INNER DERIVATIONS OF HIGHER ORDERS

By

Andrzej Nowicki

Summary. We define inner derivations of higher order of a ring R and we prove that they correspond to the inner automorphisms of a suitable ring. Moreover, we prove that any higher derivation of R is inner if and only if any usual derivation of R is inner.

I.

Let R be a ring with identity and let S be a segment of $N=\{0, 1, 2, \dots\}$, that is, S=N or $S=\{0, 1, \dots, s\}$ for some $s\geq 0$.

A family $d=(d_n)_{n\in S}$ of mappings $d_n: R\to R$ is called a *derivation of order s* of R (where $s=\sup S\leq \infty$) if the following properties are satisfied:

- (1) $d_n(a+b) = d_n(a) + d_n(b)$,
- (2) $d_n(ab) = \sum_{i=1, j=n} d_i(a)d_j(b),$
- (3) $d_0 = id_R$.

The set of derivations of order s of R, denoted by $D_s(R)$, is the group under the multiplication * defined by the formula

$$(d*d')_n = \sum_{i+j=n} d_i \circ d'_j,$$

where $d, d' \in D_s(R)$ and $n \in S$ ([1], [5], [7]).

It is easy to prove the following two lemmas.

LEMMA 1.1. Let $a \in R$, $d_0 = id_R$, and

$$d_n(x) = a^n x - a^{n-1} x a = a^{n-1} (ax - xa)$$

for $n \ge 1$, $x \in R$. Then $d = (d_n)_{n \in S}$ belongs to $D_s(R)$.

LEMMA 1.2. Let $d \in D_s(R)$, $k \in S \setminus \{0\}$ and let $\delta = (\delta_n)_{n \in S}$ be the family of mappings from R to R defined by

$$\delta_n = \begin{cases} 0, & \text{if } k \nmid n, \\ d_r, & \text{if } n = rk. \end{cases}$$

Then $\delta \in D_s(R)$.

The derivation d from Lemma 1.1 will be denoted by [a, 1] and the derivation δ from Lemma 1.2, for d=[a, 1], will be denoted by [a, k]. Therefore, for $a \in R$, $k \in S \setminus \{0\}$, $x \in R$, $n \in S$:

$$[a, k]_n(x) = \begin{cases} x & , & \text{if } n = 0, \\ 0 & , & \text{if } k \nmid n, \\ a^r x - a^{r-1} x a, & \text{if } n \neq 0 \text{ and } n = kr. \end{cases}$$

Let $a = (a_n)_{n \in S}$ be a sequence in R. Denote by $\Delta(a)$ the element in $D_s(R)$ defined by

$$\Delta(\boldsymbol{a})_n = ([a_1, 1] * [a_2, 2] * \cdots * [a_n, n])_n$$
.

For example

$$\begin{split} &\Delta(\boldsymbol{a})_1(x)\!=\!a_1x\!-\!xa_1\\ &\Delta(\boldsymbol{a})_2(x)\!=\!a_1^2x\!-\!a_1xa_1\!+\!a_2x\!-\!xa_2\\ &\Delta(\boldsymbol{a})_3(x)\!=\!a_1^3x\!-\!a_1^2xa_1\!+\!a_1a_2x\!+\!xa_2a_1\!-\!a_1xa_2\!-\!a_2xa_1\!+\!a_3x\!-\!xa_3\\ &\Delta(\boldsymbol{a})_4(x)\!=\!a_1^4x\!-\!a_1^3xa_1\!+\!a_2^2x\!-\!a_2xa_2\!+\!a_1^2a_2x\!-\!a_1^2xa_2\!-\!a_1a_2xa_1\\ &+a_1xa_2a_1\!+\!a_1a_3x\!-\!a_1xa_3\!-\!a_3xa_1\!+\!xa_3a_1\!+\!a_4x\!-\!xa_4\,. \end{split}$$

DEFINITION 1.3. Let $d \in D_s(R)$. If there exists a sequence $\mathbf{a} = (a_n)_{n \in S}$ of elements of R such that $d = \Delta(\mathbf{a})$ then d is called an *inner derivation of order* s of R.

II.

Denote by T the additive group of the product of s+1 copies of R. The element $(a_n)_{n\in S}$ will be always denoted by a. We define a multiplication on T as follows:

$$ab=c$$
, where $c_n = \sum_{i+j=n} a_i b_j$.

T is a ring with identity $(1, 0, 0, \cdots)$ ([7], [8]). Notice that an element α is invertible in T iff a_0 is invertible in R.

