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REPRESENTATIONS OF REDUCTIVE GROUP SCHEMES

By

Akihiko Gyoja

Introduction.

Let S be a reduced, irreducible scheme and G a reductive group scheme

over 5. A representation of G is, by definition,a pair (p, V) of a vector

bundle V over 5 and a homomorphism p: G->GL(V). If rjis the generic geo-

metric point of 5, we call (G, p, V) an S-form of (G5, p^, Vff). The purpose

of this paper is to describe the 5-forms of an irreducible representation of G^,

assuming that 5 is normal and locally noetherian.

As is well known, if 5 is the prime spectrum of a field,the 5-forms of a

given representation can be obtained by twisting the split S-form using the

Galois cohomology. In the general case, the S-forms of a given representation

can be also obtained by twisting the split ones using a non-abelian etale co-

nomology, which is a natural generalization of the usual Galois cohomology.

In contrast with the case where 5 is the prime spectrum of a field,there are

possibly more than one split 5-forms.

The results of this paper will be applied to a study of prehomogeneous

vector soaces.

Conventions. Since we refer [5] very often, we shall write [Exp. X, Y.Z.

･･･] for [5; Exp. X, Y.Z. ･･･]･ If we are considering an algebraic variety V

over an algebraically close fieldK, we often identify V with the set of rational

points V(K). If a scheme X is considered as a scheme over another scheme

5, we add suffix S and write Xs. If S=Spec A, we write XA for XsvficA.

1. Representations of Chevalley-Demazure group schemes.

The purpose of this section is to describe the irreducible representations of

a Chevalley-Demazure group scheme. The main result of this section is (1.19).

1.1. Let K be an algebraically closed field, GK a (connected) reductive

algebraic group over K, TK a maximal torus of GK, BK a Borel subgroup of
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GK which contains TK, R (resp. i?v) the root system (resp. the coroot system)

of GK with respect to TK, M=Hom(TK, Kx) and Mv=Hom(/P, TK). Let RK

be the Lie algebra of GK, RK―RK(r) the root subspace of RK associated with

a root r(<=R), R+={r^R＼RK(r)(ZLie(BK)} and Ro the basis of R which is

contained in R+. Let (Xr)r<ER be a Chevalley system of GK [Exp. 23, 6.1].

Define a homomorphism pr = pr,K 'K->GK by £rU)=exp(xyYr) and let Pr = Pr,K

pr(K). Let

Wr = *r(l)/>-r(-D/>r(l)

= P-r(-l)Pr(l)P-r(-D.

Let wo=wriWr2--- wrN be "the longest element", i.e., the following conditions

are satisfied:

R+={rN, WrNrN_u WrNWrN_irN-Z, ･■■, WrNWrN_1 ･･･Iffr/i)

and

Let VLK be the enveloping algebra of (§#.

1.2. Let pK: GK->GL(VK) be a representationof GK on a finitedimen-

sionalvector space VK, V＼ the dual vector space and p＼ the compositionof

GK ―> GL(VK) -^ GL(VvK),

which is called the contragradient representation of pK- Let < }:V)^xVk-*K

be the natural pairing of V＼ and VK, and V
(1,K=VK{ft)

(resp. Vy.K=V%(ft))

the weight space of VK (resp. V＼) which belongs to ft(gM).

If there is no fear of confusion, we refer to (pK, VK) or pK as a repre-

sentation. We refer to Vx as a GV-module.

1.3. Let S be a reduced, irreducible scheme whose residue fieldat the

generic point 7]is contained in K. Let rj be the generic geometric point

Tj:Spec K ―> -q―> S .

Let Os be the structure sheaf of S.

1.4. An (Cs-)lattice of VK is, by definition,a pair (V(OS), i) of a locally-

free Os-module V(OS) of finiterank and an isomorphism i:V{Os)^V K- Two

lattices(V(OS), i) and (V'(OS), i') of VK are isomorphic if there is an isomor-

phism f :V(Os)^V'(Os) and a (non-zero) homothety c:VK-^VK such that the

diagram
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V{Os)i VK
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is commutative. Let VV(OS) be the dual 05-module of V(OS), i.e., Vv(Os)=

Hom0s(V(Os), Os). The natural isomorphism iv: Fv(0sV->V^ which is induced

by i, gives a lattice(VV(OS), zv), which is called the dual lattice of (V(OS), i).

