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Abstract. In this paper we develop a fiber shape theory for maps

between metric spaces. Our approach is based on the Mardesic-

Segal method and, instead of ANR's, their fiberpreserving analogues

are used. A fiber preserving version of Chapman's complement

theorem is proved.
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§0. Introduction.

The purpose of this paper Is to develop a fiber shape theory for maps

between metric spaces. There are several approaches to the fiber shape theory

for maps between compact metric spaces ([CM], [Kalj3]), which correspond to

those to the shape theory ([Bo], [Chi], [MS]). The descriptionof our fibershape

category is based on the general construction of shape categories in [MS],

In shape theory ([DS], [MS]), the shape of a space is represented by an

ANR-system associated with the space. In our setting, the same role will be

played by a fiber preserving version of ANR's (cf. [CM]). §1 contains the

definitionand some examples of such fibered ANR's.

In §2 we will give the descriptionof our fiber shape category. It is proved

that our approach is particularly useful to treat proper maps and many resultsin

[Kaii2i3] have natural generalizationsin our setting. For example, among proper

maps, hereditary shape equivalences, shape fibrations or the notion of movability

introduced in [Y2] are shown to be fiber shape invariant.

In §3, we will prove a fiber preserving version of Chapman's complement

theorem, which gives the fiber shape classificationof proper maps over a sepa-

rable metric base space. The same statement is also found in [CM], where the

base soace is restricted to ENR's.
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Finally, we will listsome notations and conventions used throughout this

paper. All spaces are metric spaces and in§3 they are assumed to be separable.

ANR's are ones for the metric spaces ([Hu]). idx denotes the identity map on

the space X and 7tB:BxM-*B, 7tM'-BxM-*M always denote the projections

onto appropriate factors. Given maps p : X-+B and q : Y―>B, a map /: X-+Y is

said to be fiber preserving (f.p.) if qf=p. Similarly a homotopy ft:X-*Y

(O^f^l) is f.p. if qft-p (O^f^l). In particular,a map f:X-*BxM is f.p. if

xBf=p. A map p : X-^B is proper if p~＼K)is compact for each compact KC.B.

For a subset CcB, pc denotes the restrictionp＼p-HC);p~'i{C)-^C.Let ^V be an

open cover of a space Y. We say that the maps f,g:X-*Y are c^-near,

written (/, g)ScV, if each igI admits a Ve^V with f(x),g(x)<E V. A homotopy

F:XxlO, 1]->F is a cv-homotopy if for each x^X there exists a V^cv with

F({x}x[0, 1])C7.

We refer to [DS] and [MS] for shape theory and related topics, and to

[CM] and [Kat s] for fiber shape theory.

§1. Absolute neighborhood fiber retracts.

In this section we will define an f.p. version of ANR's and prove theii

elementary properties, which will be used in the next section to define a fibei

shape category.

Let B be a fixed space. A map p: E―>B is said to be an absolute neigh-

borhood fiber retract (ANFR) over B provided for any map q: X->B and any

f.p. closed embedding i: E-+X, there exist a neighborhood U of i{E) in X and

a map r : U-+E such that ri=idE and pr―q＼v. In addition,if wexan always take

U~X, then we say p is an absolute fiber retract (AFR) over B.

Similarly we may say a map p: E-+B is an absolute neighborhood fiber

extensor (ANFE) over B provided for any map q: X->B and any map /: A-+E

from a closed subset A of X with pf―q＼A, there exists an extension /: £/-≫£

of / to a neighborhood U of A in X with pf―q＼u-

We willlist some elementary properties of ANFR's, which are f.p. analogues

of ones of ANR's ([Hu]).

1.1. Proposition, (i) ([CM]) Let M be an ANR and U be an open set in

BxM. Then the projection izB＼v:U--+B is an ANFR. A map p:E->B is an

ANFR iff'p is an f.p. retract of such a projection 7tB＼u-

(ii) A map p :E-+B is an ANFR iff p is an ANFE.

(iii) Every f.p. neighborhood retract of an ANFR is also an ANFR.

(iv) (The f. p. homotopy extension property) Suppose q: E->B is an ANFR,
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p:X―>B is a map and A is a closed subset of X. Then for any f.p. map

<p: X-^E and any /.p. homotopy <J>t:A-*E such that (pa=<j>＼Aand q<Pt=P＼a (O^f^l),

there exists an f.p. homotopy <fit:X->E such that ^0=^ and ^j|^=^t (Of^fSl).

Furthermore, if (pt is a IJ-homotopy for an open cover HJ of E, then we can take

<j>ta HJ-homotopy.

Proof. (i )-(iii)follow from the following observations :

(a) kb:BxM-^B is an ANFE. (If M is an AR, then tcb is an AFR.)

(b) Every f. p. neighborhood retract of an ANFE is also an ANFE.

(c) Every map p : E-^B admits an f.p. closed embedding i: E-+B X M for

some ANR M.

