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OF CURVATURE TENSORS
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Yong-Soo Pyo* and Young Jin Suh**

§1. Introduction.

A complex n-dimensional Kahler manifold of constant holomorphic sectional

curvature c is called a complex space form, which is denoted by Mn(c). A

complete and simply connected complex space form consists of a complex pro-

jective space PnC, a complex Euclidean space Cn or a complex hyperbolic space

HnC, according as c>0, c=Q or c<0.

In this study of real hypersurfaces of PnC, Takagi [8] classifiedall homo-

geneous real hypersurfaces and Cecil and Ryan [2] showed also that they are

realized as the tubes of constant radius over Kahler submanifolds if the struc-

ture vector field$ is principal. And Berndt [1] classifiedall homogeneous real

hypersurfaces of HnC and showed that they are realized as the tubes of con-

stant radius over certain submanifolds. According to Takagi's classification

theorem and Berndt's one, the principal curvatures and their multiplicitiesof

homogeneous real hypersurfaces of Mn(c) are given.

Now, let M be a real hypersurface of Mn(c), c^O. Then M has an almost

contact metric structure (0, ?, 7],g) induced from the Kahler metric and the

almost complex structure of Mn(c). We denote by A the shape operator in the

direction of the unit normal on M. Then Okumura [7] and Montiel and Romerc

ffilnrnvpri the fnilnwincr

Theorem A. Let M be a real hypersurface of PnC, n^2. If it satisfies

(1.1) A0-<M=O,

then M is locally a tube of radius r over one of the following Kdhler submani-

folds:

(A,＼ a hvhar-hlana P~ ,f7.where 0<^r<^7r/2.
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(An) a totallygeodesic PkC (l£k£n-2), where 0<r<7t/2.

Theorem B. Let M be a real hypersurface of HnC, n^2. If it satisfies

(1.1), then M is locally one of the following hyper surfaces:

(Ao) a horosphere in HnC, i.e.,a Montiel tube,

(Ai) a tube of a totallygeodesic hyperplane Hn^C,

(A?) a tube of a totallygeodesic HkC (l<LkSn―2).

Such real hypersurfaces in Theorems A and B are said to be of type A.

On the other hand, Kimura and Maeda [4] gave the following

Theorem C. Let M be a real hypersurface of PnC, n^2. // the structure

vector field£is principal and if it satisfies

(1.2) Vei?=0, g(A£,£)=£0,

then M is of type A, where 7 denotes the Riemannian connection and R denotes

the Riemannian curvature tensor on M.

The purpose of this paper is to give some characterizations of real hyper-

surfaces in Mn(c), ci^O, in terms of the Riemannian curvature tensor R. Firstly,

as generalizations of Theorem C, we obtain the following

Theorem 1. Let M be a real hypersurface of Mn(c), cl=0, n~2i3.If it

satisfies(1.2), then M is of type A.

Theorem 2. Let M be a real hypersurface of PnC, n^3. // 7f/?=0, then

M is locally congruent to one of the following:

(a) a non-homogeneous real hypersurface which lies on a tube of radius x/4

over a certain Kdhler submanifold in PnC,

(b) a real hypersurface of type A.

Next, we also have a complete classificationof real hypersurfaces in Mn(c)

satisfying X^R―0, where X$ denotes the Lie derivative in the direction of the

structure vector field£. Namely, we prove the following

Theorem 3. Let M be a real hypersurface of Mn{c), c^O, n^2. // S^R

=0, then M is of type A.

The authors would like to thank Professors Sadahiro Maeda and Hisao Naka-

gawa for their valuable suggestions and encouragement during the preparation

of this paper.
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§2. Preliminaries.

First of all, we recall fundamental properties about real hypersurfaces of a

complex space form. Let M be a real hypersurface of a complex n-dimensional

complex space form Mn{c) of constant holomorphic sectional curvature c, and

let C be a unit normal vector fieldon a neighborhood in M. We denote by /

the almost complex structure of Mn(c). For a local vector field X on the

neighborhood in M, the images of X and C under the linear transformation /

can be represented as

jx=4>x+i(X)c, jc=-$,

where <j>defines a skew-symmetric transformation on the tangent bundle TM

of M, while rj and £ denote a 1-form and a vector fieldon the neighborhood in

M, respectively. Then it is seen that g(£,X)=ij(X), where g denotes the Rie-

mannian metric tensor on M induced from the metric tensor on Mn(c). The

set of tensors (<j>,£,*q,g) is called an almost contact metric structure on M.