Let S(V(OS)) and S(VV(OS)) be the symmetric algebras over V(OS) and FV(CS),

respectively. Then F5=Spec S(VV(OS)) and 7^=Spec S(V(OS)) are vector bundles

over 5, and their generic geometric fibres Vs.fjand F^,^ are isomorphic to VK

and 7^, respectively. If there is no fear of confusion, we refer to V(OS) as a

1.5. Let Gs be the Chevalley-Demazure group scheme over 5 such that

Gs,ri=GK. (In other words, GS=GZXS, where Gz is the Z-group scheme

which is constructed in [Exp. 25].) We can define an S-analogue of each object

(or notion) which appears in (1.1) and (1.2). Especially we can define Ts> Bs

etc., which are objects over S, corresponding to TK, BK etc. We may assume

that TS&K=TK, Bs(g)K=BK etc. We assume that Gs is equipped with an

pninerlacreFRyn 23 1.11.

Remark. One of the advantages of the construction of [Exp. 25] is that

wp ran frpot rpnrpQpnfjiHnnc which 5≫rpnnf faithful

1.6. Let ps'.GS->GL(VS) be a homomorphism such that psRK=pK> and

pi the composition

Gs -Sf GL(VS) -^* GL(n)

We shall call ps a representation of Gs and pY the contragradient representa-

tion of ps. We say that ps is (absolutely) irreducible if ps(8)K is irreducible.

1.7. Let Uz be the Z-subalgebra of tfc,which is generated by the elements

Xf/m＼ (re/?, m=0, 1, 2, ･･･).

Let Us be the CValgebra defined by

£/.―roy,05>g)Uz,

where t/ is any open set of S. The CValgebra Us has a graded Cs-algebra

cfniphrrp nf funp A/f･
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deg {X?/m＼)=mr (gM).

1.8. Let V{Os) be a locally free Os-module of finite rank which has a (left)

lls-module structure. We say that V(OS) is irreducible if V(OS)^K is an irre-

ducible U/c-module. A graded U^-module is, by definition, a (left) Es-module

equipped with a graded CVmodule structure of type M which is compatible

with the graded e>s-algebra structure of Us. A graded Il^-module is said to be

irreducible, if it is irreducible as a Us-module.

1.9. Let us show that, from a given representation ps of Gs, we can

canonically construct a graded Us-module structure on V(OS).

Let OsM be the group algebra of the additive group M. The epinglage of

Gs gives an identification of the character lattice of Ts with M. Hence we

get a canonical identification of Ts with SpecC5M. Thus the composition of

morphisms

TS―^GS―^ GL (ys) ―> End (Vs)

induces an algebra homomorphism V(Os)(S)Vv(Os}-*OsM, which induces an Os-

linear mapping q: V (O S)-+V (O s)R0 SM. Let us define C<j-linear mappings

Qfi'■V(Os)-*V(Ps) (<p^M), by <7(v)=2j≪etf<?/i(v)(S>ju,where v is a local section of

V{OS). It is easy to see that #/s are mutually orthogonal projections onto sub-

modules of V{ps) and ^gp=id. (See [1; II, §2, 2.5].) Let VP(OS) be the

image of g,,. Then Vr(Os)=0/iejfV'/l(Os). Denote (symbolically) by Xzrml＼VftiOs^

the composition of mappings

V^Os) c=- V(OS) > V(OS) > V^riOs),

where r^R and m=0, 1, 2, ･･-. Let X＼ml (eEndF(Cs)) be the direct sum of

these mappings.

1.10. Remark. Let us consider the case S=Spec K. Let C be the coordi-

nate ring of GK. Then C has a iT-coalgebra structure. See [2] for the defini-

tion of coalgebra and related notions. The left G^-module structure on VK

induces a left C-module structure on FX-. The inclusion TK-+GK induces a

homomorphisms KM<-C and

VI ―* V＼RC ―> VlRKM.

By the argument of (1.9), we can define a graded if-module structure on V＼

of type M. Also {^r(l)}c->G^ induces K<-C and

yv ―^ yv^C ―, Fv
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Thus, to define the operator XLrml on VyK, we need only the C-module structure

on V＼. In other words, we can define the operators Xzrml for any C-module.

