
TSUKUBA J. MATH.

Vol. 15 No. 2 (1991), 509-521

LATTICE-VALUED REPRESENTATION OF THE

CUT-ELIMINATION THEOREM0

By

ShojiMaehara

In 1934 G. Gentzen [1] presented the firstorder classicaland intuitionistic

predicate calculiLK and LJ, and expressed and proved his Hauptsatz or the

cut-elimination theorem for them. In 1953 G. Takeuti [11] announced the fact

that his fundamental conjecture or the cut-elimination theorem for his GLC

implies finitisticallythe consistency of analysis, where GLC is a simple type

theory formulated analogously to LK. From that time on he has proved suc-

cessively but constructively that the fundamental conjecture is true for many

subsystems of GLC.

In 1967 M. Takahashi [9] gave a general affirmative solution to Takeuti's

fundamental conjecture by means of non-constructive methods (see also [10]).

Takahashi's proof based on a result of K. Schiitte[7] and previously W. Tait

[8] had proved the cut-elimination theorem for second order predicate logic.

In 1971 G. Y. Girard [2], for the intuitionisticGLC, gave a syntactical cut-

elimination procedure and proved the finiteness of the procedure by use of non-

constructive arguments but by no use of the law of excluded middle.

Gentzen [1] says his Hauptsatz had been found originally for the natural

intuitionistic calculus NJ, that is a firstorder intuitionisticsystem of natural

deductins given in [1], but he did not discourse in detail. In 1965 D. Prawitz

[5] formulated the Hauptsatz or his normal form theorem for NJ2) (and for a

classical natural deduction system admitting no disjunctions nor existential

quantifications). There are several studies of the normal form theorem for

higher order natural deduction systems: Prawitz [6], P. Martin-Lof [3], [4],

and so on.

In this paper, as our Main Theorem, we shall give a semi-algebraic repre-

sentation of the cut-elimination theorem. No concrete cut-elimination procedure

Received November 16, 1990, Revised May 13, 1991.

" This paper was read at a Symposium, 27-29 November 1989, to commemorate the 80th

birthday of Prof. Katuzi Ono, Professor Emeritus of Nagoya University.

2) The author attended Prof. Ono's lecture concerning his formulation of the normal form

theorem for NJ at a Logic Symposium, 15-18 October 1966, Chiba. At that time, none

of the Darticioants knew the Prawitz formulation.
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will be given in this paper. It is to be wished that we give a purely algebraic

representation and to prove, by means of it, we prove the finitenessof a con-

crete cut-elimination procedure.

§1. Formulas, terms and formal systems

1.1. In this paper, the formulas and terms of the simple type thpe theory

will be used in the limited forms specifiedin the following.

1.11. A free variable of type p is a term of type p, for every non-negative

integer p.

1.12. If s is a term of type p + 1 and Ms a term of type p, then s(t)is

a formula.

1.13. If A is a formula, then ―＼Ais a formula. If A and B are formulas,

then Af＼B, A＼/B and AZ)B are formulas.

1.14. If F(a) is a formula, a is a free variable of type p and x is a bound

variable of type p, then Vx-F(x) and 3xF(x) are formulas and XxF(x) is a

iterm 0/ O^g jo+ l.

1.15. The only terms and formulas are those given by 1.11-1.14.

Stipulation. Hereafter, when we use a metamathematical expression of

the form Vx-F(x), 3xF(x) or XxF(x), then F(t) means the result of substituting

a term t for those occurrences of x in F{x) which occur in none of the scopes

of Vx, 3x or Ix with the same x in the inside of Fix).

1.2. As formal systems expressing the classicalor the intuitionisticsimple

type theory we use sequential calculisimilar to Gentzen's first order predicate

calculi LK and LJ.

1.21. Every uppermost sequent of formal proof has the form D-^D, where

D is an arbitrary formula.

1.22. The set of our rules of inference consists of those of LK and the

following additional rules 1.221 and 1.222.

1.221. Introduction of

V in antecedent:

F(t＼r->8

vxF(x), r->@'

3 in antecedent:

F(a),r->6

3xF(x), r-^6'

3 in succedent:

r -> &, F(t)
r->0, 3xF(x)'

V in succedent:

r-^6, F{a)

F-><9, VxF(x)
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X in antecedent:

F(t), r -> e

A in succedent:

r -> 0, F(t)
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In the above respective rules, f or a is a term or free variable of type p,

respectively, if x is a bound variable of type p, but in particular the free

variable a must not occur in the conclusion of the inference.