They satisfy the following properties:

where / denotes the identity transformation. Furthermore, the covariant deri-

vatives of the structure tensors are given by

(2.1) lxS=$AX, lx<l>{Y)^r]{Y)AX-g{AX, Y)$

for any vector fieldsX and Y on M, where 7 is the Riemannian connection on

M and .4 is the shape operator of M in the direction of C.

Since the ambient space is of constant holomorphic sectional curvature c,

the equations of Gauss and Codazzi are respectively obtained:

(2.2) R(X, Y)Z= j {g(Y, Z)X-g(X, Z)Y

+g(0Y, Z)$X-g{<j>X, Z)$Y-2gtyX, Y)<j>Z)

+g(AY, Z)AX~g(AX, Z)AY,

(2.3) lxA{Y)-lyA(X)=±{j){X)4Y-i)(Y)4>X-2gyX, Y)$},

where R denotes the Riemannian curvature tensor of M and ^XA denotes the

covariant derivative of the shape operator A with respect to X.

Next, we suppose that the structure vector field£is principal with corre-

sponding principal curvature a. Then it is seen in [3] and [5] that a is con-
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stanton M and it satisfies

(2.4) A$A=jt+ja(At+tA)

and hence,by (2.1)and(2.3),we get

(2.5) VeA=-ja(Af-tA).

§3. Proof of Theorems 1 and 2.

We consider about the covariant derivativeof the Riemannian curvature

tensor R. The covariant derivative1$R of R with respect to the structure

vector field£is definedby

leR(X, Y, Z)=lt(R(X, Y)Z)~R{1SX, Y)Z-R{X, 1^Y)Z~R{X, Y)1^Z

for any vector fieldsX, Y and Z.

Now, we shallprove the followingproposition.

Proposition. Let M be a real hypersurface of Mn{c), c^O, n^3. // 1SR

=0, then 7ei4=0.

Proof. By the definitionof the covariantderivativeV?i?and (2.2),our

assumption is equivalentto

(3.1) jUv<Y)8(M, Z)-V(Z)g(A£, Y)}<f>X

-{ri(X)g{M, Z)-V(Z)g(A£, X)＼<f>Y

-2{V(X)g(A$, Y)-V(Y)g(A$, X)}<j>Z

+g($Y, Z){V(X)A£-g(A$, X)$}

-g(<f>X,Z){V(Y)A£-g(A$, Y)$}

-2g(<f>X,Y){V{Z)A£-g(A$, Z)$n

+g&eA(Y), Z)AX-g(^A(X), Z)AY

+g(AY, Z)^A(X)-g(AX, Z)lsA<X)

=0

for any vector fieldsX, Y and Z.

=0}

Let To be a distribution defined by the subspace T0(x)= {weTXM: g(u,^(x))

of the tangent space TXM of M at any point x, which is called the holo-



Characterizations of real hypersurfaces 167

morphic distribution. Suppose that the structure vector field£is not necessarily

principal. Then we can put A^=a^-＼-^U, where U is a unit vector fieldin

the holomorphic distribution To, and a and /3 are smooth functions on M. Let

Mo be the non-empty open subset of M consisting of points x at which
i8(x)^0.

Hereafter unless otherwise stated, we shall discuss on the subset Mo of M. By

the form AI-=af-+fiU, (3.1) is reformed as

(3.2) jPl{j>(Y)g{Z, U)-V(Z)g(Y, U)}<j>X-{r){X)g{Z, U)-v(Z)g(X, U)＼<}>Y

-2{V(X)g(Y, U)-V(Y)g(X, U)}(j>Z

+g($Y, Z){v(X)U-g(X, im-gifX, Z){V(Y)U-g(Y, U)$}

-2gWX,Y){V(Z)U-g(Z,U)$n

+g^A(Y), Z)AX-g{l^A{X), Z)AY

+g(AY, Z)ltA(X)-g{AX, Z)^A(Y)

r＼

for any vector fields X, Y and Z. Putting Z=£ and taking X and Y in To in

the above equation, we get

(3.3) jft~g(Y, U)0X+g(X, U)4Y-2g{fX, Y)u)

+gWeA($), Y)AX-g&eAG), X)AY

+0{g(Y, U)VsA(X)-g(X, U)7sA(Y)＼

=0.

Next, putting Y=Z=t- and taking X in To in (3.2) again, and calculating

directly,we have

(3.4) offeA(X)=g{%A($), X)A%+pg(X, U)^A($)-da($)AX .

