem 2.4. Let H be a projective Hopf k-algebra, A a right H-comodule algebra, and M, N Hopf A-modules. Suppose M is also a left H-module satisfying (6) and (8). Then

$$
\operatorname{Hom}_{A}^{H}(M, N) \otimes H \longrightarrow \operatorname{HOM}_{A}(M, N), \quad \phi \otimes h \longmapsto \phi h,
$$

is an isomorphism of right H-comodules, where $\operatorname{Hom}_{A}^{H}(M, N)$ denotes the k-module of A-linear and H-colinear maps $M \rightarrow N$. Furthermore,

$$
\operatorname{End}_{A}^{H}(M) \# H \longrightarrow \operatorname{END}_{A}(M), \quad \phi \otimes h \longmapsto \phi h
$$

is an isomorphism of right H-comodule algebras.
Proof. $\operatorname{HOM}_{A}(M, N)$ is a Hopf H-module by Lemma 2.3, and

$$
\operatorname{Hom}_{A}^{H}(M, N)=\operatorname{HOM}_{A}(M, N)^{H}
$$

holds by Lemma 2.1. Hence the result follows from the descent theorem for Hopf H -modules.

Remark 2. Assume that H is finite over k. Then $\operatorname{HOM}_{A}(M, N)=$ $\operatorname{Hom}_{A}(M, N)$, and the corresponding H^{*}-module structure is

$$
(g \psi)(m)=\sum g_{(1)} \psi\left(\lambda\left(g_{(2)}\right) m\right)
$$

for $g \in H^{*}$ and $\psi \in \operatorname{Hom}_{A}(M, N)$. In this case theorem 2.4 may be proved entirely in the same way as the bijectivity of (10).

Clearly, Theorem 2.4 applies to $M=U=H \otimes A$. More generally, one may consider $U(M)=H \otimes M$, for any Hopf A-module M, with comodule structure $h \otimes m \mapsto \sum h_{(1)} \otimes m_{(0)} \otimes h_{(2)} m_{(1)}$. Then

$$
\operatorname{End}_{A}^{H}(U(M)) \# H \cong \operatorname{END}_{A}(U(M)) .
$$

This shows for $H=k[G]$ that [2], Thm. 3.6 (1) holds without any finiteness conditions on G or M.

Acknowledgement. I am grateful to the referee who suggested some improvements on the first version of the paper.

References

[1] Abe, E.; Hopf algebras, Cambridge Univ. Press 1980.
[2] Albu, T. and Năstăsescu, C., Infinite group-graded rings, rings of endomorphisms, and localization, J. Pure Appl. Algebra 59 (1989), 125-150.
[3] Blattner, R.J. and Montgomery, S., A duality theorem for Hopf module algebras, J. Algebra 95 (1985), 153-172.
[4] Cohen, M. and Montgomery, S., Group-graded rings, smash products and group actions, Trans. Amer. Math. Soc. 282 (1984), 237-258.
[5] Năstăsescu, C. and Rodinò, N., Group graded rings and smash products, Rend. Sem. Mat. Univ. Padova 74 (1985), 129-137.
[6] Long, F.W., The Brauer group of dimodule algebras, J. Algebra 30 (1974), 559601.

Institute of Mathematics
University of Tsukuba
Ibaraki 305, Japan

[^0]: * Supported by a grant from JSPS.

 Received February 27, 1989. Revised October 4, 1989.