For any $k \in S$, let π_k denote the k-th projection from T to R. If $a \in R$ then $j_k(a)$, $p_k(a)$ and $q_k(a)$ (where $k \in S$, $l \in S \setminus \{0\}$) denote the elements of T defined by the following conditions:

$$\pi_n j_k(a) = \begin{cases} 0, & \text{for } n \neq k, \\ a, & \text{for } n = k, \end{cases}$$
 $\pi_n p_l(a) = \begin{cases} 0, & \text{if } l \nmid n, \\ a^r, & \text{if } n = rl, \end{cases}$

$$\pi_n q_l(a) = \left\{ egin{array}{ll} 1 \,, & ext{for} & n = 0, \ 0 \,, & ext{for} & n \geq 1, & n \neq l, \ a \,, & ext{for} & n = l. \end{array}
ight.$$

Let T_k (for $k \in S \setminus \{0\}$) denote the set of elements a in T such that $a_0=1$ and $a_i=0$ for $i=1, 2, \dots, k$, and let T_0 be the set of elements a in T such that $a_0=1$.

Observe that $q_k(a)=1_T+j_k(a)$, and every element in T_k is of the form $1+j_{n+1}(1)a$, for some $a \in T$.

It is easy to verify the following

LEMMA 2.1. Let $k \in S$, $a \in R$.

- (1) If $a, b \in T_k$ then $ab, a^{-1} \in T_k$.
- (2) $p_k(a)^{-1} = q_k(-a)$.
- (3) If $\mathbf{b} \in T_0$ then $\mathbf{b}p_k(-b_k) = \mathbf{a}$, where $a_n = b_n$ for $n = 0, 1, \dots, k-1$, and $a_k = 0$.

Now we prove two lemmas.

LEMMA 2.2. Let $b \in T_0$. Then there exists an element a in T_0 such that $bp_1(a_1)p_2(a_2) \cdots p_k(a_k) \in T_k$, for any $k \in S \setminus \{0\}$.

PROOF. Let $a_1 = -b_1$. Then, by Lemma 2.1(3), we have $bp_1(a_1) \in T_1$. Suppose that elements a_1, \dots, a_n satisfy the condition

$$\boldsymbol{v}^{(k)} = \boldsymbol{b} p_1(a_1) \cdots p_k(a_k) \in T_k$$

for $k=1, 2, \dots, n$.

Put $a_{n+1} = -\pi_{n+1}(v^{(n)})$. Then

$$v^{(n+1)} = v^{(n)} p_{n+1}(a_{n+1})$$

= $b p_1(a_1) \cdots p_{n+1}(a_{n+1}) \in T_{n+1}$

by Lemma 2.1(3).

LEMMA 2.3. Let $a \in T_0$ Then there exists $b \in T_0$ such that

$$p_1(a_1)p_2(a_2)\cdots p_k(a_k)\boldsymbol{b} \in T_k$$

for any $k \in S \setminus \{0\}$.

PROOF. Put $b_0=1$ and $b_n=\pi_n(\boldsymbol{u}^{(n)})$, for $n\geq 1$, where $\boldsymbol{u}^{(n)}=q_n(-a_n)\cdots q_1(-a_1)$.

Then $b_n = \pi_n(\boldsymbol{u}^{(k)})$ for any $n \in S \setminus \{0\}$ and $k \ge n$. In fact, if $k \ge n$ then

$$\pi_{n}(\boldsymbol{u}^{(k+1)}) = \pi_{n}(\boldsymbol{u}^{(k)} + j_{k+1}(-a_{k+1})\boldsymbol{u}^{(k)})$$

$$= \pi_{n}(\boldsymbol{u}^{(k)}) + \pi_{n}(j_{k+1}(-a_{k+1})\boldsymbol{u}^{(k)})$$

$$= \pi_{n}(\boldsymbol{u}^{(k)}).$$

Therefore, if $b=(b_n)_{n\in S}$ then $\pi_i(b-u^{(k)})=0$ for $i=0, 1, \dots, k$. So $b=u^{(k)}+j_{k+1}(1)v^{(k)}$, for some $v^{(k)}\in T$, and, by Lemma 2.1, we have

$$p_1(a_1)p_2(a_2)\cdots p_k(a_k)b = p_1(a_1)\cdots p_k(a_k)(q_k(-a_k)\cdots q_1(-a_1)+j_{k+1}(1)v^{(k)})$$

=1_T+j_{n+1}(1)c,

for some $c \in T$. This completes the proof.

