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ON CONDUCTOR OVERRINGS OF A VALUATION DOMAIN

By

Akira Okabe

Introduction. It is well known that every overring of a valuation domain V

is of the form Vp for some prime ideal P of V. Hence, if / is an ideal of a valua-

tion domain V with quotient fieldK, then the conductor overring /:Kl is of the

form Vp for some prime ideal P of V. In case /: KI= Vp, is there any relation

between / and P ? The main purpose of this paper is to investigate thisrelation.

In order to give a complete answer to the question stated above, we introduce the

notion of " recurrent closure ": If / is an ideal of an integral domain R with quo-

tient fieldK, then the ideal R: r(I: #/) of R is called the " recurrent closure " of

/ and is denoted by lr. We prove, in Theorem 13, that if /is an ideal of a valua-

tion domain V with quotient fieldK such that /: KI^ V, then Ir is always a prime

ideal of V and if we set /: a-/= Vp for some prime ideal P of V, then P is equal

to the recurrent closure Ir.

In general, our terminology and notation will be the same as [3] and [6].

Throughout the paper, V denotes a valuation domain, with quotient fieldK.

Theorem 1. If P is a proper prime ideal of V, then P: kP― Vp. In partic-

ular, if M is the unique maximal ideal of V, then M: #M= V.

Proof. If P=(0), then (0):K(Q)=K=Vw(cf. [9, Remark 1.2]) and hence our

assertion is trivial. Thus we may assume that P^(0). Then, by [3, Theorem

17.3], P{x)=P for any xtV＼P and accordingly l/xP^P. Thus ＼＼xzP:KP for

any xeV＼P. From this fact it follows that VPQP:KP. Hence, if we put P:KP

= Vq for some prime ideal Q of V, then we have VP^P:KP― Vq and so QqP.

Assume now that Q=£P. Then Q: KP is a nonmaximal prime ideal of P:KP by

[9, Corollary 2.4]. On the other hand, Q ―QVq is a maximal ideal of Vq by [3,

Theorem 17.6]. Since QqQ'.kP, we have Q ―Q'.rP and therefore Q:KPisa.

maximal ideal of P:kP, a contradiction. Hence we must have Q = P, and accord-

ingly P: xP=Vp as desired. Thus our firstassertion is proved. The second as-

sertion follows immediately from the firstone.
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Before proving the next theorem, we firstestablish the following lemma.

Lemma 2. Let R be an integral domain with quotient field K and let I be a

proper ideal of R. If I: kI―Rp for some prime ideal P of R, then we have I&P.

Proof. Assume the contrary. Then we can choose an element ≪e/＼P. Then,

by hypothesis, l/a i?P = /: KI since a$P. Therefore we have l=a-lja^I{I: kI)&I,

which implies that I―R. This clearly contradicts our assumption.

Theorem 3. If Q is a primary ideal of V, then Q: kQ― V^q.

Proof. If Q = (0),then (0):#(0)= K = F^ and hence our assertion is evident.

Therefore we may assume that Q=£(0). If we set Q: kQ=Vp with some prime

ideal P of V, then QqP and hence V~QqP. We shall next show that PqV~Q.

By [3, Theorem 17.3], Q(X) = Q for any element x£V＼VQ, and accordingly l{x£

Q'.kQ for any x£V＼VQ. Thus we have V-jq^Q: kQ= Vp and hence PqV Q,

as required. This completes the proof.

Corollary 4. If Q is a primary ideal of V, then Q: kQ = V Q: kVQ.

Proof. This follows immediately from Theorem 1 and Theorem 3.

Definition 5. Let R be an integral domain with quotient fieldK and let /

be a proper ideal of R. Then the ideal R:r{I＼kI) of R is called the " recurrent

closure" of / and is denoted by Ir. An ideal / of R is said to be " recurrent" in

case I=Ir.

Remark 6. If / is a recurrent ideal of an integral domain R with quotient

field K, then I:KI^R. For, if I:KI=R, then I=Ir = R: R(I:KI) = R: RR=R, a

contradiction. Moreover, if M is a maximal ideal of R, then the converse of the

above statement also holds. In fact,if M:KMj=R, then M^R: R(M: KM)^R and

hence M=R: R(M: kM), since Mis a maximal ideal of R. Therefore Mis a re-

current ideal of R as required.

Remark 7

By Theorem 1

If M is the unique maximal idealof V, then M is not recurrent.

M:KM―V and thereforeour assertionfollowsfrom Remark 6.

We firstcollectsome facts about recurrent ideals that will be needed later.

Lemma 8. Let R be an integral domain with quotient field K. If I is an

ideal of R such that I: nl^h R, then /£/, and L itselfis recurrent.



