SMASH PRODUCTS AND COMODULES OF LINEAR MAPS

By

K.-H. Ulbrich*

Let G be a finite group and A be a G-graded algebra over a commutative ring k. Consider the G-graded right A-module $U = \bigoplus_{\sigma \in G} A(\sigma)$ where $A(\sigma) = A$ has grading shifted by σ . Năstăsescu and Rodinò [5] proved that

(1)
$$\operatorname{End}_{A-gr}(U) * G \cong \operatorname{End}_A(U), \text{ and } A \# k[G] * \cong \operatorname{End}_{A-gr}(U)$$

where $\operatorname{End}_{A-gr}(U)$ denotes the algebra of graded A-endomorphisms of U, and * means crossed product, [5], Theorems 1.2 and 1.3. The proofs are given by some explicit matrix computations relying on a graded isomorphism $\operatorname{End}_A(U) \cong M_n(A)$, n = |G|, [5], Prop. 1.1. The first isomorphism of (1) has recently been generalized to

(2)
$$\operatorname{End}_{A-gr}(U) * G \cong \operatorname{END}_A(U)$$
, [2], Thm. 3.3,

for not necessarily finite groups G. The purpose of this paper is to give Hopf algebraic versions of (1) and (2). Write H=k[G]. First note that the above crossed products are also smash products. Furthermore, a G-graded k-module is the same as an H-comodule, and the A-isomorphism

$$U \xrightarrow{\sim} H \otimes A, \quad a(\sigma) \longmapsto \sigma^{-1} \otimes a(\sigma), \qquad a(\sigma) \in A(\sigma),$$

is *H*-colinear where $H \otimes A$ has coaction $\alpha : H \otimes A \rightarrow H \otimes A \otimes H$ defined by

(3)
$$\alpha(h\otimes a) = \sum h_{(1)} \otimes a_{(0)} \otimes h_{(2)} a_{(1)}, \quad h \in H, \ a \in A.$$

Now let H be any Hopf algebra over k and set $U=H\otimes A$ for a right H-comodule algebra A. Let $\operatorname{End}_{A}^{H}(U)$ be the algebra of right A-linear maps $U \rightarrow U$ which are colinear with respect to (3). We shall generalize (1), for H finite over k, to

(4)
$$\operatorname{End}_{A}^{H}(U) \# H \cong \operatorname{End}_{A}(U) \text{ and } A \# H^{*} \cong \operatorname{End}_{A}^{H}(U).$$

It was pointed out in [5] that (1) implies the duality theorems of Cohen and Montgomery [4]. Correspondingly, (4) may be viewed as an improvement of the duality result for finite Hopf algebras [3], Cor. 2.7. Note that the second

^{*} Supported by a grant from JSPS.

Received February 27, 1989. Revised October 4, 1989.

isomorphism of (4) gives a natural interpretation for an arbitrary smash product by a finite Hopf algebra.

Comodules of the form $HOM_A(M, N)$ seem not have been considered yet for Hopf algebras others than k[G]. We introduce them here for arbitrary, projective Hopf algebras in section 2. We can then generalize (2) (and the first isomorphism of (4)) to

$$\operatorname{End}_{A}^{H}(U) \# H \cong \operatorname{END}_{A}(U)$$

for projective Hopf algebras. This turns out to be a special case of Theorem 2.4 which also includes [2], Thm. 3.6 (1), and shows that the finiteness conditions assumed there are not necessary.

