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ON CONDUCTOR OVERRINGS OF A VALUATION DOMAIN

By

Akira OKABE

Introduction. It is well known that every overring of a valuation domain V
is of the form Ve for some prime ideal P of V. Hence, if I is an ideal of a valua-
tion domain V with quotient field K, then the conductor overring /:xl is of the
form Vp for some prime ideal P of V. In case I:x[=Vp, is there any relation
between [ and P? The main purpose of this paper is to investigate this relation.
In order to give a complete answer to the question stated above, we introduce the
notion of “recurrent closure” : If I is an ideal of an integral domain R with quo-
tient field K, then the ideal R: r(I:xI) of R is called the “recurrvent closure” of
I and is denoted by I,. We prove, in Theorem 13, that if 7is an ideal of a valua-
tion domain V with quotient field K such that I:xI++V, then I, is always a prime
ideal of V and if we set [: x/=Vp for some prime ideal P of V, then P is equal
to the recurrent closure /..

In general, our terminology and notation will be the same as [3] and [6].
Throughout the paper, V denotes a valuation domain, with quotient field K.

THEOREM 1. If P is a proper prime ideal of V, then P:xP=Vp. In partic-
ular, if M is the unique maximal ideal of V, then M: gM=1V.

Proor. If P=(0), then (0): x(0)=K= V,(cf. [9, Remark 1.2]) and hence our
assertion is trivial. Thus we may assume that P==(0). Then, by [3, Theorem
17.3], P(z)=P for any xe V\ P and accordingly 1/zP<P. Thus 1/xeP: P for
any x€ V\F. From this fact it follows that VeC P: xP. Hence, if we put P:xP
=V, for some prime ideal @ of V, then we have VpCP:xP=V, and so QEP.
Assume now that @+P. Then Q:xP is a nonmaximal prime ideal of P:xP by
(9, Corollary 2.4]. On the other hand, @=Q 7V, is a maximal ideal of V, by [3,
Theorem 17.6]. Since QCQ:xP, we have @=@Q:xP and therefore Q:xP is a
maximal ideal of P: P, a contradiction. Hence we must have @=P, and accord-
ingly P:xP=7Vp as desired. Thus our first assertion is proved. The second as-
sertion follows immediately from the first one.
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Before proving the next theorem, we first establish the following lemma.

LEMMA 2. Let R be an integral domain with quotient field K and let I be a
proper ideal of R. 1f I:xI=Rp for some prime ideal P of R, then we have ICP.

Proor. Assume the contrary. Then we can choose an element ae/\ F. Then,
by hypothesis, 1jae Rp=1I: [ since a¢P. Therefore we have 1=a-1/aclI: x)<C],
which implies that /=R. This clearly contradicts our assumption.

THEOREM 3. If Q is a primary ideal of V, then Q:xQ=1V .

Proor. If @=(0), then (0):x(0)=K=1V,; and hence our assertion is evident.
Therefore we may assume that Q+(0). If we set Q:xQ=V, with some prime
ideal P of V, then QCP and hence v QCP. We shall next show that P+ Q.
By [3, Theorem 17.3], @(x)=Q for any element z¢ V\«/a, and accordingly 1/xe
Q:xQ for any zeV A/ Q. Thus we have V.CQ:xQ="Vp and hence PSV Q,
as required. This completes the proof.

COROLLARY 4. If Q is a primary ideal of V, then Q: Q=v Q:xVQ.
Proor. This follows immediately from Theorem 1 and Theorem 3.

DerFINITION 5. Let R be an integral domain with quotient field KX and let [
be a proper ideal of R. Then the ideal R:z(I:«]) of R is called the *recurrent
closure” of I and is denoted by I,. An ideal [ of R is said to be “recurrent” in

case I=1,.

ReMARK 6. If Iis a recurrent ideal of an integral domain R with quotient
field K, then I:xl+R. For, if I:xI=R, then I=I,=R:p(l:xl)=R:rR=R, a
contradiction. Moreover, if M is a maximal ideal of R, then the converse of the
above statement also holds. In fact, if M:xM+R, then MCR: p(M:xM)SR and
hence M=R: z(M: kM), since M is a maximal ideal of R. Therefore M is a re-

current ideal of R as required.

ReMmark 7. If M is the unique maximal ideal of ¥, then M is not recurrent.
By Theorem 1, M: xM=7V and therefore our assertion follows from Remark 6.

We first collect some facts about recurrent ideals that will be needed later.