(iv) follows from the same argument as in [Hu, p. 116].

1.2. Comments and Examples, (i) Every fiber of an ANFR (AFR) is an

ANR (AR).

(ii) // an onto map p:E~>B is an ANFR, then p admits local sections(i.e.,

for each b^B and each e^p'1^), there exists a map s: V―>E from a neighborhood

V of b such that ps―idv and s(b)=e). In particular,if E is an ANR then so is B.

(iii) // p: E―*B is a proper ANFR, then p is a Hurewicz fibration. Con-

verselyif p: E-^B is a Hurewicz fibration between ANR's then p is an ANFR.

(iv) ([Feji,Y2]) // p: E-+B is a proper strongly regular map with ANR

fibers and dim5<oo, then p is an ANFR.

(v) Every bundle map with ANR fibers is an ANFR.

Proof. (i) This follows from 1.1 (i). If p is an AFR, then p is an f.p.

retract of a projection tzb'■BxM-^B, with M an AR. Therefore each fiber p~l(b)

is a retract of the AR M.

(ii) By 1.1.(i), p is an f.p. retract of some itB＼u as in 1.1.(i). Since

7Vb＼uadmits local sections, so does p. The second assertion follows from [Hu,

p. 98, Theorem 8.1].

(iii) Suppose p is an ANFR. Embed E into an ANR M as a closed subset

and consider the f.p. embedding i:E―>BxM, i(e)―(p{e), e) (eeis). (i{E) is the

graph of p.) By the definitionthere exists an f.p. retraction r : U―>E from some

open neighborhood U of i(E). Since p is proper, each &ogB admits neighborhoods

W of b0 in B and V of p-＼b0)in M such that Wx VcU and fW)cK Since

r＼WxV is an f.p. retraction from the projection k＼w: WxV-+W to pw, pw is a

fibration. By [Du, p. 403], p is a fibration.

Conversely suppose p: E^B is a fibration between ANR's. The ANR B

admits a local equiconnecting function X: Vx[_0, 11―>B ([Fo]), that is,



264 Tatsuhiko Yagasaki

(a) V is an open neighborhood of the diagonal J(B)― {{b, b): &g5} in BxB.

(b) Mb, V, 0)=&', l{b, b'',l)=b ((&, &')eF) and /(&, /;,/)=& (6sB, O^i^l).

Let U=(idBXp)~＼V). Since /> is a regular fibration ([Du, p. 397]), there

exists a homotopy //: £/x[0, l]->£ such that />//(6?e, 0=^(6, />(≪),0, ^(^, e> 0)

=≪((M)eU) and i/(/>(g),g, f)=≪ (ee£, O^f^l). Then Hr.U^E is an f.p.

retraction and by 1.1. (i) />is an ANFR.

(iv) See [Y2, Theorem 1.4] and also [Fe^ Theorem 1].

(v) This follows from the next proposition.

1.3.

(i)

over C.

Proposition. Let p:E-*B he an onto map.

If p: E->B is an ANFR and CdB is a subset, then pc is an ANFR

(ii) // B―B^JBt, BtdB closed and pEi is an ANFR over Bt (f=l, 2), then

p is an ANFR.

(iii) // each b^B admits a neighborhood U for which pv is an ANFR over

U then p is an ANFR.

Proof, (i) If p is an f.p. retract of the projection 7rB|^ as in 1.1.(i),

then pc is an f.p. retract of xc＼urXYM- Therefore (i) follows from 1.1.(i).

(ii) We may assume that E is a closed subset in B x M, M is a ANR, and

that P―kb＼e> Since pBl is an ANFR, there exist an open neighborhood £/aof

E＼Bl=EnBxXM in BtxM and an f.p. retraction s: U^E＼Bl. Similarly E＼Bz

is an f.p. retract of an open neighborhood U2 in BzxM. Since M is an ANR,

replacing Ut by a smaller one, we have an f.p. deformation retraction

^:Utxl0,n^U1＼BinBtU{Bs-B1)xhf

such that $0=id, ^>1{U2)c:E and $t＼E＼B―id {Q-^t^l). Since p＼Vlis an ANFR,

by 1.1 (iv) we can extend 0X to an f.p. map (}t:U― UAb- b^JU2-^Ui＼ s-b^JE

such that 61＼E=id. Define an f.p. retraction r: U-+E by

By

6Ab,m) (b<=B2)

1.1.

(iii)

(i), p is an ANFR.

This follows from (i), (ii)and [MI, Theorem 5.51.

A map p:X-*B is said to be movable ([Y2]) provided for some ANFR

q : E-+B and some f.p. closed embedding i: X-+E, the following holds:

For each neighborhood U of i{X) in E there exists a neighborhood V of

i{X) in U such that for each neighborhood W of i(X) in V there exists an



Fiber shape theory 265

f.p. deformation <j>t:V-+U such that <f>0=id, <f>1(V)aW and q(f>t―q＼vfor

In addition,if we can take <j>tso that 4>t＼z=idz(O^^l) for some neigSiborhood

Z of i{X), we say the map p is strongly movable.

