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INNER DERIVATIONS OF HIGHER ORDERS

By

Andrzej Nowicki

Summary. We define inner derivations of higher order of a ring R

and we prove that they correspond to the inner automorphisms of a

suitable ring. Moreover, we prove that any higher derivation of R

is inner if and only if any usual derivation of R is inner.

I.

Let R be a ring with identity and let S be a segment of N―{0, 1, 2, ･･･},

that is, S=N or S= {0, 1, ･･-,s} for some s^O.

A family d={dn)n<=s of mappings dn : R―>R is called a derivation of order s

of R (where s=supS^oo) if the following properties are satisfied:

(1) dn(a+b)=dn(a)+dn(b),

(2) dn(ab)= S dMdjib),

i+j=n

(3) do=idR.

The set of derivations of order s of R, denoted by DS(R), is the group under

the multiplication * defined by the formula

{d*d')n= S di-d'j,
i+j=n

where d, d'^Ds{R) and neS ([1], [5], [7]).

It is easy to prove the following two lemmas.

Lemma 1.1. Let aei?, do―tdR, and

dn(x)=anx--an~1xa=--an~1(ax-~xa)

for n^l, x<=R. Then d = (dn)n^s belongs to DS(R).

Lemma 1.2. Let d<EDs(R), k^S＼{0＼ and let d=(dn)nf=s be the family of

mappings from R to R defined by

( 0, */ k＼n,

[ dr, if n=rk.
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Then d^DJR).
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The derivation d from Lemma 1.1 will be denoted by [a, 1] and the deri-

vation <5from Lemma 1.2, for d=[a, 1], will be denoted by [a, k~＼.Therefore,

for flEi?,£eS＼{0}, x<=R, neS:

[a, &]n(x)=-

X

0

arx ― ar~lxa

if n=0,

if ktn,

if n^O and n―kr

Let a = (an)nf=sbe a sequence in R. Denote by A(a) the element in DS(R)

defined by

Ma)n=([alf 1] * [a2,2] * ･･･* ＼_an,n])≫.

For example

A(a)1(x)=a1x―xa1

A(a)2(x)―alx-~a1xa1-＼-a2x―xa2

A(a)z(x)=a＼x―a＼x(iiJra1a2xJrxa2a1―a1xa2―a2xa1-＼-azx―xaz

A{a)^x)―a＼x―a＼xalAra＼x―a2xa2-＼-a＼a2x―a＼xa2―aiatxax

~＼-a1xa2a1-＼-a1a3x―aixa3―a^xai^xazax-＼-aiX―xa4.

Definition 1.3. Let d^Ds(R). If there exists a sequence a=(an)nBS of

elements of R such that d=A(a) then d is called an inner derivation of order

s of R.

II.

Denote by T the additive group of the product of s+1 copies of R. The

element (an)n<=swill be always denoted by a. We define a multiplicationon T

as follows :

ab=c, where cn= 2 o-ibj
i+j=n

T is a ring with identity (1, 0, 0, ･･･)([7], [8]). Notice that an element a is

invertible in T iff a0 is invertible in R.

For any &eS, let izk denote the &-th projection from T to R. If a^R then

jk(o), Pk(a) and qk{a) (where &<=S, /eS＼{0}) denote the elements of T defined

by the following conditions:

1Cnjk(a) =
r for n =£k,

for n ― k.

f o, if Un,

if n = rl,
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7cnqi(a)―

1, for n― 0,

0, for n^l, ni-l,

a, for n = l.
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Let Tk (for &eS＼{0}) denote the set of elements a in T such that ao=l and

<Zi=0 for z=l, 2, ･･･,&, and let To be the set of elements a in T such that ao=l-

Observe that g *(a)=lr+;*(≪), and every element in Tk is of the form

l+/n+i(l)a> for some ≪eT.

It is easy to verify the following

Lemma 2.1. Let k<=S, ckeR.

(1) // a,b^Tk then ah, a~l^Tk.

(2) pk(flY*=qh{-a).

(3) // 6eT0 then bpk{―bkY―o,, where an=bn for n=0, 1, ･･･,k―1, and

ak=0.

Now we prove two lemmas.

Lemma 2.2. Let 6eT0. Then there exists an element a in To such that

bpi(fli)pi(at)■■■pk(ak)(=Tk, for any &eS＼{0}.

Proof. Let ax=―bx. Then, by Lemma 2.1(3),we have bpM^^T^ Sup-

pose that elements au ■■■,an satisfythe condition

≫(≫)=ft/>1(a1)-/)*(flJk)eT*

for k= l, 2,･･･,n.

Put an+1=-7:n+1(vin)).Then

by Lemma 2.1(3).

V
(re+ l) _ j.

(n)pn+i(an+1)

=bpi(a1) ･･■L+i(os+i)gT,+1

Lemma 2.3. Let a<ET0 Then there exists6gT0 such that

PMfiM ■■■Pk(ak)b^Tk

for any 6eS＼{0}.

Proof. Put &0=l and bn=itn(uin)),for n^l, where u{n)=qn{―an) ■■■qA―a^

Then bn=nn(ulk)) for any neS＼{0} and k^n. In fact, if k^n then
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7cn(u<k+≫)= xnW+jk+1(-ak+1)u^)

Therefore, if 6=(&JB&S then Kt(b―u{k))=0 for i=Q, 1, ― , k. So 6=m(*> +

jfe+i(l)i'(*),for some K(i)eT, and, by Lemma 2.1, we have

pMptiflt) ･･･pk(ak)b=p1(a1) ■■■pk{ak)(qk{-ak) ■■■q^―a^jk+^v^)

= lr+JB+i(l)c,

for some ce.T. This completes the proof.