Throughout the following, H denotes a Hopf algebra over a commutative ring k, and A a right H-comodule algebra. Recall that a Hopf A-module is a right A-module M supplied with a right H-comodule structure $\alpha: M \rightarrow M \otimes H$ such that

(5)
$$\alpha(ma) = \sum m_{(0)} a_{(0)} \otimes m_{(1)} a_{(1)}, \quad m \in M, \ a \in A.$$

In case H=A, the descent theorem for Hopf *H*-modules says that the *H*-(co)-linear map

$$M^{H} \otimes H \longrightarrow M$$
, $m \otimes h \longmapsto mh$,

is an isomorphism ([1], Thm. 3.1.8). Here $M^{H} = \{m \in M \mid \alpha(m) = m \otimes 1\}$. If *H* is finite over *k*, a right *H*-module *M* is a Hopf *H*-module iff *M* is a left *H**-module satisfying

$$g(mh) = \sum (g_{(1)}m)(g_{(2)}h), \quad g \in H^*, \ m \in M, \ h \in H.$$

As usual, $H^* = \operatorname{Hom}_k(H, k)$ denotes the dual Hopf algebra (for H finite over k), and H is viewed as a left H^* -module by $gh = \sum h_{(1)} \langle g, h_{(2)} \rangle$. For a left Hmodule algebra B the smash product algebra B # H is $B \otimes H$ with multiplication defined by

$$(b'\otimes h)(b\otimes h') = \sum b'(h_{(1)}b)\otimes h_{(2)}h'$$

for b, $b' \in B$, h, $h' \in H$. The antipode and counit of a Hopf algebra will be denoted by λ and ε , respectively. We write $\otimes = \otimes_k$.

1. Let M be a left H- and right A-module such that

(6)
$$(hm)a=h(ma), \quad h\in H, m\in M, a\in A.$$

For $h \in H$ and $\phi \in \operatorname{End}_A(M)$ define $h\phi \in \operatorname{End}_A(M)$ by

Smash products and comodules of linear maps

(7)
$$(h\psi)(m) = \sum h_{(1)}\psi(\lambda(h_{(2)})m), \qquad m \in M.$$

Then $\operatorname{End}_{A}(M)$ is a left *H*-module algebra [6], and

$$\operatorname{End}_{A}(M) \# H \longrightarrow \operatorname{End}_{A}(M), \quad \psi \otimes h \longmapsto \psi h^{"},$$

is a homomorphism of k-algebras, where $(\phi h)(m) = \phi(hm)$. Assume that M has also a right H-comodule structure $\alpha: M \to M \otimes H$ satisfying

(8)
$$\alpha(hm) = \sum h_{(1)}m_{(0)} \otimes h_{(2)}m_{(1)}, \quad h \in H, m \in M.$$

Let $\operatorname{End}_{\mathcal{A}}^{H}(M)$ be the k-algebra of A-linear and H-colinear maps $M \to M$.

LEMMA 1.1. $\operatorname{End}_{A}^{H}(M)$ is an H-submodule algebra of $\operatorname{End}_{A}(M)$.

The easy proof is left to the reader.

In the following we consider $M=H\otimes A=U$ with *H*-comodule structure defined by (3); *U* is naturally a left *H*- and right *A*-module satisfying (5), (6) and (8).

LEMMA 1.2. Suppose the antipode λ of H is bijective. Then

(9)
$$\gamma : \operatorname{End}_{A}^{H}(U) \longrightarrow \operatorname{Hom}_{k}(H, A), \quad \chi(\phi)(h) = (\varepsilon \otimes 1)\phi(h \otimes 1),$$

is an isomorphism of k-modules.

PROOF. Define Hom_k(H, A) \rightarrow End^H_A(U), $v \mapsto \tilde{v}$, by

$$\tilde{v}(h \otimes a) = \sum h_{(2)} \lambda^{-1}(v(h_{(1)})_{(1)}) \otimes v(h_{(1)})_{(0)} a$$

for $h \in H$, $a \in A$. It is easy to see that \tilde{v} is *H*-colinear. Clearly $\chi(\tilde{v})=v$. Let $\phi \in \operatorname{End}_A^H(U)$, $h \in H$, and write $\phi(h \otimes 1) = \sum h_i \otimes a_i$. The colinearity of ϕ implies for $v = \chi(\phi)$

$$\sum a_{i(0)} \otimes h_i a_{i(1)} = \sum v(h_{(1)}) \otimes h_{(2)}.$$

Therefore

$$\phi(h \otimes 1) = \sum h_i a_{i(2)} \lambda^{-1}(a_{i(1)}) \otimes a_{i(0)}$$