For the definitionof shape fibrations,see [MR1]2], [Ma] and also 2.6 (iii).

1.4. Proposition. Let p :E->B be an ANFR. Then

(i) p is strongly movable.

(ii) // p is proper and B is separable then p is a shape fibration.

Proof, (i) This is obvious from the definition.

(ii)This follows from (i) and [Y2, Theorem 1.1].

1.5. Proposition, (cf. [Hu, p. 43, Theorem 7.1]) A proper onto map

p: E^-B is an AFR iff p is an ANFR and each fiber of p is contractible.

Proof. By 1.2 (i), every fiber of an AFR is contractible.

Conversely suppose p is an ANFR and p~x(b)= * for each b&B. Embed E

into an AR M as a closed subset and define an f.p. closed embedding i: £―

BxM by i(e)―(p(e),e). Let r: U-->E be an f.p. retraction from a neighborhood

U of i(E) in BxM given by the assumption.

First we will show that p is shrinkable ([Do]), that is, there exists a map

f:B―>E and an f.p. homotopy 0:£x[O, 1]-*･£'such that pf―idB, (f>a=idE and

0!―fp. To see this, by [Do, 3.2] it sufficesto show that each b<^B admits a

neighborhood V in B such that pv is shrinkable over V. Let b^B. Since p is

proper and p~＼b)= * (hence cell-like),there exist neighborhoods V of b in B and

W.dWo of p'＼b) in M such that VxW0(ZU, p-＼V)C.W1 and W^* in Wo by

a contraction d>: WiX[0, 1]->PFO. Let (pi(W1)={7n1}. Then the desired section

fv: V->p~KV) and the f.p. homotopy 0V :p-＼V)x[0, i]-^p~KV) are defined by

fv(jb)-―r{b,m,) and 0v(e, t)=r{p{e), <p(e,t)). This completes the proof of the

shrinkability of p.

Now let / and ^ be as above. Since i"1 is f.p. homotopic to tpj'1:i(E)->E

and (j)^'1admits an extension ^ :BxM-^E defined by fi^b, m)=f{b), by 1.1 (iv)

we have an f.p. retraction r:BxM^E (i.e.,an extension of i'1). Since xB is

an AFR, so is p.

§2. Fiber shape category.

The purpose of this section is to describe a fiber shape category. Our cjn-

struction is based on [MS, Ch I,§§1, 21, to which we refer for definitions of
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basic terms (pro-category, expansion, etc.).

Fix a space B. 3 Mb will denote the usual fiber homotopy category over

B, whose objects are maps from metric spaces to B. By 3JlB we denote the

fullsubcategory of 3 Mb consisting of maps which are fiber homotopy dominated

by some ANFR's over B. Below [*] denotes a fiber homotopy class of an

.appropriate f.p. map.

2.1. Proposition. Every map p:X―>B admits an cJJlB-expansioni'.p―>phi

pro-£FJTB.

Proof. Take an ANFR q: E-+B and an f.p. closed embedding i: X-*E

and let {Ux)xi=a be an open neighborhood base of i{X) in E. For each

l^A, let ii=i:X-^Ux, Px=g＼uz: Ux~>B and for each X^X' (defined by UX^UX>)

let ixi>: Ux'CUx be the inclusion. By the same argument as in [MS, p. 50,

Theorem 4], it is easily verified that ?={[/;]} :p-±p~{px, [iix>~＼,A) satisfies

the condition required in [MS, p. 20, Theorem 1].

By [MS, Ch I,§2] we obtain a shape category sh(3MB, 'SJ-b),which we

will denote by ShB and callthe fiber shape category over B. Let S: SMB-^ShB

be the associated shape functor. The next proposition justifiesthe definition.

Assume B is a compactum (a compact metric space) and let Sh% denote the

full subcategory of ShB consisting of all maps from compacta to B. MB will

denote the fiber shape category over B defined in [Ka^].

2.2. Proposition, (cf. [MS, Appendix 2]) There exists an isomorphism

J2: MB-*Sh% which commutes with the shape functors.

Proof. The proof is just an f.p. analogue of [MS, p. 332, Theorem 1].

For the sake of completeness, we will give the definition of the functor Q.

Let Q denote the Hilbert cube, [0, 1]M. By xu 7t2:QxQ-~≫Q, we denote the

projections onto the firstand second factor resp. Let d be a fixed metric on Q.

Fix an embedding BczQ.

Let p : X-+B and q : Y-*B be maps from compacta and 0 :p->q be a morphism

in MB. The corresponding morphism Q{<f>):p-~>qin Sh% is defined as follows.

Take f.p. embeddings i of X and j of Y into QxQ (i.e., Ttj―p and nlj=q).

