ON LORENTZ MANIFOLDS WITH ABUNDANT ISOMETRIES

By
Hiroo Matsuda

0 . Introduction.

Let M be an n-dimensional Lorentz manifold with metric \langle,$\rangle of signature$ $(-,+, \cdots,+)$. Then there is no r-dimensional isometry group whose isotropy subgroup at every point is compact for $n(n-1) / 2+1<r \leqq n(n+1) 2$ (c.f., [5], Proposition). In [6], we determined n-dimensional Lorentz manifolds M which admit an $n(n-1) / 2+1$-dimensional isometry group with compact isotropy subgroup at every point for $n \geqq 4$.

The first purpose of this note is to determine simply connected M admitting an $n(n-1) / 2$-dimensional isometry group with compact isotropy subgroup at every point for $n \geqq 4$ (see $\S 2$). We will prove the following Theorem A.

Theorem A. Let $(M,\langle\rangle$,$) be a simply connected n$-dimensional Lorentz manifold admitting a connected $n(n-1) / 2$-dimensional isometry group with compact isotropy subgroup at every point in $M(n \geqq 4)$. Then M is isometric to the warped product manifold ($\left.I \times N,-d t^{2}+\phi(t) d s_{N}^{2}\right)$ where I is an open interval and N is the simply connected ($n-1$)-dimensional Riemannian manifold with metric $d s_{N}^{2}$ of constant curvature and $\phi(t)$ is a positive function on I.

For isometry groups whose dimension are less than $n(n-1) / 2$, we will have the following proposition in $\S 1$.

Proposition 1.1. If $n \geqq 6$, there is no r-dimensional isometry group with compact isotropy subgroup at every point for $(n-1)(n-2) / 2+3 \leqq r \leqq n(n-1) / 2-1$.

In view of Proposition 1.1, it is natural to ask which Lorentz manifold of dimension n admits an $(n-1)(n-2) / 2+2$-dimensional isometry group with compact isotropy subgroup. The second purpose of this note is to determine simply connected manifold M admitting an isometry group of dimension $(n-1)(n-2) / 2+2$ with compact isotropy subgroup at every point (see $\S 3$). We will prove the following Theorem B.

[^0]Theorem B. Let $(M,\langle\rangle$,$) be a simply connected n$-dimensional Lorentz manifold adimitting a connected ($n-1)(n-2) / 2+2$-dimensional isomery group with compact isotropy subgroup at every point ($n \geqq 6$). Then (M,\langle,$\rangle) must be one$ of the following:
(1) $\left(\boldsymbol{L}^{2} \times V^{n-1}, d s_{L}^{2}+d s_{V}^{2}\right)$;
(2) $\left(\boldsymbol{L}^{2} \times \boldsymbol{E}^{n-1},-d t^{2}+d s^{2}+\exp \left(-2 c_{0} t-2 c_{1} s\right) d s_{\boldsymbol{E}}^{2}\right)\left(c_{0}\right.$ and c_{1} are some constants such that $c_{0} \neq 0$ or $c_{1} \neq 0$);
(3) $\left(U^{2} \times V^{n-2}, d s_{0}^{2}+d s_{V}^{2}\right)$;
(4) $\left(U^{2} \times \boldsymbol{E}^{n-2}, d s_{0}^{2}+f^{2} d s_{E}^{2}\right)\left(f=y^{-c_{2}}, c_{2}\right.$ is a non-zero constant $)$;
(5) $\left(U^{2} \times V^{n-2}, d s_{k}^{2} / \alpha^{2}+d s_{V}^{2}\right)(\alpha$ is a non-zero constant);
(6) $\left(U^{2} \times \boldsymbol{E}^{n-2}, d s_{\kappa}^{2} / \beta^{2}+h^{2} d s_{E}^{2}\right)\left(h=(\beta y)^{-c_{3}}, c_{3}\right.$ and β are non-zero constants);

If $n=9$, then the following additional case is possible:
(7) $\left(\boldsymbol{R} \times \boldsymbol{E}^{8},-d t^{2}+\exp \left(-2 c_{4} t\right) d s_{\boldsymbol{E}}^{2}\right)\left(c_{4}>0: ~ a ~ c o n s t a n t\right)$.

Here ($\boldsymbol{L}^{2}, d s_{L}^{2}$) is the 2 -dimensional Minkowski space, ($\boldsymbol{E}^{m}, d s_{\boldsymbol{E}}^{2}$) the m dimensional Euclidean space and ($V^{n-2}, d s_{V}^{2}$) the simply connected ($n-2$)dimensional Riemannian space of constant curvature. Further, $\left(U^{2}, d s_{k}^{2}\right)$ is the upper half-space $U^{2}=\{(x, y) ; y>0\}$ with metric $-2 d x d y / y^{2}$ (when $\kappa=0$) $\kappa\left(d x^{2}-d y^{2}\right) / y^{2}($ when $\kappa=1$ or -1$)$.

REMARK 0.1. The space (6) with $c_{3}=1$ is the upper half-space $U^{n}=$ $\left\{\left(x_{1}, \cdots, x_{n}\right) ; x_{n}>0\right\}$ with constant curvature 1 or -1 according to $\kappa=1$ or -1 respectively. The space (7) is isometric to the 9 -dimensional upper-half space with constant curvature c_{4}^{2} by the transformation

$$
\boldsymbol{R} \times \boldsymbol{E}^{8} \ni\left(t, x_{1}, \cdots, x_{8}\right) \longrightarrow\left(x_{1}, \cdots, x_{8}, e^{c_{4} t} / c_{4}\right) \in U^{9}
$$

For these spaces, see [4] and [8].
The space (4) with $c_{2}=1$ is the upper half-space with constant curvature 0 .
Throughout this note, we shall be in C^{∞}-category and manifolds shall be connected, unless otherwise stated.

1. Preliminaries.

Let $(M,\langle\rangle$,$) be an n$-dimensional Lorentz manifold with metric \langle,$\rangle of$ signature $(-,+, \cdots,+)$. Let G be a connected isometry group of $(M,\langle\rangle),, H_{0}$ the isotropy subgroup of G at a point $o \in M$ and $G(o)$ the G-orbit of o. Then the linear isotropy subgroup $\tilde{H}_{o}=\left\{d h ; h \in H_{o}\right\}$ acting on $T_{o} M$ is a closed subgroup of $O(1, n-1)=\left\{A \in G L(n, \boldsymbol{R}) ;{ }^{t} A S A=S\right\}$, where S is the matrix

$$
\left[\begin{array}{cccc}
-1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]
$$

If H_{o} is compact, \widetilde{H}_{o} is conjugate to a subgroup of $O(1) \times O(n-1)$ (c. f., [10, p. 335]).

Lemma 1.2. If $\operatorname{dim} H_{o}=(n-1)(n-2) / 2$ and H_{o} is compact, then $\operatorname{dim} G(o) \leqq 1$ or $\geqq n-1$ for $n \geqq 3$.