= $\sum h_{(2)} \lambda^{-1}(v(h_{(1)})_{(1)}) \otimes v(h_{(1)})_{(0)}$. \Box

REMARK 1. If the comodule structure of A is trivial then (9) is an algebra map where $\operatorname{Hom}_{k}(H, A)$ has the opposite convolution product. (The bijectivity of λ is not needed in this case.)

Suppose now that H is finite over k. For $a \in A$ and $g \in H^*$ define $a^0, g^0: U \rightarrow U$ by

$$\begin{split} a^{0}(h\otimes b) &= \sum h \lambda^{-1}(a_{(1)}) \otimes a_{(0)}b , \\ g^{0}(h\otimes b) &= g^{0}(h) \otimes b = \sum h_{(2)} \langle g, h_{(1)} \rangle \otimes b , \end{split}$$

for $h \in H$, $b \in A$. It is not difficult to see that a^0 and g^0 are *H*-colinear. Furthermore, $(aa')^0 = a^0 a'^0$, while $(gg')^0 = g'^0 g^0$. Note that $g^0(h) = gh$ if *H* is cocommutative.

THEOREM 1.3. Let H be a finitely generated and projective Hopf algebra over k, A a right H-comodule algebra, and $U=H\otimes A$ with comodule structure defined by (3). Then

(10)
$$\operatorname{End}_{A}^{H}(U) \# H \longrightarrow \operatorname{End}_{A}(U), \quad \phi \otimes h \longmapsto \phi h,$$

and

(11)
$$A \# H^* \longrightarrow \operatorname{End}_A^H(U), \quad a \otimes g \longmapsto a^{\mathfrak{o}} \lambda(g)^{\mathfrak{o}},$$

are isomorphisms of k-algebras.

PROOF. That (10) is bijective is a special case of Theorem 2.4 below. It may be worth, however, to give here a separate proof for the finite case. We claim that the right *H*-module $\text{End}_4(U)$ is a Hopf module satisfying

(12)
$$\operatorname{End}_{A}^{H}(U) = \operatorname{End}_{A}(U)^{H}$$

It suffices to exhibit a corresponding left H^* -module structure. View A and U as left H^* -modules in the natural way. Then

$$gu = \sum g_{(1)}h \otimes g_{(2)}a$$
, for $u = h \otimes a$, $g \in H^*$.

Now $\operatorname{End}_{A}(U)$ becomes a left H^* -module by the formula (7), (with h replaced by $g \in H^*$). That $g\phi$ is A-linear follows in the present case from $g(ua) = \sum (g_{(1)}u)(g_{(2)}a), u \in U, a \in A$. Furthermore, we have $g(hu) = \sum (g_{(1)}h)(g_{(2)}u)$ for $h \in H$, $u \in U$, and this implies $g(\phi h) = \sum (g_{(1)}\phi)(g_{(2)}h)$, as is easy to see. Thus $\operatorname{End}_{A}(U)$ is a Hopf H-module. If $\phi \in \operatorname{End}_{A}(U)$ is H^* -linear, then clearly $g\phi = \varepsilon(g)\phi$ for all $g \in H^*$. Conversely, if the latter holds, then

$$g(\phi(u)) = \sum (g_{(1)}\phi)(g_{(2)}u) = \sum \varepsilon(g_{(1)})\phi(g_{(2)}u) = \phi(gu),$$

so that ϕ is H^* -linear. Hence (12) holds, and (10) is an isomorphism by the descent theorem for Hopf modules.