Since %x can be regarded as an extension of both p and q, by the definition of

Mb, <j>is represented by & fiber fundamental sequence <})n:QxQ-^QxQ (n^l)

([Ka1>3]). By the definitionof a fiber fundamental sequence, ＼<pn)satisfiesthe

following:
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(*) For each neighborhood V of j(Y) in QxQ and each e>0 there exist a

neighborhood U of i(X) in QxQ and no^I such that for each n^n0

there exists a homotopy F: Ux[0, 1]-+V such that Fo=<pn(j,Fi = $n and

dfrtFiy, x, t),y)<e((y, x)<eU, Q^t^l).

Define $n:QxQ-^QxQ by $n(y, x)=(y, 7c20n(y,x)) and let ^n=^re|BxQ.

Then {^n} is also a fiber fundamental sequence which is fiber hornotopic to

{<j>n},and {cpn} satisfiesthe following:

(**) For each neighborhood V of j(Y) in BxQ there exist a neighborhood

U of f(Z) in BxQ and n0S^l such that for each n^n0, (pn,<pn0'U-^V

are fiber homotopic (w. r.t. Hi＼Y).

Therefore for any decreasing open neighborhood base {Vn}nlil of j(Y) in

BxQ a there exist a decreasing openn eighborhood base {Un}nii of i(X) in BxQ

and a strictlyincreasing sequence {mn}nB1 of positiveintegers such that for each

ni^l and each m~2tmn, maps <pm,<f>mn'Un-^Vn are fiber homotopic.

By 2.1, {flTilt/Jand {ttiIkJ induce EF<J5-expansion of p and # resp. Define

J2(0) as the morphisrn in ShB represented by a level morphism {[_<pmn]}:{xAuJ

-*{fti＼vn}in pro-^Ms- One can proceed in the same way as in [DS, Ch 3,§4]

or [MS, Appendix 2] to show that J2 is well defined and is an isomorphism of

categories.

The next proposition follows from [MS, p. 27, Theorem 4, Corollary 2] and

implies that for ANFR's the fiber shape theory coincides with the fiberhomotopy

theory. [ ,1* will denote the set of morphisms in the appropriate category.

2.3.

(i)

Proposition. Let p : X-+B and q : Y->B be maps

If q is an ANFR then the function

S: ＼_p,q]3<KB-+[p, q1shB

is bijective.

(ii) // both p and q are ANFR's then an f.p. map f: X-> Y is a fiber horno-

topy equivalence iff S[_f] is an isomorphism in ShB.

We will call any Isomorphism in ShB a fiber shape equivalence and say that

two maps p and q to B are fiber shape equivalentif there existsan isomorphism

of p to q in ShB. Next we will listsome properties of maps which are fiber

shape invariant.

2.4. Proposition. ([Ka^) A proper onto map p : X->B is a hereditary shape

equivalence iff p is fiber shape equivalent to ids-
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Proof. Take an ANFR q : E-+B and an f.p. closed embedding i: X->E

and define p={px, [ixv~],A) as in 2.1. By [A2, Theorem 4.5], p is a hereditary

shape equivalence iff for each neighborhood U of t(X) in E there exists a

neighborhood V of i{X) in U, a map g : B->U and an f.p. homotopy <j>:Fx[0, 1]

-^■Usuch that qg=idB, 6^―idv and $x(V)=g(B).

The latter condition can be translated as follows:

(*) For each X^A there exists Xf^X such that Uw~] is factored through

idB (i-e., Uw] = lgi']lPx'']for some f.p. map gx:B-+Ux).

Observing that any map q: Y~->Badmits a unique morphism to idB in "3Mb

(i.e.,[9]), the above (*) is equivalent to the assertion that p is isomorphic to

idB in pro-2^3 (cf. [MS, p. 116, Theorem 7]), which implies the conclusion.

2.5. Proposition. Let p:X->B and q: Y-*B be two proper maps.

(i ) // there exists a morphism from p to q in ShB and p is approximately

invertihle, then so is q.

(ii) // there existsan epimorphism from p to q in ShB and p is a hereditary

shape equivalence, then so is q.

(iii) ([Ka2]) // p weakly dominates q and p is a shape fihration{or p has

the approximate section extension property (ASEP)), then so is q.

Proof, (ii) By 2.4 there exists an epimorphisrn 0: idB-+q. As noted in

the proof of 2.4, every map r:Z―>-B admits a unique morphism to idB in EF,#"S

and hence in ShB (see 2.3 (i)). Therefore S＼_q"]^=lidB. Since (ftis an epimor-

phism and <f>S[_q~＼<f>■=<}),0S[#] = 13. Hence $ is an isomorphism and by 2.4, q is

a hereditary shape equivalence.

For the proof of (i) and (iii),we need a lemma.