Moreover, it is not difficultto generalize our argument to an arbitrary S other

than Spec K.

1.11. Lemma. There is a {unique) Ms-module structure on V(Os) such that

(X^/ml)v=^Xlrmlv for every local section v of V(OS).

Proof. Our task is to show that the operators XLrm2 (rei?, m=0, 1, ･･･)

satisfy the relations which they should satisfy. By an extension of scalars, we

may assume that S=Spec K from the beginning. By (1.10), we can consider

the same statement as above for any C-module W. To use the results of [2],

we shall prove the statement in such a generalized form. By [2; 1.5a], we

may assume that W is an injective C-module. By [2; 1.5h], we may assume

further that W is indecomposable. By [2; 2.4c], we can reduce the proof to

the case 5=Spec L, where L is an algebraic closure of the quotient field of

the Witt ring of K. Since L is an algebraically closed fieldof characteristic

zero, the above statement is clear from the construction of Chevalley groups.

1.12. Thus we get a U5-module structure on V(OS) and a graded Os-modu＼e

structure (V^Os^^m of type M, which are clearly compatible.

Conversely, if we are given a graded U^-module structure on V(OS), we can

define linear actions of pr,s (r<=R) and Ts on Vs- By a similar argument as

above, we can show that these actions extend to a linear action of Gs on Vs-

Thus we set the following:lemma.

1.13. Lemma. The functor

Vs ' >(V(OS), (VpiOs))^*)

is an equivalence of the category of irreducible Gs-modules with that of irre-

ducible, sraded VLs-modules.

In the remainder of this section, we assume that pK is an irreducible repre-

sentation of GK, V(ps) is a lattice of VK and PsRK―pK.

1.14. As is well known, VK has a highest weight ^0 with respect to BKt

i.e., BKVK(pio)―VK([i0). It is also known that 6＼mK VK{[io)=l- Let ^0=

^^0(^5) be a subsheaf of VftOtK which is locally free of rank 1. Here we are

considering K as a constant sheaf on 5. Since we can regard F(U, Us) as a
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subring of VLK for any open set U of 5, we can define a sheaf Vmin(Os) by

U> >r(U,VLs)-cv0 (JCVK).

Let i: Vmin(pS)ij-*VK be the natural morphism.

1.15. Lemma. The pair (Fmin(e>5),0 is an Os-lattice of VK.

Proof. Follow the proof of Corollary 1 to Theorem 2 of [6; p. 17].

1.16. Let p?i be the highest weight of the contragradient representation

p＼ of pK- We can prove that /j^= ―wofio. Hence < > defines a complete pairing

between wQVK(fio) and V^(fi^). Let <=vybe the dual cVmodule of w<fV<>. Then cyv

is naturally a subsheaf of V^(pi^) and a locally free CVmodule of rank 1. Thus

we can define (F^in(Os),iv) in the same way as above. Let (Vmax(Os), i) be its

dual lattice. Then Vm＼n(Os) can be naturally considered as a submodule of

Fmax(Os) and Vmin,n{Os)=Vm^n(Os)=cVo. The graded Cvalgebra structure

of Us is inherited by graded Us-module structures on Vmin(Os) and Fmax(O5).

The inclusion Vmin(Os)ClVmax(Os) is compatible with these structures.

If we need to state clearly the dependence on cv0. we write Vmin(Os', ^o)

(resp. Vmax(Os; c^o)) for Vmin(Os) (resp. Vmax(Os)). If ^o is a trivial0s-module

and generated by a global section v0, we write Vmin(Os; v0) (resp. Vmax(Os; v0))

for Vmin(Os; ^o) (resp. Vmax(Os; cy0)).

1.17. An 5-form of VK is, by definition,an C5-lattice(V(OS), i) of VK,

equipped with a graded U^-module structure which is compatible with the

graded H^-module structure of VK. Let $ be an element of H＼S, O|). An S-

form (Y(OS), i) is of type $, if VMo(Os) is an invertible sheaf whose cohomology

class is £.

Let us fix an invertible Cs-submodule cv0 of VK(fio) whose cohomology class

is £. We sometimes write Vmin(Os; I) (resp. Fmax(Cs; ?)) for Fmin(Cs; ^o)

(resp. 7max(0s; ^o)).