On conductor overlings of a valuation domain 127

Proof. By deimition the containment lQlr is evident. Next, we shall estab-

lish the second assertion. First it should be noted that Ir is an ideal of I'.rI (cf.

[9, Lemma 1.1(2)]). It follows from this fact that if x£l: #/and a£lr,then xa£lr.

Thus we have /: */c Ir: KIr. Therefore Ir = R: r(I: x/) 2 i?: R{IT'■kIt)2 Ir, whence

Ir=R'.R{Ir :Klr)= (Ir)r,completing the proof.

Lemma 9. Let R be an integral domain with quotient field K and let I be a

proper ideal of R. Then

(1) // P is a prime ideal of R contained in I, then I: kI&P'. kP.

(2) // / is a recurrent ideal of R, then, for any prime ideal P of R, ?c/ if

and only if I: KI&P'. kP.

Proof. (1) Let x£l:k1 and peP. Since x2£l:KI and pel, x*pe(I:KI)lQl,

and accordingly (xp)2―(x2p)p lPQP, which implies that xptP because xpzIaR.

Thus (I＼kI)P^P and hence I:kI^P:kP as required.

(2) The " only if " halfis proved in (1). Conversely, assume thatI:kI^P'-kP.

Then P is an ideal of I:K1, since P(I: KI)^P(P:KP)^P. Hence, by [9, Lemma

1.1 (4)],P^R: R(I:KI) = lr. Then we have PQlr=I because / is, by hypothesis,

recurrent. This completes the proof.

Remark 10. The part (1) of Lemma 9 is also found in [1, Lemma 2.2] or in

[2, Lemma 3.71.

Lemma 11. Let R be an integral domain with quotient field K and let I be a

proper ideal of R. If P is a recurrent prime ideal of R properly contained in I,

then I:kISP:kP.

Proof. By part (1) of Lemma 9, we have /: kI^P: kP. Hence, it sufficesto

show that I:kI^P:kP. Assume that I＼KI=P:KP. Then / is an ideal of P:KP

and therefore, by [9, Lemma 1.1 (4)],Ic,Pr. By hypothesis, Pr = P and hence JcP,

the desired contradiction. This completes the proof.

In the proof of Lemma 8, we showed that if / is an ideal of an integral do-

main R with quotient fieldK, then 1: #/£/r '･kIt- If P is a prime ideal of R, then

it can be shown that P: KP=Pr: xPr.

Theorem 12. Let R be an integral domain with quotient field K. If P is a

prime ideal of R, then we have P:kP=Pt'- kPt-

Proof. We have already shown in Lemma 8 that PikP^Pt'-kPt- Hence,
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we need only prove the reverse containment PT: KPrQP: KP. If P= Pr,then there

is nothing to prove. Therefore we may assume thatP^Pr. If we choose tePr＼P,

then,for any xzPt'-kPt, we have xt PrcR. Then we have xtp£P for any p£P.

But, since xpG(Pr: KPr)P&PrC:R and teR＼P,(xp)t P implies that xpeP. Thus

Pr: KPr^P'. kP as desired and our proofis complete.

We are now in a positionto prove the main theorem of thispaper.

Theorem 13. Let V be a valuation domain with quotient field K. Then

(1) Every nonmaximal prime ideal P of V is recurrent.

(2) // / is an ideal of V such that I: xli= V, then Ir is a prime ideal of V

and we have I :kI= Vir.

(3) If I is an ideal of V such that I: kI=£V, then V I c/r.

(4) If Q is a primary ideal of V such that V Q is not the unique maximal

ideal M of V, then V~Q=Qr.

Proof. (1) First, by Theorem 1, P:KP=VPi=V. Hence we get Pr―V＼

v(P:KP)^V. Indeed, if Pr^V then l Pr and so P:*-Pc:F, a contradiction. Thus

we get P&Pr^V. Next, by [9, Lemma 1.1 (2)],Pr is an ideal of P:KP=VP and

therefore Pr^PVP=P. Accordingly, P=Pr, which implies that P is recurrent.

(2) By hypothesis, I:KI is a proper overring of V and so we can write

I:kI=Vp with some nonmaximal prime ideal P of V. Since, by Theorem 1,

VP=P:KP, it follows that I:KI= P'.rP. Then we have Ir=V:v(I: XI)=V: v(P:

kP)=P, since P is recurrent by (1). Thus, Ir is a prime ideal of Fand moreover

I:kI=Vit as required.

(3) vSince/£/r, we always have VTeVZ- If /:*/=£F, then, by (2), /r is

prime and therefore V/cV/r = /r as wanted.