III.

If $d \in D_s(R)$ then $\exp(d)$ will denote the ring automorphism of T defined as follows:

$$\exp(d)(a) = b$$
, where $b_n = \sum_{i+j=n} d_i(a_j)$ ([5], [7], [8]).

In [7] Ribenboim showed that the mapping exp is a group isomorphism from $D_s(R)$ to the group $B_s(R)$ of such automorphisms $h: T \to T$ that $h(j_1(1)) = j_1(1)$, $\pi_0 h j_0 = id_R$. If $h \in B_s(R)$ then the derivation $d = (d_n)_{n \in S}$, where $d_n(x) = \pi_n h j_0(x)$ for $x \in R$, satisfies the condition $h = \exp(d)$ ([7]).

For any $a \in T_0$ denote by $\langle a \rangle$ the inner automorphism of T defined by $\langle a \rangle(x) = a^{-1}xa$. Observe that $\langle a \rangle$ belongs to $B_s(R)$.

LEMMA 3.1. (1) If $a \in \mathbb{R}$, $k \in \mathbb{S} \setminus \{0\}$ then $\exp([a, k]) = \langle q_k(-a) \rangle$.

(2) Let $a \in T_k$. If $d = (d_n)_{n \in S}$ is an element of $D_s(R)$ such that $\exp(d) = \langle a \rangle$, then $d_1 = d_2 = \cdots d_k = 0$.

PROOF. (1) If $d \in D_s(R)$ satisfies $\exp(d) = \langle q_k(-a) \rangle$ then

$$\begin{split} d_n(x) &= \pi_n \langle q_k(-a) \rangle j_0(x) \\ &= \pi_n q_k(-a)^{-1} j_0(x) q_k(-a) \\ &= \pi_n p_k(a) j_0(x) (1_T + j_k(-a)) \;, \qquad \text{for} \quad n \in S. \end{split}$$

Hence $d_n(x)=0$ if $k \nmid n$, and $d_n(x)=a^rx-a^{r-1}xa$ if n=kr. Therefore d=[a, k].

(2) It follows from Lemma 2.1(1) since $d_n = \pi_n \langle a \rangle j_0$.

Now we are ready to prove the following

THEOREM 3.2. Let $d \in D_s(R)$. Then d is inner iff there exists $b \in T_0$ such

that $\exp(d) = \langle \boldsymbol{b} \rangle$.

PROOF. Let $d = \Delta(a)$, where $a \in T_0$, and let b be as in Lemma 2.3. Moreover, let $\delta = (\delta_n)_{n \in S}$ be the unique derivation satisfying $\exp(\delta) = \langle b \rangle$. We show that $\delta = d$.

Let $n \in S \setminus \{0\}$. It follows from Lemmas 2.3, 2.1 that

$$b = q_n(-a_n) \cdots q_1(-a_1)v^{(n)},$$

where $v^{(n)}$ is an element of T_n .

Therefore, if $F = \exp^{-1}$ then

$$\delta = F\langle b \rangle = F\langle v^{(n)} \rangle * F\langle q_1(-a_1) \rangle * \cdots * F\langle q_n(-a_n) \rangle$$
,

and, by Lemma 3.1,

$$\delta_n = ([a_1, 1] * \cdots * [a_n, n])_n = d_n.$$

Conversely, let $b \in T_0$, $d = \exp^{-1}(\langle b \rangle)$ and let a be such as in Lemma 2.2. We show that $d = \Delta(a)$.

Let $n \in S \setminus \{0\}$. It follows from Lemmas 2.2, 2.1 that

$$b = v^{(n)} q_n(-a_n) \cdots q_1(-a_1)$$
,

where $v^{(n)} \in T_n$, and hence

$$d=F\langle \boldsymbol{b}\rangle = F\langle q_1(-a_1)\rangle * \cdots * F\langle q_n(-a_n)\rangle * F\langle \boldsymbol{v}^{(n)}\rangle$$

where $F = \exp^{-1}$.

Therefore, by Lemma 3.1, we have

$$d_n = (\lceil a_1, 1 \rceil * \cdots * \lceil a_n, n \rceil)_n$$
 i.e. $d = \Delta(a)$.

COROLLARY 3.3. The set of inner derivations of order s of R is a normal subgroup of $D_s(R)$.

IV.