■2.6.Lemma. (I) Let p: X-^B he a proper map, p : E~>B be an ANFR

and i: X-^-E be an f. p. closed embedding.

(i) ([AJ) p is approximately invertibleiff each neighborhood U of i(X) in

E admits a map s:B->U with ps=^idB.

(ii) ([Yi, Proposition 1.3]) p has the ASEP iff for each neighborhood U of

i{X) in E, there exists a neighborhood Ui of i(X) in U such that any map

s'.C―>Uifrom a closed subset of B to Ui with ps-=idc admits an extension

s:B->U with ps=idB-

(II) Let p:X-+B be a proper map, p: M^>L an ANFR between ANR's and

i : X-+M, j : B-+L be closed embeddings such that pi^=jp.

(iii) p is a shape fibrationiff the following holds:
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(*) For each neighborhood U' of i{X) in M there exist neighborhoods U[ of

i(X) in U' and W of B in L such that for any maps h:Z->U{ and

H:Zx[0, 1]->W with ph=H0, there exists a map i/':Zx[0, l]->£/'

with H'0=h and pH'―H.

Proof of 2.6. (iii) By [Ma] and [MR1; Proposition 2] p is a shape fibra-

tion iff the following holds:

(**) For each neighborhood U" of i{X) in M and each open cover 1/ of L

there exist neighborhoods U[ of i(X) in U" and W of B in L such that

for any maps h-.Z-^Ui and H:Zx[0, 1]->W with ph―H0 there exists

a map H":Zx[0, l]->£/" such that JJ$'=/i and {pH", H)^<V.

We must show (**)->(*). First consider the special case that q is the pro-

jection nL:Lx M^L, where M and L are ANR's containing X and B as a

closed subset resp. Let U' be given. Since />is proper, if we choose U" so

small and V so fine, then we can adjust the map H":Zx[Q, Y]-^U" given by

(**) to the desired H':Zx[0, l]->£7'by defining

H＼z, t)=(H(z,t),TcMH%z,t)).

We have shown that for any ANR L and some ANFR q: M-+L between ANR's,

the shape fibrationp satisfies(*). It remains to show that if p satisfies(*) for

some ANFR p : M-+L, then so does p for any such ANFR over L. This follows

from the proof of 2.5 (iii)(see below), considering the identity fiber shape

morphism on p.

(i) and (ii)are also known in the specialcase that q is the projection nB:BxM

―>£,with M an ANR. The general case follows from the proof of 2.5.

We return to the proof of 2.5.

(i) Take ANFR's E -^-> B ^― F and f.p. closed embeddings X -^-> E and

Y―'―>F (i.e., pi―p and qj―q). The existence of a morphism from p to q

implies that for each neighborhood V of j(Y) in F there exist a neighborhood

(7 of i(X) in £ and an f.p. map /: U―>V (i.e., qf=p＼v)- Then for a section

s:B->U, fs gives the section required in 2.6 (i).

(iii)Take maps X M and
p＼ ＼p

B c L

Y

･I

B

j

; N, where p, q are ANFR's between
I*

C L

ANR's, L contains B as a closed subset and i, j are f.p. closed embeddings.

Let M＼B=$-KB) and N＼B=q-＼B). By 1.3.(i) the restrictionsM＼B-^B<^―N＼B
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are also ANFR's.

The weak domination condition implies the following (see [Dy^ §2]):

(a) For each open neighborhood V of j(Y) in N＼B there exist a neighbor-

hood U of i{X) in M＼B and an f.p. map/: U-+V such that for any neighborhood

Ui of i(X) in U there exist a neighborhood Vx of j(Y) in V and an f.p. map

g: Vr^Ui such that fg: V^V is f.p. homotopic to the inclusion FiCF.

Suppose p is a shape fibration. To see that q is a shape fibration,let V

be any open neighborhood of j(Y) in A^. We must find neighborhoods V[ of

j(Y) in F' and W of 5 in L as in 2.6 (iii)for V. By (a) and 1.1.(ii)we have:

(b) a neighborhood U' of f(X) in M and an f.p. map /': U'->V,

(c) neighborhoods U[ of z'(X)in f/' and W of 5 in L as in 2.6 (iii)for U',

(d) a neighborhood V[ of j(Y) in F' and an f.p. map g':V[-^U[ such

that fg': V[->Vf is f.p. homotopic to the inclusion V[r.V.

A' D V

i

L

.cf
U> 3 u> ≪_ii_ ]/

h

z

nxo

―=L => W==W≪―― Zx[O, 1]

/3

To see that V[ and W satisfy the required condition, let h:Z-*V[ and

H:Zx [0, 1]->W be maps with H0=qh. By (c) we have a map G : Zx [0, l]->tf'

with $G=H and G0=g7i. Define H'=frG. Then $#'=# and H'^f'g'h is

f.p. homotopic to h. Using 1.1 (iv), //' can be adjusted so that H'0=h.