1.222. Rule for "extensionality" :

s(a), r^e,t(a) t(a),r-*8,s(a)

F(s), r - 0, F(t)

where a is a free variable of type p for an arbitrary non-negative integer p,

but it must not occur in the conclusion, and s and t are terms of type p + 1.

We may study the formal systems not containing the rule of extensionality.

If that rule were omitted, it would be sufficientto omit only the condition 2.28

from the assumption of the Main Theorem (2.3), but in the proof of the Main

Theorem a distinct trivialadditional technique would be required.

1.23. Our classicalformal system for symple type theory is the system

which has been stated above, and intuitionisticone is that satisfying the addi-

tional restriction:

Only sequents whose succedent consists of one formula or is empty are

admitted in every inference.

§2. Main Theorem

2.1. Let X be a complete Boolean algebra when we study the classicalformal

system, and X be a relatively pseudo-complemented complete lattice when we

study the intuitionisticformal system.

2.11. A relatively pseudo-complemented lattice is a lattice which has a

new operation a * /3 besides the lattice operations ≪nj3 and aW/3, and which

satisfiesthe following two conditions:

1) ar＼(a*p)^p,

2) anr^fi implies y^a * j8,

where a * /3is called the pseudo-complement of a relative to /3. Because of the

completeness, =T has the least element 0. The element a * 0 is calledthe pseudo-

complement of a, and denoted a*.

2.12. A Boolean algebra is a relatively pseudo-complemented lattice,because

both of the above conditions 1) and 2) are satisfiedby putting
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where ac is the Boolean complement of a, and a*=ac at the time.

2.13. A relatively pseudo-complemented lattice has the greatest element 1

and is distributive. Accordingly, a relatively pseudo-complemented lattice in

which the least element exists and aWa* = l holds, for any element a, is a

Boolean algebra.

2.14. A complete lattice is relatively pseudo-complemented, if and only if

it satisfiesthe condition

99 T pI-

and

F be the set of formulas,

Tp be the set of terms of type p,

FVp be the set of free variables of type p,

BVp be the set of bound variables of type p

where p = 0, 1, 2, ･･･ and TQ=FV0. We shall consider those mappings

m: F―> X and M: F―> X

which satisfy the following conditions 2.20-2.28.

2.20. m{A)^M{A).

2.21. m(AAB)£m(A)r＼m(B), M(A)nM(B)£M(AAB).

2.22. m(AV B)£m(A)VJm(B), M{A)＼jM{B)^M{Ay B).

2.23. m(V*F(jt))^inf{ m{F{t)) | t<=Tp },

inf{ M(F(t))＼t ETp }^M(VxF(x)),

where x<=BVp.

2.24. 77<3xF(x))^sup{ m(F(t))＼t^Tp },

sup{ M(F{t))＼t<=Tp }<M(3xF(x)＼

where x^BVp.

2.25. m(.4=)JB)^A/(yl)*m(5), m^ + MCB^MC^ZJ^).

2.26. m(->A)^M(A)*, m(A)*<M(-^A).

2.27. m({^xF(x)}(0)^m(F(0), M(F(0)^M({^xF(x)}(0),

where x^BVp and t(^Tp.

2.28. a(fx,̂ 2)nm(Fa1))^M(F(^)),

where ^, t^Tp, p>0, and 5(?i,?2)is defined by the following
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Definition 2.1. 8(t,.to)
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=inf{ lm(t1(r))*M(tz(rmr＼lm(Ur))*M(t1(rm＼r£ETp_1 }

2.3. Main Theorem. Let

m: F―>£ and M:F―> X

be mappings satisfying the conditions 2.20-2.28, then

m(A)<M(B),

§3. Proof of the Main Theorem

In this section,let a complete lattice X and mappings m and M be fixed

arbitrarily, provided that X is Boolean or relatively pseudo-complemented ac-

cording to our formal system for simple type theory is classicalor intuitionistic,

and that m and M satisfy the conditions 2.20-2.28.

Definition 3.1. 1(A)={ a | m(A)£a^M(A) }.

Definition 3.2 (Recursive definition of Dp, D(s) and <5(£i,£2)).

1) When seTo, then D(s)={s}.