III.

If d<E.Ds(R) then exp(d) will denote the ring automorphism of T defined as

follows:

exp(d)(a)=6, where bn= 2 d,(a,) ([5], [7], [8]).

In [7] Ribenboim showed that the mapping exp is a group isomorphism from

DS(R) to the group BS(R) of such automorphisms h: T >T that /i(ji(l))=7i(l),

Tcohjo^=tdR. If h^Bs(R) then the derivation d=(dn)neS, where dn(x)= 7:nhj()(x)

for xei?, satisfiesthe condition h―exp(d) ([7]).

For any ≪eT0 denote by <a> the inner automorphism of T defined by

<≪>(x)=a"1xa. Observe that <≪> belongs to BS(R).

Lemma 3.1. (1) If af=R, k^S＼{0} then exp([a, £])=<tf*(-a)>.

(2) Let asTj. // d=(dn)n<=s is an element of DS{R) such that exp(rf)=<a>

then dx=d%= ■･･dk=0.

Proof. (1) If d^Ds(R) satisfiesexp(d)=<g*(―a)> then

dn(x) = Kn<.qi,(―a)>j0(x)

--r=7inqk(―a)~1jo(x)qk(―a)

= 7znpk(a)jo(x)(lT+jk(--a)), for n^S.

Hence dn(x)=Q if k J(n, and dn(x)=arx―ar~lxa if n―kr. Therefore d―[_a,k~＼.

(2) It follows from Lemma 2.1(1) since dn=7Tn(a')ja.

Now we are ready to prove the following

Theorem 3.2. Let d<=Ds(R). Then d is inner iff there exists 6eT0 such
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that exp(J)= <5>.

Proof. Let d―A.{a), where ceeT0, and let b be as in Lemma 2.3. More-

over, let 8 ―(<5n)neSbe the unique derivation satisfying exp(<5)= <6>. We show

that 8=d.

Let neS＼{0}. It follows from Lemmas 2.3, 2.1 that

b--=qn(-au)-q1(-a1)v^,

where v(n)is an element of Tn.

Therefore, if F^exp"1 then

d=F<.b>^F<oin>> * Fiq^-aiy> * ･･･* F<qn(-an)> ,

and, by Lemma 3.1,

Conversely, let 6eT0, <i--=exp'1≪6≫and let ≪ be such as in Lemma 2.2.

We show that d=A(a).

Let neS＼{0}. It follows from Lemmas 2.2, 2.1 that

b^v'n)qn{~-an)-ql{-al),

where dw£Tw and hence

d=F<.b>=F<q1(-a1)> * ■■■* F<qn(-an)> * F<u(B)> ,

where F―exp"1.

Therefore, by Lemma 3.1, we have

dn=([au 1] * ･･･*[≪,, n＼)n
i

e. d=A(a)

Corollary 3.3, The set of inner derivations of order s of K is a normal

subgroup of DS(R).

IV.

Recall that the usual (classical)derivation of R is the additive mapping

o:R-^>R such that 8(ab)―d(a)b+ad(b), for all elements a, beR. The set of usual

derivations of R corresponds bijectively,in the natural way, to the set D^R).

Evidently a usual derivation is innner iffthere exists an element aei? such that

3(x)=ax ―xa for any xg£

It is easy to see that

Lemma 4.1. Let d, d'eDt(R). If dt=di for i=0, 1,･■･,n<s then dn+l―d'n+1
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is a usual derivation.

Now we can prove

Theorem 4.2. // every classical derivation of R is inner then so is every

derivation of order s of R.

Proof. Let d^Ds{R). We must construct an element a^T such that

d=A(a).

Since dx is a classical derivation then there exists ax^R such that dx{x)―

a1x―xa1, for any xei?. So we have di,―＼au1].

Let d'z=[alt 1]2. Then (!#, rf^ d'2)and (1≪,rfa,rf2) are derivations of order 2

and hence, by Lemma 4.1, there exists c2ei? such that d2(x)~d'z(x)+a2x-~xa2

for any ig]?. Therefore,

dt=d's+[at, 2]2=[fla, l]2+[fl2, 2]2

=([a3, l]*[a8, 2])2.

Next let dj=([ai, 1] * [a2, 2])3 Since (1A rfj,rf2,dj), (1≪,dlt d2) d3) are deri-

vations of order 3 then, by Lemma 4.1, dz(x)=d's(x)+asx ―xa3 for some as^R.

So we have

ds=d'a+[aa, 3] s

= ([<*!,I]*[fl2, 2])s + [flS,3]8

=([fli, 1] * [a2, 2] * [a8, 3])8

and so on.

The assumption of the above theorem is satisfied for a large class of rings

(see for example [3], [4], [2]).

V.

We end this paper with the following three remarks.

Remark 5.1. Let aei?. If d=[a, I]"1 then dn(x)=xan―axan~＼ for n2i＼,

Remark 5.2. Let aei?. Let d=(dn)n(ES be the family of mappings from R

to R defined by

do(x)=x

d1(x)=ax ―xa
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dn(x)=anx + x(-a)n+2n'Zan-kx(―a)k, for w^2.
k=i

Then d$Ds(R) (in general) but 8=(2dn)nGS is an inner derivation of order s of

R. Namely, 8= [a, 1] * [-a, I]-1.

Remark 5.3. Let d^Ds(R). Suppose that there exists an element a^R

such that dn―an~1d1 for any neS＼{0}. If the set dt(R) contains a regular ele-

ment then d=[a, 11.
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