Using 2.6 (ii),the same argument shows that the ASEP is preserved by any

weak domination.

Finally, we will be concerned with inverse limits (cf. [MS, Ch I,§5]).

Let p: X-±B be a map between compacta. Suppose that X is the inverse limit

of an inverse sequence X= {Xi; fi}} of compacta, together with the projections

fiiX->Xi 0'S^l) (fijfj=fi, i^j) and that p is induced from a level map p=

{pi'.Xi^-B}, that is, pifa―pj and pift―p (j'^f^l). The following proposition

shows that the level map p reflectsthe fiber shape of the inverse limit p.

2.7. Proposition, (cf.[MS, p. 65, Theorem 9]) Under the above notations,

the induced morphism /={[/*]} 'p-*p―{pi, Lftj]} i>n pro-S^s is an 1 Ma-expan-

sion of p.

Proof. Let q: E^B be an ANFR. We must show the followings([MS,

p.20, Theorem 1]):
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(i) For each f.p. map g : X-+E there exist z^l and an f.p. map gi'.Xi-^E

such that gifi is f.p. homotopic to g.

(ii) for each f^l and any f.p. maps gu, gy'.Xi-^E such that gofi and gji

are f.p. homotopic, there exists j'^i such that gofij and g^fij are f.p. homotopic.

The simplest way to verify (i) and (ii)may be an f.p. analogue of [DS,

Ch 4, % 1]. Let Ibea compactum defined as follows: The underlying set of

X is the disjointunion of {Xi}iil and X The topology of X is given by the

open basis consisting of allsubsets of the form Ui or f7＼Ui)＼J{yj{fij{Ui): jl^i}),

where *'2>1and Ui is an open set of Xt. Note that each neighborhood U of X

in X contains almost all Xt (finitely many exceptions). Define p : X->B by

$＼X=P and p＼Xi=Pi (^1).

Now (i) and (ii)are verified as follows.

(i) By the f.p. neighborhood extension property, g admits an extension

g＼U-*E to a neighborhood U of X in X with qg―p＼u- If we choose f^l

sufficientlylarge, then XidU and gfit g are so close that they are f.p. homo-

topic (recall 1.1 (i)). Define gi=g＼xv

(ii) Let X'=XX[O, 1]W(W{Z,-: j^z"} x {0, l})c^x[0, 1] and define a map

G:X'-+E by G＼rx[o.i]=an f.p. homotopy from goft to gji and G＼XjMk＼=gkfu

(j^i, k=0, 1).

Then G extends to a map G: F―>£ from a neighborhood V of X' in

Ix[0, 1] with qG{x, t)-${x) {{x,i)e7). Take j'^i with X,X[0, I]c7. Then

G|i,X[o,i]is an f.p. homotopy from g0/o to g1fij.

§3. Complements of maps.

In this section we will prove Chapman's complement theorem in the fiber

shape theory and give some applications.

All spaces below are assumed to be separable. Q=[Q, 1]°°(the Hilbert cube).

A closed set X of BxQ is a sliced Z-set ([Fe2]) if for each open cover HJ of

BxQ there exists an f.p. map /: BxQ-+BxQ―X with (/, idBy,Q)^cU, where

f.p. means that Ttsf―XB-

3.1. Complement Theorem. Let X and Y he sliced Z-sets in BxQ. Then

the projections %B ＼x and tzbir are fiber shape equivalent iff there exists an f. p.

homeomorphism

h:BxQ-X-+BxQ-Y.

Using the description of the fiber shape theory given in §2 and some well

known results of Q-manifold bundles, the proof of 3.1 is an f.p. analogue of
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the one in [DS, Ch 3,§5]). First we will recall some results on Q-manifold

bundles. Note that every proper map p: X-+B admits an f.p. closed embedding

i: X-^BxQ since X is separable.

3.2. Lemma. ([Fe8], [Sa]) Let p:X-*B be a proper map.

(i) Every f.p. map f: X―^BxQ can be approximated arbitrarily closely by

a sliced Z-embedding (i.e., an f.p. embedding whose image is a slicedZ-set)which

is f.p. homotopic to f by a small homotopy.

(ii) // maps f,g:X―>BxQ are slicedZ-embeddings and f.p. homotopic in an

open subset U of BxQ, then there existsan f.p. ambient isotopy ft: BxQ-^BxQ

(O^f^l) such that fo=id, fj=g and ft＼BxQ-u=id (O^f^l).

The next lemma is an f.p. analogue of the main part of the proof of the

Complement theorem.

Let U be an open set in BxQ and let X and Y be sliced Z-sets in BxQ

contained in U. Suppose there exists an isomorphism <f>'.7iB＼x^xbIyin ShB

such that S[i(Y, U)^=Sti(X, £/)],where i{X, U) denotes the inclusion XdU

and S[i(X, £/)]is the morphism in ShB induced from [i(X, U)~]:icb＼x-+xb＼u-

S[i(Y, U)~]is defined similarly. In this case we say that xB＼x and xB＼Y are

fiber shape equivalent in U.