2) Dp is the set-theoreticalunion of all of the sets D(s) for the terms s

of type p, i.e.

DP=＼J{ D{s) | sgeT,0 }.

3) Let &, ^^Dp. When p=0, then

^,f,)=l, if ?!=f2;
and

5(^1;|2)=0, if |^|2.

When
1o>0,

then

%, e2)=inf{ Ki(O* WC)]nK.(O* WO] I Cg^-. }･

4) When s<=Tp+u then

D(s)= { (J)＼<1>:Dp―>.£",

(fiX^)Ki, f8e^4%, ^)n^:)^^2)] }.

Corollary 1.
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2) 3(£i,£,)=≪(£≪,SO.

3) 3(£i,£2)n3(&, Ss)^5(Si,la).

Corollary 2. Because of Ta―FV0, for tu t2^T0, d(tu t2) has been definec

in Definition 3.2, and the condition 2.28

5(jtuh)r＼m(F(tl))^M(F(t2))

is satisfiedalso in the case.

Lemma 3.1. Let us assume

(SiXWKieZWO, $, =Z?(f8)=*≪(Si,&)£8(jtltU)]

for all ti,t2^Tp, and p be a fixed non-negative integer. If s is a term of typi

<o
+ l and 0: Dp ―> X is the mapping defined by putting

0(£)=sup{ Kv> k)r＼m{s{r))＼rj^D(r), r^Tp }

for all $<^DP, then <p<^D(s),i.e.:

1) SejD(O,ferP=^^)e/(s(O);

2) Si,&eDp=4 8($u &)n0(Si)^(£2).

Proof.

1) Let %(ED(t) and feTp. If rj^D{r) and reT^, then 5(iy,£)^5(r,0 bj

the assumption, accordingly

5(iy,£)r＼m(s(r))£8(r,t)r＼m(s(r))^M(s(t));

hence

by the definition of <f>.On the other hand,

m(s(t))=5(l S)nm(s(0)^^(S)

by the definition of 0; hence

m(s(0)^(£)^M(s(*)),

^(S)e/(s(f)).

2) If ^, |2eDp, then

8($u S2)n^(Si)=a(Si, |2)nsup{ 3(^, Si)nw(s(r)) | ^gDW, rGTp }

-sup{ 3(57,SiYWi, J8)nffl(s(r))| 5jeD(r), r^Tp }

^sup{ 5(jy,S≪)nm(s(r))) ^GED(r), rGET, }

= 0(St).
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Lemma 3.2. Let p be an integer and D(r) be not empty for allr<=Tp. Then

for all tu ta^Tp+l.

Proof. Let tu t2<=Tp+u r&Tp, ^D(tx), £tELD(jtt)and CeZ)(r). Then

and

accordingly

and

hence

d(Zi,^)<d(tut2).

Theorem 3.1. Let s, tu t^Tp and p be an arbitrary non-negative integer.

1) D(s) is not empty.

2) ^^D(t1＼ £2<=Z>a2)=^(Si, $2)^8(tu U).

Proof. By mathematical induction on p, in the induction step of which

Lemmas 3.1 and 3.2 are used.

Theorem 3.2.

1) a<=I(A),p<=I(B)=$anp<=I(AAB), aU^I(AvB), a * 0(=I(AZ)B).

2) (t£/(A)4a*ei(^).

3) (0(OE =Z?(O,̂ T, =4 #£)e/(F(f))]

sup{ ^)||gZ}p } E/(3xF(x)).

4) (≪(0KeZ?(0f ^T,^0(|)Gi(F(O)],

(fiXft)Ki,&eD, =*$(&, Wn^,)^^,)] =4 ^DUxF(x)).

In 3) anrf4),x /s a bound variableof type p.

Proof. By the conditions2.21-2.27and Definitions3.1 and 3.2.

Definition 3.3. We introduce a new symbol, which is denoted by f, for

every element £ of every Dp and we assume that the new symbols are different

with one another. If £^DP, then f is called an X'-constant of type p. An X-

term of type p or an X-formula is the result of replacing all variables by X-



516 ShojiMaehara

constants of the respective types throughout a term of type p or a formula,

respectively.

Definition 3.4 (Recursive definition of [s] for an JT-term s and IJ.} for

an .T-formula J).

1) [£]=$

2) [s(*)] = [s]([≪]).