Combining the above two equations, we get

(3.5) jap{-g(Y, U)0X+g(X, U)<j>Y-2g(<f>X, Y)U)

+P＼g(Y, U)g&eAR, X)-g(X, U)gC7tAR, Y)}A$

+ {ag&fA(&, Y)-pda(£)g(Y, U)}AX

-{ag&sAR, X)-pda(&g(X, U)}AY

A

for any vector fields X and Y in To.
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Let L($, U, <j>U)be a distribution defined by the subspace Lx{$, U, <f>U)in

the tangent space TXM spanned by the vectors g(x), U(x) and <pU(x) at any

point x, and let 7＼ be the orthogonal complement in the tangent bundle TM

of the distribution L(£,U, <pU). Then Tx is not empty, because n^3. For

any unit vector fieldX in Tu putting Y=<fiX in (3.5), we have

(3.6) yj8t/=g(7^(e), tX)AX-g&tA(&, X)A$X

if we assume that a=£Q. vSuppose that there is a unit vector field Xo in 7＼ at

which gC7sA(£),Xo)=0. Then we get by (3.6)

^pU=gC7sA($), $Xo)AXo^-O.

Accordingly we can put AXa―(n){X0)U, where <ois a 1-form on Mo. Putting

X=X0 and Y―U in (3.5), we have

jap$X0-aKX0){ag(7eA(£), U)-pda{$)}U=0.

Since $X0 and U are orthonormal vector fields,this equation implies /3=0, a

contradiction. Accordingly we get

g&eA(g), X)^0

for any non-zero vector fieldX in Tx.

On the other hand, putting Y―fyU in (3.5) again, we have

(3.7) g^sA($), <j>U)AX-g{!^), X)A$U=0

for any vector field X in Tl under the assumption a=EQ. If g(^?A{$), <f>U)=O,

then, by the above equation, A$U=0. Now, we suppose that g{l^A($), 0U)^Q.

From (3.7), we get

(3.8) AX=$(X)A$U, 6(X)^0

for any non-zero vector field X in Tlf where d is a 1-form on Mo. Putting

X=Y in (3.8) and substituting the second one from the firstone, we obtain

(3.9) A(0(Y)X-6(X)Y)=0, 6{X)^Q, d(Y)^0

for any non-zero vector fields X and Y in Tx. If we put Zx―d{Yi)Xx ―d(X{)Yi

for given linearly independent vector fields Xt and Yx in T1; then /1Z:=O by

(3.9) and hence A$U=0 by (3.8).

Next, putting X=U and Y=d>U in (3.5), we have
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japU-gWsAG), 4>U)(aAU-pA£)=Q,

where we have used that A$U=Q. Consequently, we get g(Vf/l(f),0/7)^0 and

hence AX=0 for any vector fieldX in Tl by (3.7). Lastly, putting X=g and

taking Y and Z in T, in (3.2),we obtain

ag{^A(Y), Z)$+p{jgyY, Z)+g^A(Y), Z)JU=O

Accordingly it turns out to be /3=0 on Mo under the assumption a=£0, a con-

tradiction. This means that £is principal on M', where M' denotes the open

subset of M consisting of points x at which a(x)^Q. Thus, putting Y = Z=^

in (3.2), we get 7sA=0 on W, where we have used that 7fy4(£)=0.

Now, let us denote by Int {M―M') the interior of the subset M―M'. Then

a=0 on Int (M―M'). Suppose that ? is not principal on Int (M―M'). Then

the subset Mx of Int (M―MO consisting of points x at which /3(x)^0 is non-

empty open set. Hence we have by (3.4)

(3.10) gWeAig), X)U+g(X, £/)VK£)=0

on Mi for any vector fieldX in To. Accordingly g-(Ve,4(£),Y)=0 for any vector

field Y in To othogonal to U. Since g(VzA(%), X)g(X, U)=0 by (3.10), we get

g(VeA(£),£/)=0 and hence 7e^4(f)=0 on Mt. Taking X and F in To orthogonal

to U in (3.3), we obtain g(<f>X,Y)=0 on Mi, a contradiction. This means that

£ is principal with corresponding principal curvature a=0. Accordingly we

have VtA=0 on Int(A/―MO by (2.5). This completes the proof by the con-

tinuity of V*A □

Remark. If 7^^4=0, then $ is principaland hence it satisfiesthe condition

7f/?=0 by (3.2).

Proof of Theorems 1 and 2. Suppose that a ^0. Since £is principal by

Proposition, we have A0―0A=O by (2.5). It completes the proof of Theorem

1 by Theorems A and B.