Proof. Since \tilde{H}_{o} is compact and of dimension $(n-1)(n-2) / 2=\operatorname{dim}(O(1) \times$ $O(n-1)), \widetilde{H}_{o}$ contains the connected component $1 \times S O(n-1)$ of $O(1) \times O(n-1)$. Thus $T_{0} M$ is naturally decomposed into the direct sum of 1 -dimendional and ($n-1$)-dimensional subspaces which are \widetilde{H}_{0}-invariant and irreducible. On the other hand, $T_{o}(G(o))$ is also \widetilde{H}_{o}-invariant. Therefore we have $\operatorname{dim} T_{o}(G(o)) \leqq 1$ or $\geqq n-1$.

Proof of Proposition 1.1. Let G be a connected isometry group of dimension r. Assume that $(n-1)(n-2) / 2+3 \leqq r \leqq n(n-1) / 2-1$. Then, $\operatorname{dim} H_{0}=$ $\operatorname{dim} G-\operatorname{dim}\left(G / H_{0}\right)=\operatorname{dim} G-\operatorname{dim} G(0) \geqq(n-2)(n-3) / 2+1$. Since H_{0} is compact, we can regard \widetilde{H}_{o} as a subgroup of $O(1) \times O(n-1)$. If $n-1 \neq 4$, there is no k dimensional subgroup of $O(n-1)$ for $(n-2)(n-3) / 2<k<(n-1)(n-2) / 2$. Therefore $\operatorname{dim} H_{o}=(n-1)(n-2) / 2$ so that we have $3 \leqq \operatorname{dim} G(o) \leqq n-2$. This contradicts Lemma 1.2.

Remark 1.3. There exist 5 -dimensional Lorentz manifolds M admitting a $9(=(5-1)(5-2) / 2+3)$-dimensional isometry group G with compact isotropy subgroup. For example, let M be a product manifold $\boldsymbol{R} \times \boldsymbol{C}^{2}$ with metric $-d t^{2}+d s_{E}^{2}$ and $G=\boldsymbol{R} \times G^{\prime}$ where $d s_{E}^{2}$ is the Euclidean metric of \boldsymbol{C}^{2} and G^{\prime} is the matrix group consisting of all matrices of the form

$$
\left[\begin{array}{ll}
A & \tau \\
0 & 1
\end{array}\right], \text { where } A \in U(2), \tau \in \boldsymbol{C}^{2}
$$

Then $\operatorname{dim} G=9$ and the isotropy subgroup at the origin is $U(2)$ which is compact.

2. The case where $\operatorname{dim} G=n(n-1) / 2$.

Let G be a connected isometry group of dimension $n(n-1) / 2$ with compact isotropy subgroup H_{x} at every point $x \in M$. Then \tilde{H}_{x} is conjugate to a sub-
group of $O(1) \times O(n-1)$, so that we have $\operatorname{dim} H_{x} \leqq(n-1)(n-2) / 2$. On the other hand, $\operatorname{dim} H_{x} \geqq \operatorname{dim} G-\operatorname{dim} M=(n-1)(n-2) / 2-1$. Thus we have $\operatorname{dim} H_{x}=$ $(n-1)(n-2) / 2$ or $(n-1)(n-2) / 2-1$. For $n-1 \neq 4, O(n-1)$ contains no proper closed subgroup of dimension $>(n-2)(n-3) / 2$ other than $S O(n-1)$ (c.f., [2, p. 48]). Thus, when $n-1 \neq 4, \operatorname{dim} H_{x}=(n-1)(n-2) / 2$. For $n-1=4, O(n-1)$ contains no subgroups of dimension $5=(5-1)(5-2) / 2-1$ (c.f., [1, p. 347]). Thus, for $n \geqq 4$, we have $\operatorname{dim} H_{x}=(n-1)(n-2) / 2$, so \tilde{H}_{x} contains the connected component $1 \times S O(n-1)$ of $O(1) \times O(n-1)$. Therefore, $T_{x} M$ is naturally decomposed into the direct sum of 1-dimensional and ($n-1$)-dimensional subspaces which are \tilde{H}_{x}-invariant and irreducible. On the other hand, $T_{x}(G(x))$ is \tilde{H}_{x} invariant and of dimension $n-1$. Thus we have irreducible decomposision $T_{1}(x)+T_{x}(G(x))$ of $T_{x} M$ by the linear isotropy representation of H_{x} on $T_{x} M$. Since H_{x} is compact, the restriction η of the metric of M to $T_{x}(G(x))$ is positive definite, zero or negative definite by the Schur's lemma. Since $n-1 \geqq 3$, η must be positive definite. Therefore we have

Lemma 2.1. Each orbit $G(x)(x \in M)$ is a spacelike hypersurface.

Since \tilde{H}_{x} contains $1 \times S O(n-1)$, we have $\left\langle T_{1}(x), T_{x}(G(x))\right\rangle=0$ so that $T_{1}(x)$ is timelike. Let $\xi(x)$ be a unit timelike vector belonging to $T_{1}(x)$.

Lemma 2.2. If M is time-orientable, then the vector field $\xi(p):=d g(\xi(x))$ ($p=g x, g \in G$) is well-defned on $G(x)$ and G-invariant and it is extended to the vector field on M.

Proof. The first part of this Lemma is proved by the same method as the proof of Lemma 2 in [6]. Since M is time orientable, there exists a unit timelike vector field ζ on M. Then we can extend ξ on M so as to be $\langle\xi, \zeta\rangle\langle 0$.

From now on, we assume that M is time-orientable. We note that G acts effectively on $G(x)$. In fact, if $g \in G$ acts on $G(x)$ trivially, we have $d g \mid T_{x} G(x)$ $=i d$. and $d g(\xi(x))=\xi(x)$, so that $d g=i d$. on $T_{x} M=\boldsymbol{R}\{\xi(x)\}+T_{x} G(x)$. Therefore $g=i d$. on M. Furthermore we note that each G-orbit $G(x)$ is isometric to $\boldsymbol{E}^{n-1}, S^{n-1}, \boldsymbol{P}^{n-1}$ or \boldsymbol{H}^{n-1}, because the ($n-1$)-dimensional Riemannian manifold $G(x)$ admits an isometry group G of maximum dimension $n(n-1) / 2$.

Lemma 2.3. Each integral curve of ξ is a geodesic.

Proof. Let X be an arbitrary fixed non-zero vector in $T_{x} M$ such that $\langle\tilde{\xi}(x), X\rangle=0$. Since \widetilde{H}_{x} contains $1 \times S O(n-1)$ and $n-1 \geqq 3$, there exists $h \in H_{x}$
such that $d h(X)=-X$ and $d h(\xi(x))=\xi(x)$. We have $\left\langle\nabla_{\xi} \xi, X\right\rangle=\left\langle d h\left(\nabla_{\xi} \xi\right), d h(X)\right\rangle$ $=-\left\langle\nabla_{\xi} \xi, X\right\rangle$ so that we have $\left\langle\nabla_{\xi} \xi, X\right\rangle=0$. Since X is an arbitrary vector orthogonal to ξ and $\left\langle\nabla_{\xi} \xi, \xi\right\rangle=(1 / 2) \xi\langle\xi, \xi\rangle=0$, we have $\nabla_{\xi} \xi=0$. Thus each integral curve of ξ is a geodesic.