(4) First, by Theorem 3, Q:kQ=VVq. Moreover, Q:KQ^V, since V~Q is

not maximal. Hence, by (2), Qr is prime and Q:KQ=VQr. Thus Vjq~VQt, and

accordingly VQ = Qr, completing the proof.

Remark 14. Let R be an integral domain with quotient fieldK and let

Pal be idealsof R with P prime. Then we cannot in general expect that P is

alsoprime in /:kL To show this,we shallgive the followingexample.

Example 15. Let R=Z[2X, X＼ X3] be the subdoraainof T=Z{X＼ where X

is an indeterminate over Z. Then R―Q(X) is the quotientfieldof R. If we set

M=2ZR+2XR + X*R + X*R, then R＼M=Z＼ZZ is a fieldand so M is a maximal

idealof R. Moreover, itis easy to see that M: KM-ZVX＼ If we put P=2XR



On conductor overlings of a valuationdomain 129

+ X2R + XSR, then,since RjP=Z, P is a prime idealof R properly containedin

M. But P is not a prime idealof M:KM, because 3X£Z[X]＼P, but (3X)2eP.

Corollary 16. If Pal are ideals of V with P prime, then P is also prime

in I: kI and P=P: KI.

Proof. If /:KI= V, then thereis nothing to prove. Hence we may assume

thatI:KIj=V. Then, by Theorem 13 (2),I:KI= Vir and Ir is a prime idealof V.

Hence, by [3, Theorem 17.6 (b)],P=PVIr is a prime idealof Vir,since?c/c/r.

Thus, P is a prime idealof /:&-/. Our second assertionfollows then from [9,

Corollary1.51

We close this paper with a characterization of primary ideals Q of V such

that QikQ^V.

We firstprepare the following two lemmas.

Lemma 17. Let Q be a primary ideal of V. Then Q'.kQ^V if and only if

V Q is not the unique maximal ideal of V.

Proof. Let M be the unique maximal ideal of V. First,suppose that V Q ―M.

Then, by Theorem 3, Q: kQ=V^=Vm=V. Thus, the "only if" half is proved.

Conversely, suppose that Q＼kQ~V. Then, also by Theorem 3, V―Q '.kQ― V/q,

and so VQ = M. Hence, the "if" half is also proved.

Lemma 18. Let I be a nonzero ideal of an integral domain R with quotient

field K. Then, for any xzl: a/, x is a unit of I: kI if and only if xl―I.

Proof. First, assume that x is a unit of I:kL Then there is an element

?/ /: #/such that xy ―1. Then, I―(xy)l ―x(yI)QxIc:I, and so I=xl, as we re-

quired. Conversely, suppose that I=xl. Since /V=(0),x is a nonzero element of

K, and so x"l£K. Hence, by hypothesis, x~1I=x~'(xl)―(x"lx)I=I, and so x~1gI:k1,

which implies that x is a unit of I: kI. This completes the proof.

Theorem 19. Let 1 be an ideal of V such thatI: KI=t=V. Then I is a primary

ideal of V if and only if V 1 ―L.

Proof. The " only if " half is proved in part (4) of Theorem 13. To prove

the "if " half, suppose that / is not a primary ideal of V. By part (2) of Theorem

13, 1: KI= Vir, and therefore, to prove that V / ~^--Ir,it suffices to show that

/: kI^ Vjj. Now, since / is not primary, there exist a,b£V such that a&L b$V 1,
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but ab£l. Then 6$V /implies that Icz(b), since V is a valuation domain. Then,

since (b) is invertible,there exists an ideal / of V such that I=J(b). Therefore,

by hypothesis, ab l=/(b), and so aej. Since a£j＼I, /=/(&) c/ and therefore

bI=(b)I=J(b2)czJ(b) = L Thus, blczl and therefore it follows from Lemma 18 that

b is not a unit of /:#/. On the other hand, b is a unit of Vjj, since b$V I.

Therefore I:kI^=Vjj, as we wanted and hence our proof is complete.

Remark 20. If / is an idealof V such thatI:KIi=V, then V 1 is not max-

imal in V. For, if VI is maximal, then,by part(3) of Theorem 13, Ir is also

maximal in V and therefore,by part(2) of Theorem 13,I;KI=Vzr=V, a contra-

diction.

Corollary 21. Let I be an ideal of V such that I: KIi= V. Then 1 is re-

current if and only if I is prime.

Proof. First, assume that / is prime in V. Then it follows from Theorem

1 that I is not maximal in V, since I:KI^V. Therefore the "if" half follows

from part (1) of Theorem 13. Furthermore, the "only if" half follows immediately

from part (2) of Theorem 13.
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