3) [JA5]=[J]n[5], [JV5] = [J]U[5],

[JD5] = [J]*[5], [~>u≪]= M]*.

4) [Vxff(x)]=inf{ [SF(D] ! £(=£, }, [3x£F(x)]=sup{ [ff(|)J | |e£p },

where x is a bound variable of type p.

5) If x is a bound variable of type p. Then [^x£F(x)] is the mapping

Ux3(x)J: DP―^X

defined by putting

[^xff(x)](|)-[£F(|)J

for all £eZ>,.

Corollary 1.

1) Let f(a, b, ･･･) or F(a, b, ･･･) be a term or a formula, respectively, and

a, b, ･･･ be all free variables contained in it. If t;G:D(s), f]^D{t), ■･■,and if

/(!> v> ■■")or ^(l> V> ■") 2S an X-term or an X-formula, then

[/(I, v, -)J^D(f(s, t, ･･･)) or [F(|, 5, -)]e/(F(s, ff ･･･)),

2) // |i and |2 arg X-constants of one and the same type and if /(fi) or

ffdi) is an X-term or an X-formula, respectively, then

≪(&, |2)^5([/(|1)], [/(f,)])

or

Proof. By mathematical induction on the number of the occurrences of

logical symbols (including X) in the term or the formula, in the induction step

of which we use Theorem 3.2 and relations
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(≪2* aOnCjSi * j82)n(ai * jSi)^≪2*j88,

≪2*ai^(≪i*)*(≪2*),

inf{ ^(|)*^2(£) ! £eZ), }Hinf{ fatf)| ?gD, }

^inf{ $M) ! £e=Z), },

inf{ ^(!)*02(£) | £e£>, }nsup{ ^(£) | $ =DP }

^sup{ 02(^)||eZ)p }.

Corollary 2. // &, ^Dp and p>0, then

1) [|!= |2]=^I, |2),

2) [l^^lnCffdoj^Effdo],

where a~b means the formula

Vx[(a(x)Z)b(x))A(Kx)Da(x)y].

Theorem 3.3. Let Jl and Si be X-formulas obtained from formulas A and

B, respectively,by respective substitutionswhich coincide with one another for the

free variables common to A and B. If the sequent A-+ B is provable, then

MM-R].

Theorem 3.4 (Main Theorem). // a sequent A-+ B is provable, then

m(A)£M(B).

Proof. By 1) of Theorem 3.1, we can choose an element | of D(a) for

every free variable a. Let J. and B be the .T-formulas obtained by substitut-

ing I for every free variable a in A and B, respectively. By Corollary 1 of

Definition 3.4, we have

ijq<=l(A) and 1&J<=KB).

Accordingly, if A―>B is provable, then by Theorem 3.3

m(A)£lJll^l$]^M(B).

§4. Proof cf Cut-Elimitation Theorem by use of the Main Theorem

4.1. The complete latticeX.

Definition 4.1. For a sequent r->8, M{F^Q) means the set of all

sequents d―>A having the property thatP, A^Q, A is provable without use of

cuts,i.e.
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M(r-^9)={ A-*A | r, A-+0, A is cut-free provable }.

However, in the intuitionisticcase, let the succedent A of any sequent belong-

ing to M(T->6) be always empty.

Definition 4.2. A set a of sequents is said to be closed, if a satisfies the

condition

a=r＼{ M{r^O) | a<zM(T-*6) },

where n is the set-theoretical intersection operator. And X is the complete

lattice consisting of all of the closed sets a, /3,･･･ of sequents, and the ordering

of X is defined by the set-theoretical inclusion.

Corollary.

1) M(r~+G) is closed, i.e. an element of X.

2) When F->& is cut-free provable, then M(F-*O) is the greatest element 1

of X and consists of all sequents {whose succedents are empty in the intuitionistic

case).

3) M(-≫) is the least element 0 of X and consists of all cut-free provabU

sequents (whose succedents are empty in the intuitionistic case).

4) The lattice-theoretical infimum in X is the set-theoretical intersection.

5) The lattice-theoretical supremum a＼J(3 or supx ax in X is not the set-

theoretical union, in general, but

a＼j0=n{ r I a, /3cr }

and

%x^xax-r＼{ r! WCajcr] }.

Theorem 4.1. X is relatively pseudo-complemented, and

a*p=r＼{ M(F, d^O, A) | r-^O^a, paM(A^A) }.