Lemma 2.4. $\nabla_{X} \xi=\lambda(\pi(X)) X$ for any X such that $\langle X, \xi\rangle=0$ where π is the natural projection of the tangent bundle: $T M \rightarrow M$ and λ is a function on M which is constant on each G-orbit.

The proof of Lemma 2.4 is similar to that of Lemma 8 in [6].
Lemma 2.5. The 1 -form ω defined by $\omega(X)=\langle X, \xi\rangle$ is closed.
Proof. The 1 -form ω is G-invariant and so $d \omega$ is G-invariant (especially, H_{x}-invariant). Since \widetilde{H}_{x} contains $1 \times S O(n-1)$ and the linear isotropy representation of H_{x} on $T_{x}(G(x))$ is irreducible, we have $d \omega=0$.

Proof of Theorem A. $\quad M$ is time-orientable, because M is simply connected. Since ω is a closed 1 -form from Lemma 2.5 , there exists a smooth function $f: M \rightarrow \boldsymbol{R}$ such that $d f=\omega$. Let $\gamma_{p}(t)$ be an integral curve of ξ such that $\gamma_{p}(0)=p$. Then we can see $f\left(\gamma_{p}(t)\right)=-t+f(p)$. We may assume that $f(M)$ is some open interval containing $0 \in \boldsymbol{R}$. Let N be a connected component of $f^{-1}(0)$. Then we have $N=G(o)$ for some $o \in N$. For each $x \in N$, let I_{x} be the domain of γ_{x}. Since ξ is G-invariant on $N=G(o)$, for any $p, q \in N$, we have $I_{p}=I_{q}$ which is denoted by I. Then the Theorem A will follow immediately from the next Lemma 2.6 and Lemma 2.7.

Lemma 2.6. The map $F: I \times N \rightarrow M$ defined by

$$
F(t, x)=\operatorname{Exp} t \xi(x)=\gamma_{x}(t)
$$

is a diffeomorphism.
Lemma 2.7. The map $F:\left(I \times N,-d t^{2}+\phi(t) d s_{N}^{2}\right) \rightarrow(M,\langle\rangle$,$) is an isometry,$ where the metric $d s_{N}^{2}$ on N induced from \langle,$\rangle and \boldsymbol{\phi}(t)=\exp 2\left(\int_{0}^{t} \lambda(s) d s\right)$.

The proof of Lemmas 2.6 and 2.7 is similar to that of Lemmas 5 and 9 in [6].
3. The case where $\operatorname{dim} G=(n-1)(n-2) / 2+2$.

We assume that $\operatorname{dim} G=(n-1)(n-2) / 2+2$ and H_{x} is compact for every point $x \in M$.

PROPOSITION 3.1. G acts transitively on M for $n \geqq 4$ and $n \neq 5$.
Proof. Assume that G does not act transitively on M. Then $\operatorname{dim} G(o) \leqq$ $n-1$ for some $o \in M$. Hence $\operatorname{dim} H_{o} \geqq \operatorname{dim} G-(n-1)=(n-2)(n-3) / 2+1$. By the same method as in the proof of Proposition 1.1, we can see that $\operatorname{dim} H_{o}=$ $(n-1)(n-2) / 2$. Hence $\operatorname{dim} G(o)=2$ which contradicts the Lemma 1.2.

Remark 3.2. In the Proposition 3.1, we cannot remove the condition that the isotropy subgroup at every point is compact. In fact, let M be the Lorentz manifold $\boldsymbol{R} \times N$ with metric $d t^{2}+d s_{N}^{2}$, where ($N, d s_{N}^{2}$) is the ($n-1$)-dimensional de-Sitter space and G be the group $\boldsymbol{R} \times G^{\prime}$ where G^{\prime} is the matrix group of the form

$$
\left[\begin{array}{ccc}
\left(1+a^{2}+|\chi|^{2}\right) /(2 a) & \chi & \left(1-a^{2}+|\chi|^{2}\right) /(2 a) \\
(1 / a) A^{\imath} \chi & A & (1 / a) A^{t} \chi \\
\left(1-a^{2}-|\chi|^{2}\right) /(2 a) & -\chi & \left(1+a^{2}-|\chi|^{2}\right) /(2 a)
\end{array}\right] \quad \begin{aligned}
& a>0, \chi \in \boldsymbol{R}^{n-2} \\
& A \in S O(n-2)
\end{aligned}
$$

G^{\prime} is the connected subgroup of the proper Lorentz group $\operatorname{SO}^{+}(1, n-1)$ acting on N (c.f. [7]). Then G is an $(n-1)(n-2) / 2+2$-dimensional isometry group which has noncompact isotropy subgroups and does not act on M transitively (see §4).

Remark 3.3. There exists a 5 -dimensional Lorentz manifold M aditting an $8(=(5-1)(5-2) / 2+2)$-dimensional isometry group G with compact isotropy subgroup such that G does not acts transitively on M. In fact, take the space in Remark 1.3 as M and set $G=1 \times G^{\prime}$ (G^{\prime} is the same as in Remark 1.3). Then G is not transitive on M.

From now on, we assume $n \geqq 6$. Set $H=H_{o}$ for some $o \in M$. By Proposition 3.1, we have $\operatorname{dim} H=(n-2)(n-3) / 2$. Since H is compact and connected, \tilde{H} is conjugate to a subgroup of $S O(1) \times S O(n-1)$ so that we can regard \widetilde{H} as an $(n-2)(n-3) / 2$-dimensional subgroup of $S O(n-1)$. In the case $n-1 \neq 8$, a ($n-2)(n-3) / 2$-dimensional subgroup \widetilde{H} of $S O(n-1)$ leaves one and only one 1 dimensional subspace of \boldsymbol{R}^{n-1} invariant. In the case $n-1=8$, we have either $\tilde{H}=S O(7)$ (which leaves one and only one 1 -dimensional subspace of \boldsymbol{R}^{8} invariant) or $\tilde{H}=\operatorname{Spin}(7)$ with spin representation (see Kobayoshi [2, p. 49]).