The composite of (11) and (9) gives the map

 $A \otimes H^* \longrightarrow \operatorname{Hom}_k(H, A), \qquad a \otimes g \longmapsto (h \mapsto a \langle \lambda(g), h \rangle).$

This is bijective, since H is finite over k. Hence (11) is an isomorphism by Lemma 1.2. That (11) is an algebra map follows from

$$g^{0}a^{0} = \sum (\lambda^{-1}(g_{(2)})a)^{0}g^{0}_{(1)}$$

which may be verified by evaluating on elements $h\otimes 1$.

2. We assume throughout the following that H is projective over k. As before, A denotes a right H-comodule algebra. We want to define comodules $HOM_A(M, N)$ which generalize those defined for graded modules.

Fix Hopf A-modules M and N. For $\psi \in \operatorname{Hom}_A(M, N)$ define $\alpha(\psi) \in \operatorname{Hom}_A(M, N \otimes H)$ by

(13)
$$\alpha(\psi)(m) = \sum \psi(m_{(0)})_{(0)} \otimes \psi(m_{(0)})_{(1)} \lambda(m_{(1)}), \qquad m \in M.$$

(That $\alpha(\phi)$ is A-linear follows from (5).) Evidently,

(14)
$$(1 \otimes \varepsilon) \alpha(\phi) = \phi, \quad \phi \in \operatorname{Hom}_{A}(M, N).$$

LEMMA 2.1. Let $\psi \in \text{Hom}_A(M, N)$. Then ψ is H-colinear if and only if $\alpha(\phi)(m) = \phi(m) \otimes 1$ for all $m \in M$.

PROOF. " \Rightarrow ": This is obvious. " \Leftarrow ": We have, by (13) with *m* replaced by $m_{(0)}$,

$$\sum \phi(m_{(0)}) \otimes m_{(1)} = \sum \phi(m_{(0)})_{(0)} \otimes \phi(m_{(0)})_{(1)} \lambda(m_{(1)}) m_{(2)}$$
$$= \sum \phi(m)_{(0)} \otimes \phi(m)_{(1)} . \quad \Box$$

Define the k-module $HOM_A(M, N)$ to consist of all $\phi \in Hom_A(M, N)$ for which there exists an element $\sum \phi_{(0)} \otimes \phi_{(1)} \in Hom_A(M, N) \otimes H$ such that

$$\alpha(\psi)(m) = \sum \psi_{(0)}(m) \otimes \psi_{(1)}, \qquad m \in M.$$

Note that, since H is projective, $\operatorname{Hom}_A(M, N) \otimes H$ may be viewed as a submodule of $\operatorname{Hom}_A(M, N \otimes H)$, and we may simply write

$$\alpha(\phi) = \sum \phi_{(0)} \otimes \phi_{(1)}, \qquad \phi \in \operatorname{HOM}_A(M, N).$$

Clearly, $HOM_A(M, N) = Hom_A(M, N)$ if H is finite over k.

LEMMA 2.2. Let $\phi \in HOM_A(M, N)$. Then $\alpha(\phi) \in HOM_A(M, N) \otimes H$, and $HOM_A(M, N)$ is a right H-comodule. Furthermore, $END_A(M) = HOM_A(M, M)$ is a right H-comodule algebra.

PROOF. Let $m \in M$. We have by definition of $\alpha(\phi_{(0)})$, and by (13) with m

replaced by $m_{(0)}$,

$$\sum \alpha(\psi_{(0)})(m) \otimes \psi_{(1)} = \sum \psi_{(0)}(m_{(0)})_{(0)} \otimes \psi_{(0)}(m_{(0)})_{(1)} \lambda(m_{(1)}) \otimes \psi_{(1)}$$
$$= \sum \psi(m_{(0)})_{(0)} \otimes \psi(m_{(0)})_{(1)} \lambda(m_{(2)}) \otimes \psi(m_{(0)})_{(2)} \lambda(m_{(1)})$$
$$= \sum \psi_{(0)}(m) \otimes \psi_{(1)} \otimes \psi_{(2)} .$$