3.3. Lemma, (cf.[DS, 3.5.6, Claim 1]) Under the above notations,for each

neighborhood V of Y in U there exists a neighborhood Uo of X in U such that

for each neighborhood Ui of X in Uo there exists an f.p. ambient isotopy

ht:BxQ^BxQ such that ho=id, h^U^dV, h^U^Y, ht＼BxQ.v^id (O^f^l)

and 7tB＼hux),Xb＼y o.refiber shape equivalent in hi(Ui).

Proof. Since nB＼v is an ANFR, by 2.3 (i), there exists an f.p. map

/:Z-^Fsuch that S[f]=S[i(Y, V)]0. By 3.2 (i) we may assume / is a

sliced Z-embedding. Since SU(V, U)~]SUl=SU(Xf £/)],by 2.3 (i) i(V, U)f is

f.p. homotopic to i(X, U). By 3.2 (ii) there exists an f.p. ambient isotopy

ft:BxQ->BxQ such that fo=idBxQ, f1＼x=f and ft＼BxQ-v=id (O^f^l). Take

a neighborhood Uo of X such that /1(f/0)CV.

Let Ui be any neighborhood of X in Uo. Applying the same argument to

the fiber shape equivalence Slf]^)'1: ^slr^^sl/tx) in V and the neighborhood

fi(U0) of f(X), we obtain an f.p. ambient isotopy gt: BxQ^-BxQ such that

go=idBxQ, g^dftiUJ and gt＼BxQ-r=id (O^^l). Define h^gjVt (O^f^l).

Proof of 3.1. Suppose there exists an isomorphism (J>:-kb＼x-^^b＼yin ShB.
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Note that S[i(Y, BxQ)~]<j)=S[i{X, BxQ)~], since kb is isomorphic to idB in ShB.

Applying 3.3 inductively, we can find:

(i) open neighborhoods J7f(/^l) of X and Vt (z^l) of F in BxQ such

that Ui+1dUidN(X, 1/i)(the 1//-neighborhood of X in 5xQ) and Fi+jClFiC

N(Y, 1/i)(i^l),

(ii) f.p. homeomorphisms /if:BxQ->BxQ (f^l) such that Vi~Dhi■■･h^Ui)

"DVi+1 and /ii+il*XQ_/ii...ft1≪r(>=Kf(z^l).

The desired f.p. homeomorphism h:BxQ―X->BxQ―Y is defined by

h＼BxQ-Ut= hi ― hi.＼BxQ-Ui(2^1)-

Conversely suppose there exists an f.p. homeomorphism h as above. Let

{Ux＼i<=abe an open neighborhood base of X in BxQ. Define Vx=h(Ux ―X)＼JY

(X^A). Then Vx is open in BxQ. To see this,let(b, q)^Vx. Since {h} xQ―Vx

―h{{b}xQ ―Ux) is compact, there exist open neighborhoods U of q and F of

x<2({b}xQ―Vx) in Q such that Ur＼V―0. Note that ^bIbxq-f,) is a closed map

since xb＼bxq-ux is a closed map and ^b＼bxq-vx= 71b＼bxq-ux(^1)＼bxq-vx- There-

fore there exists a neighborhood W of b in B such that WxQ―VxCBxV.

Then Wx£7 is a neighborhood of (fr,̂ ) in BxQ contained in Vx. Therefore

Vx is open and {Vx} is an open neighborhood base of Y in BxQ.

To see that tcb＼x and tzb＼yare isomorphic in S%B, by 2.1,it sufficesto

show that the ANFR-neighborhood systems ＼izB＼vx,Xin-'W and {^^1^, D'^-i']}

are isomorphic in pro-EF^B. Note that ix : Ux―XdUx is a fiber homotopy

equivalence. In fact, since X is a sliced Z-set, by [Fe2, §4] there exists an

f.p. homotopy ft: BxQ^BxQ (O^f^l) such that fo=id, ft(BxQ)(ZBxQ-X

(0<^l) and ft(Ux)dUx (O^^l). Then f^Ux-^Ux-X is a fiber homotopy

inverse of ix since ft: Ux―X^Ux―X:id―fiix and /{: Ux~>Ux :id^ixfi. Simi-

larly the inclusion jx: Vx ―Yd Vx is a fiber homotopy equivalence. Therefore

we have isomorphisms

, , .{Pi]} . . . {[/≫]}. , AUxl}. , .
＼^B＼uxi<^^ ＼XB＼ux-xi~^zr>＼Xb＼vx-y＼~^t* ＼Xb＼vxi■

This completes the proof of 3.1.