Let g and \mathfrak{G} be the Lie algebras of G and H respectively. By the use of an $A d(H)$-invariant positive definite inner product on g whose existence is guaranteed by the compactness of H, we have a decomposition $g=\mathfrak{h}+\mathfrak{m}$ (direct sum) of \mathfrak{g} such that $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$. Let $\pi: G \rightarrow G / H$ be the natural projection. We identify the tangent space $T_{o} M$ and \mathfrak{m} by $d \pi$. The Lorentz inner product on $T_{o} M$ induces the Lorentz inner product $\langle,\rangle_{\mathfrak{m}}$ on \mathfrak{m} so that $d \pi: \mathfrak{m} \rightarrow T_{o} M$ is a linear isometry. Then the linear isotropy group \tilde{H} acting on $T_{0} M$ corresponds to $\operatorname{Ad}(H)$ on \mathfrak{m} by means of $d \pi$. We note that the inner product $\langle,\rangle_{\mathfrak{m}}$ is $A d(H)$-invariant. We define the Lorentz inner product B on g so that

$$
B(\mathfrak{h}, \mathfrak{m})=0,\left.\quad B\right|_{\mathfrak{m}}=\langle,\rangle_{\mathfrak{m}}
$$

and $\left.B\right|_{\natural}$ is positive definite. We extend B to the G-left invariant Lorentz metric on G which is denoted by the same letter B. Then (G, B) is a Lorentz manifold and $\pi: G \rightarrow G / H=M$ is the semi-Riemannian submersion (for the definition of the semi-Riemannian submersion, see O'Neill [9, p. 212]).

The structure of g for $n-1 \neq 8$. We assume $n-1 \neq 8$. Since $\operatorname{Ad}(H)$ is compact and $\operatorname{dim} \operatorname{Ad}(H)=(n-2)(n-3) / 2, \operatorname{Ad}(H)$ acts on \mathfrak{m} as $I_{2} \times S O(n-2)$. Then \mathfrak{m} decomposes naturally into 2 -dimensional subspace \mathfrak{m}_{2} and ($n-2$). dimensional subspace \mathfrak{m}_{1} such that $\left.\operatorname{Ad}(H)\right|_{m_{2}}=i d$. and $\left.\operatorname{Ad}(H)\right|_{m_{1}}=S O(n-2)$. Using Schur's lemma, we have that \mathfrak{m}_{1} is spacelike. Furthermore, we have' $\left\langle\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\rangle_{\mathfrak{m}}=0$ so that \mathfrak{m}_{2} is timelike. Thus we have a decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_{1}+$ \mathfrak{m}_{2} such that

$$
\left[\mathfrak{h}, \mathfrak{m}_{1}\right] \subset \mathfrak{m}_{1}, \quad\left[\mathfrak{h}, \mathfrak{m}_{2}\right]=\{0\} .
$$

Lemma 3.4. $\left[\mathfrak{m}_{2}, \mathfrak{m}_{1}\right]$ is either $\{0\}$ or \mathfrak{m}_{1}. More precisely, there exists a linear map $L: \mathfrak{m}_{2} \rightarrow \boldsymbol{R}$ such that $[A, X]=L(A) X$ for any $A \in \mathfrak{m}_{2}$ and any $X \in \mathfrak{m}_{1}$. Here L is either zero or onto map.

Proof. For any fixed $A \in \mathfrak{m}_{2}$, we define a linear map $f_{A}: \mathfrak{m}_{1} \rightarrow g$ by $f_{A}(X)=[A, X]\left(X \in \mathfrak{m}_{1}\right)$. Let p_{0}, p_{1} and p_{2} be orthogonal projection from g to $\mathfrak{h}, \mathfrak{m}_{1}$ and \mathfrak{m}_{2} respectively. Since $\mathfrak{h}, \mathfrak{m}_{1}$ and \mathfrak{m}_{2} are $\operatorname{Ad}(H)$-invariant and $\operatorname{Ad}(h) f_{A}$ $=f_{A} A d(h)$ for any $h \in H$, we have

$$
\begin{equation*}
p_{i} f_{A} A d(h)=A d(h) p_{i} f_{A} \quad \text { for any } \quad h \in H(i=0,1,2) \tag{*}
\end{equation*}
$$

Step 1. We claim $\left[\mathfrak{m}_{2}, \mathfrak{m}_{1}\right] \subset \mathfrak{h}+\mathfrak{m}_{1}$. Since $\operatorname{Ker}\left(p_{2} f_{4}\right)$ is $\operatorname{Ad}(H)$-invariant by (*) and the adjoint representation of H on \mathfrak{m}_{1} is irreducible, we have $\operatorname{Ker}\left(p_{2} f_{A}\right)$ $=\{0\}$ or \mathfrak{m}_{1}. Suppose $\operatorname{Ker}\left(p_{2} f_{A}\right)=\{0\}$ for some $A \in \mathfrak{m}_{2}$. Then $p_{2} f_{A}: \mathfrak{m}_{1} \rightarrow \mathfrak{m}_{2}$ is injective so that $\operatorname{dim} \operatorname{Im}\left(p_{2} f_{A}\right)=n-2>2=\operatorname{dim} \mathfrak{m}_{2}$. Hence we have $\operatorname{Ker}\left(p_{2} f_{A}\right)=\mathfrak{m}_{1}$
for any $A \in \mathfrak{m}_{2}$, that is, $\left[\mathfrak{m}_{2}, \mathfrak{m}_{1}\right] \subset \mathfrak{h}+\mathfrak{m}_{1}$.
Step 2. We claim $\left[\mathfrak{m}_{2}, \mathfrak{m}_{1}\right] \subset \mathfrak{m}_{1}$. By the same procedure as that of Step 1, we have $\operatorname{Ker}\left(p_{0} f_{A}\right)=\{0\}$ or \mathfrak{m}_{1}. Suppose $\operatorname{Ker}\left(p_{0} f_{A}\right)=\{0\}$ for some $A \in \mathfrak{m}_{2}$. Then $\operatorname{dim} p_{0} f_{A}\left(\mathfrak{m}_{1}\right)=n-2$. We can verify easily that $p_{0} f_{A}\left(\mathfrak{m}_{1}\right)$ is ideal in \mathfrak{h}. On the other hand, there is no ideal of dimension $n-2$ in $\mathfrak{h}=\mathfrak{Z} \mathfrak{D}(n-2)$. Hence we have $\operatorname{Ker}\left(p_{0} f_{A}\right)=\mathfrak{m}_{1}$ for any $A \in \mathfrak{m}_{2}$, that is $\left[\mathfrak{m}_{2}, \mathfrak{m}_{1}\right] \subset \mathfrak{m}_{1}$.

Step 3. By the above discussion, f_{A} is a linear map from \mathfrak{m}_{1} into itself and commutes with the action of $A d(H)=S O(n-2)$ on \mathfrak{m}_{1}. Hence there exists linear map $L: \mathfrak{m}_{2} \rightarrow \boldsymbol{R}$ such that $[A, X]=L(A) X\left(A \in \mathfrak{m}_{2}, X \in \mathfrak{m}_{1}\right)$.