LEMMA 8. Let R be an integral domain with quotient field K. If I is an
ideal of R such that I: xI+R, then ICI, and I, itself is vecurrent.
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Proor. By dennition the containment I/, is evident. Next, we shall estab-
lish the second assertion. First it should be noted that I, is an ideal of [: &I (cf.
[9, Lemma 1.1(2)]). It follows from this fact that if xel:x/and a€l,, then xael,.
Thus we have I:xI<l,: xl,. Therefore I,=R:r(l: x[)2R: (I, xl;)21,, whence
I,=R: g, : I,)=(I,),, completing the proof.

LEMMA 9. Let R be an integral domain with quotient field K and let I be a
proper ideal of R. Then

@) If Pis a prime ideal of R contained in I, then I:xICP: kP.
(2) If Iis a recurrent ideal of R, then, for any prime ideal P of R, PCI if
and only if 1:xICP: gP.

Proor. (1) Let xel:xl and peP. Since x*el:xl and pel, z*pe(l:xl)IC],
and accordingly (#p)?=(x?p)peIP< P, which implies that xpeP because zpelCR.
Thus (I: xI)PC P and hence [:xIC P: kP as required. _

(2) The “only if” half is proved in (1). Conversely, assume that [: xS P: gP.
Then P is an ideal of I:xl, since PU:xIl)SP(P:xP)CP. Hence, by [9, Lemma
1.1 (4)], PSR :.z(I:xI)=1,.. Then we have PcIl.=I because [ is, by hypothesis,
recurrent. This completes the proof.

ReMARK 10. The part (1) of Lemma 9 is also found in [1, Lemma 2.2] or in
[2, Lemma 3.7].

Lemma 11. Let R be an integral domain with quotient field K and let I be a
proper ideal of R. If P is a recurrent prime ideal of R properly contained in I,
then I:gI<P: kP.

Proor. By part (1) of Lemma 9, we have [: x/SP:xP. Hence, it suffices to
show that I:gl+P:xP. Assume that [:x/=P:xP. Then [ is an ideal of P:xP
and therefore, by [9, Lemma 1.1 (4)], /& P,. By hypothesis, P,=P and hence ISP,
the desired contradiction. This completes the proof.

In the proof of Lemma 8, we showed that if 7 is an ideal of an integral do-
main R with quotient field K, then I:xICI,:xl,. If P is a prime ideal of R, then
it can be shown that P:xP=P,: kP,

THEOREM 12. Let R be an integral domain with quotient field K. If P is a
prime ideal of R, then we have P .xP=P,: gP,.

Proor. We have already shown in Lemma 8 that P:xPCP,:xP,. Hence,
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we need only prove the reverse containment P,: xP,CP: xP. If P=P, then there
is nothing to prove. Therefore we may assume that P#P,. If we choose te P\ P,
then, for any xeP,:xF,, we have xte P,CR. Then we have zfpeP for any peP.
But, since zpe(Pr: xP)PCP,CR and te R\ P, (xp)teP implies that zpeP. Thus
P, :kP,CP: xP as desired and our proof is complete.

We are now in a position to prove the main theorem of this paper.

THEOREM 13. Let V be a valuation domain with quotient field K. Then

(1)  Fvery nonmaximal prime ideal P of V is recurrent.

(2) If Iis an ideal of V such that I:xI+V, then I, is a prime ideal of V
and we have I'xI=V7,.

() If Iis an ideal of V such that I: xI+V, then ¥ 1 <1,

4) If Q is a primary ideal of V suck that ~ Q is not the unique maximal
ideal M of V, then v Q=Q,.

Proor. (1) First, by Theorem 1, P:xP=Vp+V. Hence we get P,=V:
v(P:xP)#+V. Indeed, if P,=V then 1leP, and so P:xP<CV, a contradiction. Thus
we get PCP,+V. Next, by [9, Lemma 1.1 (2)], P, is an ideal of P: xP=Vp and
therefore P,C PVp=P. Accordingly, P=P,, which implies that P is recurrent.

(2) By hypothesis, [:x/ is a proper overring of V and so we can write
I:x]=Vp with some nonmaximal prime ideal P of V. Since, by Theorem 1,
Ve=P: kP, it follows that [:xl/= P:xP. Then we have I,=V v :x)=V:p(P:
&P)=DP, since P is recurrent by (1). Thus, /. is a prime ideal of ¥ and moreover
I:xI=Vi, as required.

(8) Since ICI,, we always have VI €+~ 1,. If I:xl+V, then, by (2), I, is
prime and therefore v I €4/ 1,=I, as wanted.