1.18. Lemma. Let V(OS) be a graded Us-submodule of Vm3lX(Os) which is

locally free Os-module and contains Fmin(Cs). Denote by i the composition

V(OS)v > ^max(0s)9-^* VK .

Then (V(OS), i) is an S-form of VK and every S-form (up to isomorphims) of VK

of type £ can be obtained uniquely in this way.

Proof. If (V(OS), i) is an S-form of type £,then, multiplying by a scalar
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if necessary, we may assume that VMo(Os)=cVo- Then V(Os)^>Vmin(Os) and

V^(Os)Z)V^in(Os), where VV(OS) is the dual O5-module of V(OS). Hence Vm*x(Os)

ZDViO.^'DVmiJOz). The remaining is clear.

1.19. Proposition. (1) The correspondence

<f>:V{OS).―> VMo(Os)

defines a surjective mapping of the set of isomorphims classes of S-forms of VK

onto U＼S, 01).

(2) Let IsH^S, Os). There is a one-to-one correspondence between the set

^"XD and the set of graded Us-submodules of Vmax(Os', I) which is a locally free

Os-module and contains Vmin(Os',I).

(3) For any two cohomology classes fi, ^gH^S, Of), there is a one-to-one

correspondence <f>~1(£,)^6~1(£9).

Proof. The firstand second parts are already proved. Let us prove the

last part. Assume that ^gH'(S, C|) and

VmaX(Os; &Z)V(Os)Z)Vmin(Os; £).

Then there is an open covering {Ua} of S such that t-＼Uais trivialfor every

a. Then F^((?s) has a section va on Ua which does not intersect the zero sec-

tion. There is a unique graded Its-automorphism (pap of V{Os)＼uarvp such that

If we patch the Its-modules {V(Os)＼uJ according to the patching data {4>ap＼,we

get a graded Us-module V0(Os) such that

Fmax(0s; |o)^F0(OspFmin(Os; £0)

and which is a locally free cs-module. Here |0 is the trivial class of U＼S, Os).

Thus we get a correspondence <fr~1(£)-+6~1(£o),which is clearly biiective.

2. Vector bundles.

To treat representations of general reductive groups, we need to show that

a quasi-coherent CVmodule of finite type is etale locally free if and only if it

is Zariski locallv free.

2.1. Lemma. Let A and B be localrings, A-^B a localhomomorphism, M

■anA-module and N―M^AB. If B is a finiteStaleover A and N is a free B-

module of finitetype,then M is a free A-module of finitetype.
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Proof. If is known that B is a free
^4-module

of finite type [3; Chapter

4, 18.2.3]. Hence, if we ragard ./Vas an A-module, it is free of finitetype. If

then 1 (gB) can be expressed as l=a1x1+ ･･･+ anxn {a^A). Let R(A) (resp.

R{B)) be the radical of A (resp. B). Since 1&R(B), at least one of at is not

contained in R(A). If ai&R(A), {1, x2, ･･･,xn} is a free .4-basis of B. Hence

0 ―> A ―> B ―> Ax2R ･･･cAxn ―> 0

and

0=Torf(M, Ax2R ■･･@Axn)―^M―> N

are exact. Since N is a free A-module of finitetype and A is a local ring, M

is also a free A-module of finitetype.

2.2. Lemma. Let f : S'^-S be a surjective,Stale morphism and V an Os-

module such that f*V is a free Os-module of finitetype. Then HJ is a locally

free Os-module of finite type.

Proof. Let xeS, y be a point of S' sucn that f(y)=x, A=QS,X and B ―

Os'.y. We may assume that S=Spec A and S'―SpecB. By a descent argu-

ment [4], we can show that 17 is quasi-coherent.Thus we have reduced the

proof to (2.1).

3. Representations of reductive group schemes.

The purpose of this section is to describe the irreducible representations of

reductive group schemes over normal, locally noetherian schemes. The main

result of this section is (3.10).

3.1. Let S be a scheme.

Definition. Let G be a group scheme over S. If G is affine and smooth

over S, and its geometric fibres are allconnected and reductive, then G is said

to be reductive.