Lemma 3.5. $\quad\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subset \mathfrak{h}$.
Proof. Let p_{0}, p_{1} and p_{2} be maps as in the proof of Lemma 3.4. Given orthonormal vectors X and Y in \mathfrak{m}_{1}, there exists $h \in H$ such that $\operatorname{Ad}(h)=i d$. on \mathfrak{m}_{2} and $A d(h) X=-X, A d(h) Y=Y$ (for, $n-2 \geqq 4$). Then we have

$$
\begin{aligned}
p_{2}[X, Y]=\operatorname{Ad}(h) p_{2}[X, Y] & =p_{2}[\operatorname{Ad}(h) X, \operatorname{Ad}(h) Y] \\
& =-p_{2}[X, Y]
\end{aligned}
$$

which implies $p_{2}[X, Y]=0$. Hence $p_{2}\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right]=\{0\}$. Let express $p_{1}[X, Y]$ as $a X+b Y+c Z$, where Z is a unit vector orthogonal to X and Y. Since $n-2 \geqq 4$, there exists $h^{\prime} \in H$ such that $A d\left(h^{\prime}\right)=i d$. on \mathfrak{m}_{2} and $A d\left(h^{\prime}\right) X=-X, \quad A d\left(h^{\prime}\right) Y=$ $-Y, A d\left(h^{\prime}\right) Z=-Z . \quad$ The equality $A d\left(h^{\prime}\right) p_{1}[X, Y]=p_{1} A d\left(h^{\prime}\right)[X, Y]$ implies $p_{1}[X, Y]=0$. Thus we have $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subset \mathfrak{h}$.

From the same method as in Kobayashi and Nagano [3, p. 212], we have
Lemma 3.6. $\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right] \subset \mathfrak{m}_{2}$.
From Lemma 3.6, there exists a basis $\left\{e_{0}, e_{1}\right\}$ of \mathfrak{m}_{2} such that $B\left(e_{0}, e_{0}\right)=-1$, $B\left(e_{1}, e_{1}\right)=1$ and $B\left(e_{0}, e_{1}\right)=0$, and there exist constants a and b such that $\left[e_{0}, e_{1}\right]=a e_{0}+b e_{1}$. Then there are the following four possibilities:

CASE I: $\left[e_{0}, e_{1}\right]$ is a zero vector (i.e., \mathfrak{m}_{2} is commutative);
CASE II: $\left[e_{0}, e_{1}\right]$ is a non-zero null vector (i.e., $a \neq 0, b=\delta a$, where $\delta^{2}=1$);
CASE III: $\left[e_{0}, e_{1}\right]$ is a spacelike vector (i. e., $b^{2}-a^{2}=\alpha^{2}, \alpha>0$);
CASE IV: $\left[e_{0}, e_{1}\right]$ is a timelike vector (i.e., $b^{2}-a^{2}=-\alpha^{2}, \alpha>0$).
There exists a basis f_{0}, f_{1} such that
in case II,

$$
B\left(f_{0}, f_{0}\right)=0=B\left(f_{1}, f_{1}\right), \quad B\left(f_{0}, f_{1}\right)=-1, \quad\left[f_{0}, f_{1}\right]=f_{1}
$$

in case III,

$$
B\left(f_{0}, f_{0}\right)=-1, \quad B\left(f_{1}, f_{1}\right)=1, \quad B\left(f_{0}, f_{1}\right)=0 \quad \text { and } \quad\left[f_{0}, f_{1}\right]=\alpha f,
$$

in case IV,

$$
B\left(f_{0}, f_{0}\right)=1, \quad B\left(f_{1}, f_{1}\right)=-1, \quad B\left(f_{0}, f_{1}\right)=0 \quad \text { and } \quad\left[f_{0}, f_{1}\right]=\alpha f_{1}
$$

In case I , we denote e_{0} and e_{1} by f_{0} and f_{1} respectively. Hereafter, in any cases, we consider f_{0} and f_{1} instead of e_{0} and e_{1}. Furthermore, in any cases, we denote $L\left(f_{0}\right)$ and $L\left(f_{1}\right)$ by c_{0} and c_{1} respectively where L is the linear map in Lemma 3.4.

Lemma 3.7. In cases $I I, I I I$, and $I V$, we have $c_{1}=0$.
Proof. Let X be a non-zero vector belonging to \mathfrak{m}_{1}. By the Jacobi's identity

$$
\left[f_{0},\left[f_{1}, X\right]\right]=\left[\left[f_{0}, f_{1}\right], X\right]+\left[f_{1},\left[f_{0}, X\right]\right]
$$

we have $c_{0} c_{1} X=\beta c_{1} X+c_{0} c_{1} X(\beta=1$ or $\alpha)$ so that we have $c_{1}=0$.
Determination of M for $n-1 \neq 8$. Since M is simply connected, H is connected so that $\operatorname{Ad}(H)$ acts on \mathfrak{m}_{2} as the identity transformation. Therefore we have

Lemma 3.8. For each $f_{u} \in \mathfrak{m}_{2}(u=0,1)$, the vector field ξ_{u} defined by

$$
\xi_{u}(p):=d g d \pi\left(f_{u}(e)\right) \quad(p=g(o), g \in G)
$$

is well-defined on M and G-invariant where e is the identity in G.
We have the following formulas (**) according to the above each case I \sim IV :

CASE I. $\nabla_{\xi_{u}} \xi_{v}=0, \nabla_{X} \xi_{u}=-c_{u} X(u, v=0,1)$;
CASE II. $\nabla_{\hat{\xi}_{0} \xi_{0}}=-\xi_{0}, \nabla_{\xi_{0}} \xi_{1}=\xi_{1}, \nabla_{\hat{\xi}_{1}} \xi_{0}=0$,

$$
\begin{equation*}
\nabla_{\xi_{1}} \xi_{1}=0, \quad \nabla_{X} \xi_{0}=-c_{0} X, \quad \nabla_{X} \xi_{1}=0 ; \tag{**}
\end{equation*}
$$

CASES III and IV. $\nabla_{\xi_{0}} \xi_{0}=0, \nabla_{\hat{\xi}_{0}} \xi_{1}=0, \nabla_{\hat{\xi}_{1}} \xi_{0}=-\alpha \hat{\xi}_{1}$,

$$
\nabla_{\xi_{1}} \xi_{1}=-\alpha \xi_{0}, \quad \nabla_{X} \xi_{0}=-c_{0} X, \quad \nabla_{X} \xi_{1}=0
$$

Here X is any vector field orthogonal to ξ_{0} and ξ_{1} and ∇ is the Levi-Civita connection of the Lorentz metric \langle,$\rangle on M$.

By the G-invariance of ξ_{u} and the above formulas, we have
Lemma 3.9. (1) In the cases I and $I I$, the integral curve of ξ_{1} is a complete geodesic.
(2) In the cases I, III and IV, the integral curve of ξ_{0} is a complete geodesic.