Theorem 2 is also verified by a theorem due to Kimura and Maeda [41. □

§4. Proof of Theorem 3.

In this section, we are concerned with the proof of Theorem 3. Let M be

a real hypersurface of Mn{c), c=^0, n>2. We consider A^―a^+^U, where U

is a unit vector field in the holomorphic distribution To, and a and /3 are
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smooth functions on M. And the Lie derivative £$R of R with respect to $

is defined by

JCsR{X, Y, Z)=£((R(X, Y)Z)-RUeX, Y)Z~R{X, X^Y)Z-R{X, Y)X^Z

for any vector fieldsX, Y and Z. Hence, by the assumption, we have

(4.1) jP[{V{Y)g(Z, U)-V{Z)g(Y, U)}0X-{V(X)g(Z, U)-V{Z)g(X, U)}<j>Y

~2{V(X)g(Y, U)-v(Y)g(X, U)＼<f>Z

+g(0Y, Z){V{X)U-g{X, U)$}-g(0X, Z){V{Y)U-g(Y, U)$＼

-2gyX, Y){v(Z)U-g(Z, £/)£}]

-j {g($Y, ZWA$-tA)X-gyX, Z)0(A0-0A)Y

~2g((j>X,Y)(f>{A(j>-(j)A)Z

+g((A0-0A)Y, Z)X-g{{A<i)-<j>A)X, Z)Y

+g((A0*-</>*A)Y, Z)0X-g((A</>2-0*A)X, Z)<j>Y

~2g{(A<j>*-fA)X, Y)4>Z)

+g&?A(Y), Z)AX-g^A(X), Z)AY

+g(AY, Z){liA(X)+{A<j)-<j>A)AX}

~g(AX, Z){VzA(Y)+{A<t>-0A)AY}

=0

for any vector fields X, Y and Z. Putting Z=l- and taking X and Y in the

holomorphic distribution To in this equation, we have

(4.2) jPig(Y, <}>U)X-g{X, <i>U)Y}

+g{liA{^), Y)AX~g{liA^)> X)AY

+ Plg(Y, U){lsA{X)+{A<j>-<!)A)AX}

-g(X, U){*eA<y)+(At-fA)AYn

=0.

Again, putting Y=Z=$ and taking X in To in (4.1), we get

(4.3) aVsA(X)=pg(X, Uf7(A($)-da($)AX+g(^sA($), X)A£

+ jPg(X, $U)S+Fg(X, U){A<j>-<i>A)U

-aB2g(X, U)<j>U-a{A6-6A)AX.
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Eliminating 1?A{X) and ^A(Y) in (4.2) and (4.3), we obtain

(4.4) jPlaigiY, <j>U)X-g{X, <f>U)Y}

+ p{g(X, 0U)g(Y, U)-g(X, U)g{Y, 0tf)}£|

+a{g&eA(g), Y)AX-g(VeAG), X)AY)

+Plg(Y, U){g{VeAR, X)A£-da&AX}

-g(X, U){gC7sAR, Y)A$-daG)AYn

=0

for any vector fieldsX and Y in To.
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Now, putting X=U and Y = $U in (4.4), we get

jP(aU-p$)+a{g(ysA($), tU)AU-gC7eA($), U)A0U}

-/3{g(VKa $U)A$-da(£)A$U}

=0.

Taking the inner product of this equation with £, we obtain ^―0. Thus the

structure vector field$ is principal. If a=0, then, putting X=t- in (4.1), we

get A<j>―0i4=O. Next, suppose that a=tQ. Then we have

(4.5) VSA(X)+A$AX-$A*X=O

for any vector field X in To by (4.3), where we have used that 7^(f)=0.

Furthermore, (4.5) holds for any vector field X. This implies that

$(A2-aA-jI^X=0

for any vector fieldX, where / denotes the identity transformationand we

have used (2.4)and (3.3). This is equivalentto

A2-aA-j(I-7]<g)£)=0,

from which it follows that the shape operator A satisfies

(A0-0A)2=Q,

where we have used that (2.4) and A02=0zA= ―A+a7}(g)g. Accordingly

A$―$A=0, because Afy―fyAis symmetric. It completes the proof by Theorems

A and B. □



172 Yong-Soo Pyo and Young Jin Suh

Remark. If M is of type A, then 40―0/1=0 and hence 7f^4=0 by (2.5).

Accordingly, by (4.1),it satisfiesthe condition XsR=0.
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