Thus $(\alpha \otimes 1)\alpha(\psi) = (1 \otimes \delta)\alpha(\psi)$ for δ the comultiplication of H. This also implies that $\alpha(\psi)$ lies in HOM₄ $(M, N) \otimes H$. For, HOM₄(M, N) is the pull back for aand the canonical map $\kappa : \text{Hom}_4(M, N) \otimes H \rightarrow \text{Hom}_4(M, N \otimes H)$, and $(-) \otimes H$ preserves finite limits since H is flat. Thus HOM₄ $(M, N) \otimes H$ is the pull back for $\alpha \otimes id_H$ and $\kappa \otimes id_H$, and $(\alpha \otimes 1)\alpha(\psi) \in \text{Im}(\kappa \otimes 1)$ implies $\alpha(\psi) \in \text{HOM}_4(M, N) \otimes H$.

Next let $\phi, \phi \in \text{END}_A(M)$. The definition of $\sum \phi_{(0)} \otimes \phi_{(1)}$ implies

$$\sum \psi(m_{(0)}) \otimes \lambda(m_{(1)}) = \sum \psi_{(0)}(m)_{(0)} \otimes \lambda(\psi_{(0)}(m)_{(1)}) \psi_{(1)}.$$

From this we conclude

$$\begin{aligned} \alpha(\phi\psi)(m) &= \sum (\phi\psi(m_{(0)}))_{(0)} \otimes (\phi\psi(m_{(0)}))_{(1)}\lambda(m_{(1)}) \\ &= \sum \phi(\psi_{(0)}(m)_{(0)})_{(0)} \otimes \phi(\psi_{(0)}(m)_{(0)})_{(1)}\lambda(\psi_{(0)}(m)_{(1)})\psi_{(1)} \\ &= \sum \phi_{(0)}\psi_{(0)}(m) \otimes \phi_{(1)}\psi_{(1)} . \end{aligned}$$

Hence $\alpha(\phi\psi) = \alpha(\phi)\alpha(\psi)$, and this completes the proof.

EXAMPLE. Let H=k[G] for a group G. Hence A is a G-graded k-algebra, and $M=\bigoplus_{\sigma}M_{\sigma}$, $N=\bigoplus_{\sigma}N_{\sigma}$ are G-graded right A-modules. Let $\psi \in \operatorname{Hom}_{A}(M, N)$ and $m_{\sigma} \in M_{\sigma}$. Then

$$\alpha(\psi)(m_{\sigma}) = \sum_{\rho} \psi(m_{\sigma})_{\rho} \otimes \rho \sigma^{-1} = \sum_{\tau} \psi(m_{\sigma})_{\tau \sigma} \otimes \tau$$

This shows $\phi \in HOM_A(M, N)$ iff $\phi = \sum \phi_\tau \in \bigoplus H_\tau$ (see (14)) with

$$H_{\tau} = \{ \psi_{\tau} \in \operatorname{Hom}_{A}(M, N) | \psi_{\tau}(M_{\sigma}) \subset N_{\tau\sigma}, \sigma \in G \},\$$

and in this case $\alpha(\phi) = \sum_{\tau} \phi_{\tau} \otimes \tau$. Hence our definition of HOM_A(M, N) coincides for H = k[G] with the usual one for graded modules.

Suppose in the following that M is also a left *H*-module satisfying (6) and (8); hence Hom_A(M, N) is a right *H*-module with $(\phi h)(m) = \phi(hm)$.

LEMMA 2.3. Let $\psi \in HOM_A(M, N)$ and $h \in H$. Then

$$\alpha(\psi h) = \sum \psi_{(0)} h_{(1)} \otimes \psi_{(1)} h_{(2)}.$$

In particular, $\psi h \in HOM_A(M, N)$.