(4) First, by Theorem 3, Q:xQ=V, Moreover, Q:xQ+V, since V@ is
not maximal. Hence, by (2), @, is prime and @: xQ=Vy,. Thus Vjip="Vy, and
accordingly v Q=Q,, completing the proof.

ReMARK 14, Let R be an integral domain with quotient field K and let
Pc I be ideals of R with P prime. Then we cannot in general expect that P is
also prime in /:x/. To show this, we shall give the following example.

ExaMpLE 15. Let R=Z[2X, X? X* be the subdomain of T=Z[X], where X
is an indeterminate over Z. Then K=@(X) is the quotient field of R. If we set
M=2ZR+2XR+X*R+X*R, then RIM=Z/2Z is a field and so M is a maximal
ideal of R. Moreover, it is easy to see that M: xM=Z[X]. If we put P=2XR
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+XER+ X®R, then, since R/P=Z, P is a prime ideal of R properly contained in
M. But P is not a prime ideal of M: ¢, because 3XeZ[ X\ P, but (3X)%*P.

CoroLLARY 16. If Pcl are ideals of V with P prime, then P is also prime
in Ikl and P=P: gl.

Proor. If 7:xl=1V, then there is nothing to prove. Hence we may assume
that J: g/ V. Then, by Theorem 13 (2), /: xI= Vi, and I, is a prime ideal of V.
Hence, by [3, Theorem 17.6 (b)], P=PV;, is a prime ideal of V;, since PcIC/,.
Thus, P is a prime ideal of I:xl. Our second assertion follows then from [9,
Corollary 1.5].

We close this paper with a characterization of primary ideals @ of V such
that @: xQ=V.
We first prepare the following two lemmas.

Lemma 17, Let Q be a primary ideal of V. Then Q:xQ+V if and only if

V Q is not the unique maximal ideal of V.

Proor. Let M be the unique maximal ideal of V. First, suppose that v/ @= M.
Then, by Theorem 3, @:xQ=V 5=Vy=V. Thus, the “only if” half is proved.
Conversely, suppose that @ : xQ=7V. Then, also by Theorem 3, V=Q: Q=T s,
and so v/ Q=M. Hence, the “if 7 half is also proved.

Lemma 18, Let [ be a nonzero ideal of an integral domain R with quotient
field K. Then, for any xel:xl, x is a unit of 1: kI if and only if xI=1I.

Proor. First, assume that x is a unit of 7:x/. Then there is an element
yel: gl such that zy=1. Then, I=(zy)=z(yl)SxI<], and so [=2xI, as we re-
quired. Conversely, suppose that /=xz/. Since [+#(0), = is a nonzero element of
K, and so x'e K. Hence, by hypothesis, & ' f=z""(zl)=(x"'x)[=1, and so z~'el: xl,
which implies that z is a unit of /:xl. This completes the proof.

THEOREM 19. Let [ be an ideal of V such that I:xl+V. Then Iis a primary
ideal of V if and only if v'1 =I,.

Proor. The “only if ” half is proved in part (4) of Theorem 13. To prove
the “if 7 half, suppose that I is not a primary ideal of V. By part (2) of Theorem
13, I:xI=V;, and therefore, to prove that T +1I, it suffices to show that
I:xkl+V,7. Now, since [ is not primary, there exist @, be V such that a¢l, ¢~ 1,
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but abel. Then b4V Timplies that Ic (), since V is a valuation domain. Then,
since (b) is invertible, there exists an ideal J of V such that I=J(b). Therefore,
by hypothesis, abel=J(b), and so ae]. Since aeJ\J, I=J(b)c/ and therefore
bI=)I=]b*)J(b)=1. ‘Thus, bIcl and therefore it follows from Lemma 18 that
b is not a unit of /:x. On the other hand, b is a unit of V, since b+ I.
Therefore I: xI+V 7, as we wanted and hence our proof is complete.

REMARK 20. If I is an ideal of V such that I:xl+V, then /1 is not max-
imal in V. For, if 4/ T is maximal, then, by part (3) of Theorem 13, I, is also
maximal in V and therefore, by part (2) of Theorem 13, I: x/=V; =V, a contra-
diction.

COROLLARY 21. Let I be an ideal of V such that I:xl+V. Then I is re-
curvent if and only if I is prime.

Proor. First, assume that [ is prime in V. Then it follows from Theorem
1 that 7 is not maximal in V, since I:xl#V. Therefore the “if” half follows
from part (1) of Theorem 13. Furthermore, the “only if ” half follows immediately
from part (2) of Theorem 13.
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