3.2. Let m.=(M, Mv, R, Rv, Ro) be a reduced root datum with an epinglage

(i.e.,donnee radiciellereduite epinglee). In other words, M is a Z-lattice, Mv

is the dual lattice of M, R is a (reduced) root system which is contained in M,

Rv is the dual root system of R and Ro is a basis of R. Assume that a reduced

root datum 31 is given.



Representations of reductive group schemes 343

3.3. Definition ([Exp. 23, 1.1]). Let us consider a family e―(i,(Zr)r£Bo)

of

(i) an isomorphism i Of Spec OSM onto a maximal torus T of G, where

OSM is the group ring of the additive group M, such that R (resp. Rv) is

identified with the root system (resp. the coroot system) of G with respect

to T via this isomorphism i,

and

(ii) a section ZreT(S, @r)x for each root subspace @r (r<=/?,)of c=Lie(G),

where /＼S, cT is the set of global sections which does not intersect the

zero section.

Such a familv e is called an epinglage of G of type iR.

3.4. The followings are known :

(1) If (31, e) and (31, e') are two epinglages of a group scheme G over S,

then there exists a unique inner automorphism of G over 5 which transforms

the former epinglage to the latter [Exp. 24, 1.5].

(2) A reductive group shceme G over S has an epinglage of type 31, if

and only if it is splitand of type 31 [Exp. 22, 2.7].

(3) Assume further that S is locally noetherian and normal. For any

point s of S, there exists an open set U of S containing s and a surjective

finiteetale morphism S'-*U such that Gs. = GxsS' is split[Exp. 24, 4.1.6],

3.5. Let (G, p, V) be a triple of a reductive group scheme G over 5, a

vector bundle V over S and a homomorphism p : G-^>GL(V). We call such a

triple a representation of G. If there is no fear of confusion, we refer to

(p, F), p or V as a representation of G. We also refer to V as a G-module.

If S is irreducible and fjis a generic geometric point of 5, then we say that

(G, p, V) is an S-form of (&}, p?j,V^). If 5=Spec A, we callit an /1-form.

A representation (G, p, F) is said to be splitif G is splitand VPo(Os) is

isomorphic to Os as an Os-module.

Let (G, /o,F) and (G', p', V) be two representations. A homomorphism of

(G, jo,F) to (G', jo',F') is, by definition, a pair (0, <p) of a homomorphism

^ : G->G' and a morphism <p＼V-+V of vector bundles which are compatible.

Assume that 5 is an irreducible scheme. Let t] be the generic point of S,

K be an algebraically closed field which contains the residue fieldat rj and yj

be the geometric point Spec K^S. We say that p is (absolutely) irreducible if

prj＼G^GL{Vr)) is irreducible. Hereafter, we assume that p is irreducible.

We say that p is an S-form of p*. If the representation p is split, we say
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that p is a split S-form of p^.

3.6. Consider a triple£=(31, e, v0) of a reduced root datum with an epin-

glage 31, an epinglage e of G of type 31 and a global section vo^F(S, Vfi0(Os))*.

Such a triple£=(3l, e, v0)is called an epinglage of the representation (G,p,V).

The following lemma can be obtained from (3.4).

3.7. Lemma. (1)
^4 representation

has an epinglage if and only if it is

split

mor

t.

(2)

■phi

Given two epinglages of a representation, there exists a unique auto-

sin of the representation which transforms one epinglage to another ebin-

glage and induces the identity mapping on M.

3.8. Hereafter, we shall assume that S is irreducible, normal and locally

noetherian. In that case, (G, p, V) has etale locally an epinglage. Let S be

the totalityof etale neighbourhoods S' such that pXsS' is split. Fix an epin-

glage for each pXsS' (S'e<S). If Sa, Sp^S, there are two epinglages sa and

sp of pXs(SaXsSi}) which come from pXsSa and pXsSp respectively. By

(3.7), there is a unique automorphism {<f>ap,<pap)of pXs(SaXsSp) which trans-

forms £;3to £a. By a usual descent argument, we can show that pXsSa (Sa^S)

can be patched together according to the patching data {($ap, <pap)} and give

a splitrepresentation (Go, p0, Vo). (See [4] for the descent.) Here we used the

results of section 2.