PROOF. From (8) (with h replaced by $h_{(1)}$) one obtains

$$\sum (h_{(1)}m)_{(0)} \otimes \lambda((h_{(1)}m)_{(1)})h_{(2)} = \sum hm_{(0)} \otimes \lambda(m_{(1)}).$$

This implies

$$\begin{aligned} \alpha(\psi h)(m) &= \sum \psi(hm_{(0)})_{(0)} \otimes \psi(hm_{(0)})_{(1)} \lambda(m_{(1)}) \\ &= \sum \psi((h_{(1)}m)_{(0)})_{(0)} \otimes \psi((h_{(1)}m)_{(0)})_{(1)} \lambda((h_{(1)}m)_{(1)})h_{(2)} \\ &= \sum \psi_{(0)}(h_{(1)}m) \otimes \psi_{(1)}h_{(2)} \quad \Box \end{aligned}$$

THEOREM 2.4. Let H be a projective Hopf k-algebra, A a right H-comodule algebra, and M, N Hopf A-modules. Suppose M is also a left H-module satisfying (6) and (8). Then

$$\operatorname{Hom}_{\mathcal{A}}^{H}(M, N) \otimes H \longrightarrow \operatorname{HOM}_{\mathcal{A}}(M, N), \qquad \phi \otimes h \longmapsto \phi h,$$

is an isomorphism of right H-comodules, where $\operatorname{Hom}_{A}^{H}(M, N)$ denotes the k-module of A-linear and H-colinear maps $M \rightarrow N$. Furthermore,

$$\operatorname{End}_{A}^{H}(M) \# H \longrightarrow \operatorname{END}_{A}(M), \quad \phi \otimes h \longmapsto \phi h,$$

is an isomorphism of right H-comodule algebras.

PROOF. HOM_A(M, N) is a Hopf H-module by Lemma 2.3, and

 $\operatorname{Hom}_{A}^{H}(M, N) = \operatorname{HOM}_{A}(M, N)^{H}$

holds by Lemma 2.1. Hence the result follows from the descent theorem for Hopf H-modules.

REMARK 2. Assume that H is finite over k. Then $HOM_A(M, N) = Hom_A(M, N)$, and the corresponding H^* -module structure is

$$(g\psi)(m) = \sum g_{(1)}\psi(\lambda(g_{(2)})m)$$

for $g \in H^*$ and $\psi \in \text{Hom}_A(M, N)$. In this case theorem 2.4 may be proved entirely in the same way as the bijectivity of (10).

Clearly, Theorem 2.4 applies to $M=U=H\otimes A$. More generally, one may consider $U(M)=H\otimes M$, for any Hopf A-module M, with comodule structure $h\otimes m \to \sum h_{(1)}\otimes m_{(0)}\otimes h_{(2)}m_{(1)}$. Then

$$\operatorname{End}_{A}^{H}(U(M)) # H \cong \operatorname{END}_{A}(U(M))$$
.

This shows for H=k[G] that [2], Thm. 3.6 (1) holds without any finiteness conditions on G or M.

Acknowledgement. I am grateful to the referee who suggested some improvements on the first version of the paper.

References

- [1] Abe, E., Hopf algebras, Cambridge Univ. Press 1980.
- [2] Albu, T. and Năstăsescu, C., Infinite group-graded rings, rings of endomorphisms, and localization, J. Pure Appl. Algebra 59 (1989), 125-150.
- Blattner, R. J. and Montgomery, S., A duality theorem for Hopf module algebras, J. Algebra 95 (1985), 153-172.
- [4] Cohen, M. and Montgomery, S., Group-graded rings, smash products and group actions, Trans. Amer. Math. Soc. 282 (1984), 237-258.
- [5] Năstăsescu, C. and Rodinò, N., Group graded rings and smash products, Rend. Sem. Mat. Univ. Padova 74 (1985), 129-137.
- [6] Long, F.W., The Brauer group of dimodule algebras, J. Algebra 30 (1974), 559-601.

Institute of Mathematics University of Tsukuba Ibaraki 305, Japan