By the construction of S^-expansions in 2,1, one can easily show that the

notion of movability defined in [Y2] (see the definitionbefore 1.4) coincides with

the one in the shape category ShB ([MS, Ch II,§6]). Therefore the movability of

maps is preserved by any weak domination. Once we have obtained the Com-

plement theorem 3.1, by the same argument as in [Dy2, Lemma 2], we can

show that the strong movability is also a fiber shape invariant.
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3.4. Corollary. // proper maps p: X-+B and q: Y-+B are fiber shape

equivalent and p is strongly movable then so is q.

Finally we will characterize hereditary shape equivalences and approximate

fibrations by their complements. Below p: X^>B will denote a proper onto map.

3.5. Corollary. Let i:X->BxQ be a sliced Z-embedding. Then the map

p is a hereditary shape equivalence iff the projection ;rB:BxQ―i(X)-^B is f.p.

homeomorphic to the projection BxQxTO, T)-*B.

Proof. Consider the sliced Z-embedding B^Bx {q}dBxQ, where q^Q is

fixed. Note that Q-{$} ≪Qx[0, 1) ([Ch2, 12.2]). Then 3.5 follows from 2.4

and 3 1

The map p is said to be locally shape trivialprovided each b^B admits a

closed neighborhood V for which pv is fiber shape equivalent to the projection

Ttv'■Fx/r1^)―>F. The space B is said to be semi-locally contractible if each

b^B admits a neighborhood V which contracts in B.

3.6. Proposition. Suppose B is locallycompact and semi-locallycontractible

and that each fiber of p is an FANR. Then the following assertions are equiva-

lent:

( i ) p is a shape fibration

(ii) p is locally shape trivial

(iii) p is strongly movable.

Moreover if B is finite dimensional, then (i )-(iii)is equivalent to the following:

(iv) p is completely movable.

Proof, (i)―≫(ii).Let 6g5 and let ,K be a compact neighborhood which

contracts in B. By the same argument as in [Ka2, Proposition 1.3](cf. [Sp, p.

102, Theorem 14]) it is seen that pK is fiber shape equivalent to the projection

Kxp-＼b)-+K.

(ii)-≫(iii).Let b^B and let V be a neighborhood of b for which pv is fiber

shape equivalent to -kv: Vxp~＼b)-*V. Since p~＼b)is an FANR, by [Y2, Exam-

ple 3.4,(3)], 7tvis strongly movable. Then by 3.4, so is pv. By [Y2, Proposi-

tion 3.5], p is strongly movable.

(iii)-Ki). This follows from [Y8, Theorem 1.1].

As for (iii)<->(iv)under the assumption dimfi<oo, see [Y2, Remark 5.3,

Theorem 1.3].
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3.7. Corollary. Suppose B is locally compact and locally contractible. If

p is a local shape fibration(i.e.,each b^B admits a (closed) neighborhood V for

which py is a shape fibration)and each fiber of p is an FANR, then p is a shape

fibration.

Proof, Let b^B. Take compact neighborhoods KcL of b such that pL

is a shape fibration and K^* in L. As in the proof of 3.6 (i)->(ii),pK is fiber

shape equivalent to the projection tck "-Kxp~1(b)-+K. Therefore p is locally

shape trivialand then by 3.6 p is a shape fibration.

3.8. Corollary. Let i:X->BxQ be a sliced Z-embedding.

( i ) p is locally shape trivialiff the projection tib' BxQ―i{X)―>B is a bundle

map.

(ii) Suppose B is a locally compact ANR and each fiber of p is an FANR.

Then p is a shape fibration iff tcb' BxQ―i(X)^B is a bundle map.

(iii) Suppose B and X are locally compact ANR's. Then p is an approximate

fibration iff tcb- BxQ―i(X)-->B is a bundle map.

Proof, (i) Let b^B and V be a neighborhood of b in B. We may assume

p~＼b)is Z-embedded into Q. If pv is fiber shape equivalent to 7rv' Vxp~＼b)^>V,

then by 3.1, 7CBKV)=VxQ-i(p-＼V)) is f.p. homeomorphic to Vx(Q~p-＼b)).

This implies 7iBis trivialover F.

Conversely if xb＼V) is f.p. homeomorphic to a product FxF, then since

F&Q―p-＼b), by 3.1 pv is fiber shape equivalent to nY.

(ii) Thislfollows from (i) and 3.6.

(iii) By [Ka2, Theorem 1.4], p is an approximate fibrationiff p is locally

shape trivial. Then (iii)follows from (i).

3.9. Remark, (i) In 3.6,In general, (iv) does not imply (I), since the

Taylor map ([T]) is not a shape fibration([MR^ Example 6]).

(ii) In 3.6,if each fiber of p is cell-like,then by [Y2, Theorem 1.2], the

conditions (i)-(iii)are equivalent to the condition that p is a hereditary shape

equivalence (cf. [Ka2, Theorem 2.5]).

(Hi) In 3.7 we cannot omit the assumption that each fiber of p is an

FANR (even if each fiberis movable). See [Ru, Example 11.
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