If p has an epinglage, we can show that the patching data {(0ais,<pas)}is

a coboundary. Hence p is isomorphic to p0. Hence every irreducible repre-

sentation can be uniquely obtained by twisting a splitirreducible representation

0O by using W(S, Jlutp0). Here Jiutp0 is the etale sheaf

S'i >Aut(p0XsS'),

i.e., the etale sheaf represented by Aut^o. Let us restate our results.

3.9. Let S be an irreducible, normal, locally noetherian scheme and

Tj: Spec K-+S its generic geometric point. Let (GK, Pk, Vk) be an irreducible

representation of a reductive algebraic group with an epinglage (SI, e, v0). Let

£F =the set of isomorphism classes of 5-forms of pK (see (1.17) for an 5-

form)

2"o―the set of isomorphism classes of split S-forms of pK

2r1=the set of graded Hs-modules V(OS) which are locally free cs-modules

and
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Vmin(.os; vo)(zV(Os)aVmax(os; v0).

See (1.14)-(1.16),for Vmin(Os; v0) and Vmax(Os; v0). By (3.8), we can define a

mapping

0:3―> So

such that 0 a is the identity manoinff.

3.10. Under the notations of (3.9), we have the following theorem.

Main Theorem. (1) There is a bijectionEFi^SV

(2) For each p^30, there is a bijection W(S, Jiutp)^0~＼p).

(The first assertion is a restatement of the second part of (1.19) with %―C

The second nsserhnn has been nroved in (3.8V)

3.11. Remark. If S=Spec A, we define Vmin(A) and Fmax(^l) to be the

set of global sections of Vmia(Os) and Vmax(Os), respectively. It is known that

the category of quasi-coherent Cs-modules and that of
^4-modules are equivalent.

Hence to give an element V(Os) of ffiis equivalent to give a graded (Uz0A)-

module V(A) which is a projective .4-module and

Vmin(A)dV(A)(zVmax(A).

3.12. Remark. If A―k is a field, then Vmin{k)―Vmzx{k). Hence the

choice of V(k) is unique. Hence there is a one-to-one correspondence

gr _^ H^Gal (ksep/k), Aut (pRksep)),

4. Automorphism group of a representation.

In the statement of the Main Theorem, we have met with the sheaf Jlutp0.

To determine this sheaf, it sufficesto determine Jut p for every splitirreduci-

ble representation p, which is our purpose of this section. Our result of this

cart-innic (A 3 1＼a-nr＼(A 3 9＼

4.1. Let S be a reduced, irreducible scheme, G a splitreductive group

scheme over S and (p, V) a splitirreducible representation of G. Let (<f>,
<p)

be an automorphism of the representation (G, p, V). Then p°<f>is isomorphic

to p. Let us fix an epinglage (31, e) of G. By [Exp. 24, 1.3], <f>is uniquely-

expressed as <j>2<f>i,where 0X is an automorphism of (G, 31, e) and 02 is an inner

automorphism [Exp. 24, 1.11. Then p°6x is locally isomorphic to p°6 for the
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fpqc topology. Hence 0i fixes the highest weight ft0of p.

Conversely, assume that an automorphism 0X of (G, Si, e) fixes p0. Since

0! preserves {Zr}reiJo, fa also preserves the Os-algebra of operators on V(OS

generated by Zcrm] (rei?, wi=0, 1, 2, ･･･)･(See (1.9).) Hence p°0! corresponds

to the same graded Us-module as p. Hence p°<j>iis isomorphic to p. If 0=020

with an inner automorphism fa, p°(}>is also locally isomorphic to p for the

//>#c-topology. Hence for each point s of S, we can find an /^c-neighbourhooc

S' of s and an automorphism <p of VXsS' such that (0XsSf, <p)is an auto-

morphism of pXsS'. This automorphism <pis uniquely determined by <j>up tc

homothety.

4.2. Let H be the sheaf theoretical image of Aut />―>AutG. Here we

identify a scheme on S with the fpqc-sheaf represented by it. Define a homo-

morphism (?m―>Aut p by

ci―>･(identity, multiplication by c).

The automorphism group of G can be expressed as a semi-direct product

AutG=ad(G)xAut(G, 31, e).

4.3. Using the notations of (4.2),results of (4.1) can be stated as follows:

(4.3.1) 1―>Gm―>Auto―>H―>1

is exact.

(4.3.2) i/=ad(G)xAut(G, Si, e, /i0)
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