By the similar way as the proof of Lemma 2.5, we have
Lemma 3.10. (1) In the cases $I, I I$ and $I V$, the 1 -form ω_{0} on M defined by

$$
\omega_{0}(X):=\left\langle X, \xi_{0}\right\rangle
$$

is G-invariant and closed.
(2) In the cases I and $I I$, the 1-form ω_{1} on M defined by

$$
\omega_{1}(X):=\left\langle X, \xi_{1}\right\rangle
$$

is G-invariant and closed.
Now we will determine $G / H=M$ in each cases I, II, III and IV.
CASE I. Lemma 3.10 implies that there exist smooth functions ψ_{0} and ψ_{1} such that $d \psi_{u}=\omega_{u}(u=0,1)$. Since ξ_{0} and ξ_{1} are G-invariant, there exist 1 parameter groups of transformation ϕ_{t}^{0} and ϕ_{s}^{1} generated by ξ_{0} and ξ_{1} respectively. We can verify easily that for $p \in M$,

$$
\left\{\begin{array}{l}
\psi_{0}\left(\phi_{t}^{0}(p)\right)=-t+\psi_{0}(p), \quad \phi_{0}\left(\phi_{s}^{1}(p)\right)=\psi_{0}(p) \\
\psi_{1}\left(\phi_{t}^{0}(p)\right)=\psi_{1}(p), \quad \psi_{1}\left(\phi_{s}^{1}(p)\right)=s+\psi_{1}(p)
\end{array}\right.
$$

Let M_{1}^{o} be a connected component of $M_{1}=\left\{p \in M ; \psi_{0}(p)=\phi_{1}(p)=0\right\}$. Then M_{1}^{o} is a connected ($n-2$)-dimensional closed submanifold of M. Furthermore M_{1}^{o} is spacelike, because ξ_{0} and ξ_{1} are orthogonal to M_{1}.

Lemma 3.11. The map $F: \boldsymbol{R} \times \boldsymbol{R} \times M_{1}^{o} \rightarrow M$ defined by

$$
F(t, s, x)=\phi_{t}^{0}\left(\phi_{s}^{1}(x)\right)
$$

is a diffeomorphism, and $M_{1}=M_{1}^{o}$ is simply connected.
Proof. Suppose that $F(t, s, x)=F\left(t^{\prime}, s^{\prime}, x^{\prime}\right)$. Then, from (\#), we have $t=t^{\prime}$ and $s=s^{\prime}$. Therefore we have $\phi_{t}^{0}\left(\phi_{s}^{1}(x)\right)=\phi_{t}^{0}\left(\phi_{t}^{1}\left(x^{\prime}\right)\right)$ so that we have $x=x^{\prime}$. Thus F is injective. It is clear that F is smooth. Setting $N=F\left(\boldsymbol{R} \times \boldsymbol{R} \times M_{1}^{0}\right)$, then N is open in M. It remains to be shown that N is closed in M. Suppose that $\left\{F\left(t_{k}, s_{k}, x_{k}\right)=p_{k}\right\}$ is a sequence converging some point q in M. Since $t_{k}=-\psi_{0}\left(p_{k}\right)$ and $s_{k}=\psi_{1}\left(p_{k}\right)$, we have $t_{k} \rightarrow t_{0}:=-\psi_{0}(q)$ and $s_{k} \rightarrow s_{0}:=\psi_{1}(q)$ as $k \rightarrow \infty$. Since $x_{k}=\phi_{-s_{k}}^{1}\left(\phi_{-t_{k}}^{0}\left(p_{k}\right)\right)$ converges $x_{0}:=\phi_{-s_{0}}^{1}\left(\phi_{-t_{0}}^{0}(q)\right)$ as $k \rightarrow \infty$ and M_{1}^{o} is closed, x_{0} belongs to M_{1}^{o} so that $q=\phi_{i_{0}}^{0}\left(\phi_{s_{0}}^{1}\left(x_{0}\right)\right)$ belongs to N. Thus N is closed. Thus we have $N=F\left(\boldsymbol{R} \times \boldsymbol{R} \times M_{1}^{o}\right)$.

Remark 3.12. For each $(a, b) \in \boldsymbol{R} \times \boldsymbol{R}, M_{1}(a, b):=\left\{p \in M ; \psi_{0}(p)=a, \psi_{1}(p)=b\right\}$ is a simply connected ($n-2$)-dimensional spacelike submanifold of M.

Lemma 3.13. For each $(a, b) \in \boldsymbol{R} \times \boldsymbol{R}, M_{1}(a, b)$ is congruent to $M_{1}=M_{1}(0,0)$ in M.

Proof. Since G acts on M transitively, for some point p in $M_{1}(a, b)$ there exists $g \in G$ such that $g(o)=p\left(o \in M_{1}\right)$. Then we have $g\left(M_{1}\right) \subset M_{1}(a, b)$. In fact, for each point $q \in g\left(M_{1}\right)$, there exists a smooth curve $\tilde{c}:[0,1] \rightarrow g\left(M_{1}\right)$ such that $\tilde{c}(0)=p$ and $\tilde{c}(1)=q$. Put $c:=g^{-1} \tilde{c}$. Then c is a smooth curve in M_{1}, so we have $\psi_{0}(c(s))=0=\psi_{1}(c(s))$ for any $s \in[0,1]$. Therefore we have

$$
\begin{aligned}
\left(d \psi_{u} / d s\right)(\tilde{c}(s)) & =\left\langle\xi_{u}(\tilde{c}(s)), \dot{\tilde{c}}(s)\right\rangle \\
& =\left\langle\xi_{u}(c(s)), \dot{c}(s)\right\rangle=\left(d \xi_{u} / d s\right)(c(s))=0 \quad(u=0,1)
\end{aligned}
$$

Thus we have $\psi_{0}(q)=a$ and $\psi_{1}(q)=b$ so that we have $g\left(M_{1}\right) \subset M_{1}(a, b)$. Since $g\left(M_{1}\right)$ is open and closed in $M_{1}(a, b)$, we have $g\left(M_{1}\right)=M_{1}(a, b)$.

Lemma 3.14. M_{1} is a homogeneous Riemannian manifold.
Proof. For any $p, q \in M_{1}$, there exists $g \in G$ such that $g(p)=q$. By the same method as in the proof of Lemma 3.13, we can see that $\left.g\right|_{M_{1}}$ is an isometric transformation of M_{1}.

Set $G_{1}:=\left\{g \in G ; g M_{1}=M_{1}\right\}$. Then G_{1} is a Lie subgroup of G. We can verify that H is included in G_{1} by the same discussion as in the proof of Lemma 3.13. Furthermore, G_{1} acts on M_{1} effectively. Thus $\operatorname{dim} G_{1}=\operatorname{dim} M_{1}+\operatorname{dim} H=$ $(n-1)(n-2) / 2$. Therefore the simply connected ($n-2$)-dimensional Riemannian manifold M_{1} admitting an isometry group G_{1} of maximum dimension $(n-1)(n-2) / 2$ is isometric to $S^{n-2}, \boldsymbol{H}^{n-2}$ or \boldsymbol{E}^{n-2}.