Proof. We put

ro=n{ M(r, j^o, A) ＼r-*o^a, ^M(A^A)},

and we shall show the following two properties:

1) anroC/3.

2) If ar＼7C.fi, then rC-To-

Proof of 1). If r->@eanro and ficiM(d^A), then

r^6(EM(r,A->o, A),

that is to say P, A, F->0, A, 6 is cut-free provable, accordingly

p -+0<=M(A->A).
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Therefore, we have ar＼Yo(Zfi.

Proof of 2). We assume that aPifCI/3,and II-^I^Y, and we shall prove

I1->2<=y0. For the purpose it is sufficientto prove II->2<bM(F, A->9, A)

under the assumptions ar＼jCL^,IT-^I^y, F-*O^a and fiaM(A-≫A). By the

last four assumptions,

r, n-+e, 2e=ar＼rcp<zM(A-+A),

accordinglyA, F, U^A, 0, I is cut-freeprovable; hence

■n->Z^M{F,A-*Q, A).

Corollary. a*=n{ M(F->6) ＼F-±6^a }.

LEMMA 4.1. In the classicalcase,if a<Z.M{A->A), thenA->A(=a*. {When A

is empty, thelemma holdsalsofor theintuitionisticcase.)

Proof. By the corollaryof Theorem 4.1,it is sufficientto prove A-> ie

M(F―>9) under assumptions F-+O<=a and a(zM(A-+A). By the assumptions,

we have
F^e^M(A-^A),

thatis to say A, F->A, 0 is cut-freeprovable; hence

J->y4eEM(r-≫6>).

Theorem 4.2. In the classicalcase,X is a Boolean algebra.

Proof. We prove aUa*=l. If aUa*cM(J->yi), then by Lemma 4.1

J-> A^a*dM(A->A),

accordinglyA, A->A, A is cut-freeprovable; hence

M(A-+A)=1.

Therefore, we have a＼Ja*=l.

4.2. The mappings m and M from F into X.

Definition 4.3.

1) m(A)=r＼{ a ! A->£a }.

2) M(A)=M(->A).

Corollary.

1) m(A)c:M(F->6), if and onlyif A, F->6 is cut-freeprovable.
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2) F―>9eM(A), if and only if F-+0, A is cut-free provable.

Teeorem 4.3. The above defined mappings m and M satisfy the conditions

2.20-2.28.

Proof. As examples, we shall prove only 2.23 and 2.25.

The former in 2.23. According to 1) of the corollary of Definition 4.3, the

rule of "introduction of V in antecedent" means the fact that

m(F(0)cM(r^@) implies m(VxF(x))cM(r-><9);

hence
m(VxF(x))Cm(F(O),

accordingly

m(VxF(x))cinf£m(F(O).

The latter in 2.23. According to 2) of the corollary of Definition 4.2, the

rule of "introduction of V in succedent" means the fact that

r ->6tEM(F{t)) for all teTp implies F -* (9eM(VxF(x));

hence

inf£MCF(O)cM(VxF(x)).

The former in 2.25. The rule of "introduction of Z) in antecedent" means

the fact that

F->6^M(A) and m(B)aM(A->A) imply m{AZ)B)(zM(F, d->6, A);

hence, by Theorem 4.1,

m(/lD5)cM(A)*ffl(B).

The latter in 2.25. The rule of "introduction of Z> in succedent" means

the fact that

A, F->6^M(B) implies F-+ B^M(AZDB).

On the other hand, F->0<^m(A)* M(B) implies

A,F-> 6^m(A)r＼(m(A) * M(B))cM(B).

Therefore

F^0^m(A)*M(B) implies F -> 6<=M(AZ)B);

hence

m(A)*M(B)<zM(AZ)B).

4.3. Proof of cut-elimination theorem.

Theorem 4.4(Cut-EliminationTheorem). // a sequent A-+B is provable

thenit is cut-freeprovable.
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Proof. Let A-+B be a provable sequent. Then,

and by help of Definition 4.2, Theorems 4.1, 4.2,4.3

we have

m(A)czM(B)=M(-^B);
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by Main Theorem (2.3)

and 2) of Definition 4.3,

hence, by 1) of the corollary of Definition 4.3, the sequent A ―>B is cut-free

orovable. a.e.d.
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