Recall that the usual (classical) derivation of R is the additive mapping $\delta: R \rightarrow R$ such that $\delta(ab) = \delta(a)b + a\delta(b)$, for all elements $a, b \in R$. The set of usual derivations of R corresponds bijectively, in the natural way, to the set $D_1(R)$. Evidently a usual derivation is innner iff there exists an element $a \in R$ such that $\delta(x) = ax - xa$ for any $x \in R$.

It is easy to see that

LEMMA 4.1. Let d, $d' \in D_s(R)$. If $d_i = d'_i$ for $i = 0, 1, \dots, n < s$ then $d_{n+1} - d'_{n+1}$

is a usual derivation.

Now we can prove

Theorem 4.2. If every classical derivation of R is inner then so is every derivation of order s of R.

PROOF. Let $d \in D_s(R)$. We must construct an element $a \in T$ such that $d=\Delta(a)$.

Since d_1 is a classical derivation then there exists $a_1 \in R$ such that $d_1(x) = a_1x - xa_1$, for any $x \in R$. So we have $d_1 = [a_1, 1]$.

Let $d_2'=[a_1, 1]_2$. Then $(1_R, d_1, d_2')$ and $(1_R, d_1, d_2)$ are derivations of order 2 and hence, by Lemma 4.1, there exists $a_2 \in R$ such that $d_2(x)=d_2'(x)+a_2x-xa_2$ for any $x \in R$. Therefore,

$$d_2 = d'_2 + [a_2, 2]_2 = [a_1, 1]_2 + [a_2, 2]_2$$

= $([a_1, 1] * [a_2, 2])_2$.

Next let $d_3' = ([a_1, 1] * [a_2, 2])_3$ Since $(1_R, d_1, d_2, d_3')$, $(1_R, d_1, d_2, d_3)$ are derivations of order 3 then, by Lemma 4.1, $d_3(x) = d_3'(x) + a_3x - xa_3$ for some $a_3 \in R$. So we have

$$d_3 = d'_3 + [a_3, 3]_3$$

=([a₁, 1] * [a₂, 2])₃+[a₃, 3]₃
=([a₁, 1] * [a₂, 2] * [a₃, 3])₃

and so on.

The assumption of the above theorem is satisfied for a large class of rings (see for example [3], [4], [2]).

V.

We end this paper with the following three remarks.

REMARK 5.1. Let $a \in R$. If $d=[a, 1]^{-1}$ then $d_n(x)=xa^n-axa^{n-1}$, for $n \ge 1$, $x \in R$.

REMARK 5.2. Let $a \in R$. Let $d = (d_n)_{n \in S}$ be the family of mappings from R to R defined by

$$d_0(x) = x$$

$$d_1(x)=ax-xa$$

$$d_n(x) = a^n x + x(-a)^n + 2 \sum_{k=1}^{n-1} a^{n-k} x(-a)^k$$
, for $n \ge 2$.

Then $d \in D_s(R)$ (in general) but $\delta = (2d_n)_{n \in S}$ is an inner derivation of order s of R. Namely, $\delta = [a, 1] * [-a, 1]^{-1}$.

REMARK 5.3. Let $d \in D_s(R)$. Suppose that there exists an element $a \in R$ such that $d_n = a^{n-1}d_1$ for any $n \in S \setminus \{0\}$. If the set $d_1(R)$ contains a regular element then d = [a, 1].

References

- [1] Matsumura, H., Integrable derivations. Nagoya Math. J., 87 (1982), 227-245.
- [2] Miles, P., Derivations on B^* algebras. Pacific J. Math., 14 (1964), 1359-1366.
- [3] Miller, J.B., Homomorphisms, higher derivations, and derivations of associative algebras. Acta Sci. Math., 28 (1967), 221-232.
- [4] Nowicki, A., Derivations of special subrings of matrix rings and regular graphs, Tsukuba J. Math., 7 (1983), 281-297.
- [5] Ribenboim, P., Algebraic theory of higher-order derivations. Transactions of the Royal Society of Canada, 7 (1969), 279-287.
- [6] —, Higher derivations of rings I. Rev. Roum. Pures Appl., 16 (1971), 77-110.
- [7] —, Higher derivations of rings II. Rev. Roum. Pures Appl., 16 (1971), 245-272.
- [8] Sato, S., On the kernel of a higher derivation, Research Bulletin of Education Oita University, 4 (1971), 1-2.

Institute of Mathematics, N. Copernicous University, Toruń 87–100, ul. Chopina 12/18, Poland.