Lemma 3.15. The map

$$
F:\left(\boldsymbol{R} \times \boldsymbol{R} \times M_{1},-d t^{2}+d s^{2}+\exp \left(-2 c_{0} t-2 c_{1} s\right) d s_{M_{1}}^{2}\right) \longrightarrow(M,\langle,\rangle)
$$

is an isometry where $d s_{M_{1}}^{2}$ is the metric of M_{1}.
Proof. Let $\left(V, \Phi=\left(t_{2}, \cdots, t_{n-1}\right)\right)$ be a local coordinate around a point p in M_{1}. Then $\left(\boldsymbol{R} \times \boldsymbol{R} \times V, i d \times \Phi=\left(t, s, t_{2}, \cdots, t_{n-1}\right)\right)$ is a local coordinate around (a, b, p) in $\boldsymbol{R} \times \boldsymbol{R} \times M_{1}$. Put $\tilde{V}:=F\left(\boldsymbol{R} \times \boldsymbol{R} \times M_{1}\right)$ and define $\tilde{\Phi}: \tilde{V} \rightarrow \boldsymbol{R}^{n}$ by $(i d \times \Phi) \circ F^{-1}$. Then $\left(\tilde{V}, \tilde{\Phi}=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)\right)$ is a local coordinate around $\tilde{p}=$ $F(a, b, p)$ in M. Since $\left[\xi_{0}, \xi_{1}\right]=0$, we can see $d F(\partial / \partial t)=\partial / \partial x_{0}=\xi_{0}$ and $d F(\partial / \partial s)$ $=\partial / \partial x_{1}=\xi_{1}$. Furthermore we have $d F\left(\partial / \partial t_{j}\right)=\partial / \partial x_{j}(j=2, \cdots, n-1)$. We can
also see that $\left\langle\partial / \partial x_{u}, \partial / \partial x_{j}\right\rangle=0(u=0,1)$. In fact

$$
\begin{aligned}
\left\langle\partial / \partial x_{u}, \partial / \partial x_{j}\right\rangle & =\left\langle\xi_{u}, d F\left(\partial / \partial t_{j}\right)\right\rangle=\left(\partial / \partial t_{j}\right)\left(\psi_{u}(F(t, s, x))\right. \\
& =\left\{\begin{array}{ll}
\left(\partial / \partial t_{j}\right)(-t)=0 & (u=0) \\
\left(\partial / \partial t_{j}\right)(s)=0 & (u=1)
\end{array} .\right.
\end{aligned}
$$

Since $\nabla_{x} \xi_{u}=-c_{u} X(u=0,1)$ for any X orthogonal to ξ_{0} and ξ_{1}, we have

$$
\partial / \partial t\left\langle\partial / \partial t_{i}, \partial / \partial t_{j}\right\rangle=-2 c_{0}\left\langle\partial / \partial t_{i}, \partial / \partial t_{j}\right\rangle
$$

and

$$
\partial / \partial s\left\langle\left\langle\partial / \partial t_{i}, \partial / \partial t_{j}\right\rangle=-2 c_{1}\left\langle\partial / \partial t_{i}, \partial / \partial t_{j}\right\rangle\right.
$$

so that we have

$$
\left\langle\partial / \partial t_{i}, \partial / \partial t_{j}\right\rangle=\exp \left(-2 c_{0} t-2 c_{1} s\right) g_{i j}\left(t_{2}, \cdots, t_{n-1}\right)
$$

Thus we have

$$
F^{*}\langle,\rangle=-d t^{2}+d s^{2}+\exp \left(-2 c_{0} t-2 c_{1} s\right) d s_{M_{1}}^{2} .
$$

Lemma 3.16. If M_{1} is \boldsymbol{H}^{n-2} or S^{n-2}, then $c_{0}=c_{1}=0$, i.e., the metric of $\boldsymbol{R} \times \boldsymbol{R} \times M_{1}$ is a product metric.

Proof. Since, for each $(a, b) \in \boldsymbol{R} \times \boldsymbol{R}, M_{1}(a, b)$ is isometric to M_{1} by Lemma 3.13, the scalar curvature $S(a, b)$ of $M_{1}(a, b)$ coincides with the scalar curvature $S(0,0)$ of M_{1} which is non-zero. On the other hand, we have $S(a, b)=\exp \left(-2 c_{0} a-2 c_{1} b\right) \times S(0,0)$ by Lemma 3.15. Since a and b are arbitrary, we have $c_{0}=c_{1}=0$.

We notice that, in the case $M_{1}=E^{n-2}$, there are two cases (1) $c_{0}=c_{1}=0$ and (2) $c_{0} \neq 0$ or $c_{1} \neq 0$.

Summing up, in the case $\mathrm{I},(M,\langle\rangle$,$) must be one of the following:$
(i) ($\left.\boldsymbol{L}^{2} \times M_{1}, d s_{L}^{2}+d s_{M_{1}}^{2}\right)$ where $\left(\boldsymbol{L}^{2}, d s_{\boldsymbol{L}}^{2}\right)$ is the 2-dimensional Minkowski space and ($M_{1}, d s_{M_{1}}^{2}$) is a simply connected ($n-2$)-dimensional Riemannian manifold of constant curvature;
(ii) $\left(\boldsymbol{R}^{2} \times \boldsymbol{E}^{n-2},-d t^{2}+d s^{2}+\exp \left(-2 c_{0} t-2 c_{1} s\right) d s_{\boldsymbol{E}}^{2}\right)$ where $c_{0} \neq 0$ or $c_{1} \neq 0$.

CASE II. Since ω_{1} is closed, there exists a smooth function $\psi_{1}: M \rightarrow \boldsymbol{R}$ such that $d \psi_{1}=\omega_{1}$. Define the vector field η on M by $\eta(p):=\exp \left(-\psi_{1}(p)\right) \xi_{0}(p)$ ($p \in M$).

Lemma 3.17. The 1 -form $\tilde{\omega}_{0}$ defined by $\tilde{\omega}_{0}(X):=\langle\eta, X)$ is closed so that there exists smooth function $\tilde{\psi}_{0}: M \rightarrow \boldsymbol{R}$ such that $d \tilde{\psi}_{0}=\tilde{\omega}_{0}$.

Proof. Since $d \tilde{\omega}_{0}(X, Y)=\left\langle\nabla_{X} \eta, Y\right\rangle-\left\langle\nabla_{Y} \eta, X\right\rangle$ for any vector fields X and Y, we can verify that $\tilde{\omega}_{0}$ is closed by formulas ($* *$).

Since ξ_{0} is G-invariant, there exists the 1 -parameter group of transformations ϕ_{s}^{0} generated by ξ_{0}. Let $c_{p}(t)$ be the integral curve of ξ_{1} through a point $p \in M$. From the G-invariance of $\xi_{1}, c_{p}(t)$ is defined for any $t \in \boldsymbol{R}$. Define the vector field ζ on M by $\zeta(q)=\exp \left(\psi_{1}(q)\right) \xi_{1}(q)(q \in M)$. Let ϕ_{t}^{1} be the 1 -parameter group of transformations generated by ζ. Then we have $\phi_{t}^{1}(p)=c_{p}\left(\exp \left(\phi_{1}(p)\right) t\right)$ so that ϕ_{t}^{1} is complete. Noting that $\left[\xi_{0}, \zeta\right]=0$, we have $\phi_{s}^{0} \phi_{t}^{1}=\phi_{t}^{1} \phi_{s}^{0}$. We can verify the following:

$$
\begin{aligned}
& \tilde{\phi}_{0}\left(\phi_{s}^{0}(p)\right)=\tilde{\phi}_{0}(p), \quad \tilde{\phi}_{0}\left(\phi_{t}^{1}(p)\right)=-t+\tilde{\psi}_{0}(p), \\
& \phi_{1}\left(\phi_{s}^{0}(p)\right)=-s+\psi_{1}(p), \quad \phi_{1}\left(\phi_{t}^{1}(p)\right)=\phi_{1}(p) \quad \text { for } p \in M .
\end{aligned}
$$

Let M_{1}^{o} be a connected component of $M_{1}:=\left\{p \in M ; \tilde{\phi}_{0}(p)=\phi_{1}(p)=0\right\}$. Then M_{1}^{o} is an ($n-1$)-dimensional closed submanifold of M. Furthermore M_{1}^{o} is spacelike, because ξ_{0} and ξ_{1} are orthogonal to M_{1}^{o}.

Lemma 3.18. The map $F: \boldsymbol{R} \times \boldsymbol{R} \times M_{\mathrm{i}}^{0} \rightarrow M$ defined by

$$
F(t, s, x)=\phi_{1}^{1} \phi_{s}^{0}(x) \quad \text { for } \quad(t, s, x) \in \boldsymbol{R} \times \boldsymbol{R} \times M_{1}^{o}
$$

is a diffeomorphism, and $M_{1}=M_{1}^{o}$ is simply connected.
The proof is similar to that of Lemma 3.11.
REmark 3.19. For each $(a, b) \in \boldsymbol{R} \times \boldsymbol{R}, M_{1}(a, b):=\left\{p \in M ; \tilde{\phi}_{0}(p)=a, \psi_{1}(p)=b\right\}$ is a simply connected ($n-2$)-dimensional spacelike submanifold of M.

The following two Lemma 3.20 and 3.21 are proved by the same method as in Lemma 3.13 and 3.14 respectively.

Lemma 3.20. For each $(a, b) \in \boldsymbol{R} \times \boldsymbol{R}, M_{1}(a, b)$ is congruent to M_{1} in M.
Lemma 3.21. M_{1} is a homogeneous Riemannian manifold.
Set $G_{1}:=\left\{g \in G ; g\left(M_{1}\right)=M_{1}\right\}$. Then we also have that G_{1} is a closed Lie subgroup of G and includes H. G_{1} acts effectively on M_{1} so that M_{1} is S^{n-2}, \boldsymbol{H}^{n-2} or \boldsymbol{E}^{n-2}.

Lemma 3.22. The map $F:\left(\boldsymbol{R} \times \boldsymbol{R} \times M_{1},-2 \exp (-s) d t d s+\exp \left(-2 c_{0} s\right) d s_{M_{1}}^{2}\right) \rightarrow$ $(M,\langle\rangle$,$) is an isometry.$

Proof. As in the proof of Lemma 3.15, we take a local coordinate ($V, \Phi=$ $\left.\left(t_{2}, \cdots, t_{n-2}\right)\right)$ around a point p in M_{1} and a local coordinate ($\tilde{V}, \tilde{\Phi}=\left(x_{0}, x_{1}, \cdots\right.$, $\left.x_{n-1}\right)$) around a point $F(a, b, p)$ in M. Then we can see $d F(\partial / \partial t)=\partial / \partial x_{0}=$ $\exp (-s) \xi_{1}, d F(\partial / \partial s)=\partial / \partial x_{1}=\xi_{0}$ and $d F\left(\partial / \partial t_{i}\right)=\partial / \partial x_{i}(i=2, \cdots, n-1)$ at (t, s, p) $\in \boldsymbol{R} \times \boldsymbol{R} \times M_{1}$. Furthermore, we can see

$$
\partial / \partial s\left\langle\partial / \partial t_{i}, \partial / \partial t_{j}\right\rangle=-2 c_{0}\left\langle\partial / \partial t_{i}, \partial / \partial t_{j}\right\rangle
$$

and

$$
\partial / \partial t\left\langle\partial / \partial t_{i}, \partial / \partial t_{j}\right\rangle=0 \quad(i, j=2, \cdots, n-1)
$$

so that we have

$$
\left\langle\partial / \partial t_{i}, \partial / \partial t_{j}\right\rangle=\exp \left(-2 c_{0} s\right) g_{i j}\left(t_{2}, \cdots, t_{n-1}\right) .
$$

Uhus we have

$$
F^{*}\langle,\rangle=-2 \exp (-s) d t d s+\exp \left(-2 c_{0} s\right) d s_{M_{1}}^{2} .
$$

We also have the following Lemma 3.23 by the same method as in the case I.

Lemma 3.23. If M_{1} is S^{n-2} or \boldsymbol{H}^{n-2}, then $c_{0}=0$.
We note that the space $(\boldsymbol{R} \times \boldsymbol{R},-2 \exp (-s) d t d s)$ is isometric to the upper half-space $U^{2}=\{(x, y) ; y>0\}$ with flat metric $-2 d x d y / y^{2}$ by the transformation $(t, s) \rightarrow(x, y)=(t, \exp (s))$.

Thus, in case II, M must be one of the following:
(iii) $\left(U^{2} \times M_{1},-2 d x d y / y^{2}+d s_{M_{1}}^{2}\right)$ where ($M_{1}, d s_{M_{1}}^{2}$) is a simply connected ($n-2$)-dimensional Riemannian manifold of constant curvature;
(iv) $\left(U^{2} \times \boldsymbol{E}^{n-2},-2 d x d y / y^{2}+(1 / y)^{2 c_{0}} d s_{E}^{2}\right)$.

Remark 3.24. When $c_{0}=1$, the space (iv) is the n-dimensional upper halfspace $U^{2}=\left\{\left(x_{1}, \cdots, x_{n}\right): x_{n}>0\right\}$ with flat metric

$$
\left(1 / x_{n}^{2}\right)\left(-2 d x_{n-1} d x_{n}+d x_{1}^{2}+\cdots+d x_{n-2}^{2}\right)
$$

CASE III and IV. Since ω_{0} is closed by Lemma 3.10, there exists a smooth function $\psi_{0}: M \rightarrow \boldsymbol{R}$ with $d \psi_{0}=\omega_{0}$. Put $\eta(p)=\exp \left(-\kappa \alpha \psi_{0}(p)\right) \xi_{1}(p)$ where $\kappa=\left\langle\xi_{1}, \xi_{1}\right\rangle$ (i. e., $\kappa=1,-1$ in the cases III, IV respectively). Define a 1 -form $\tilde{\omega}_{1}$ by $\tilde{\omega}_{1}(X)=\langle X, \eta\rangle$. Then we have the following Lemma by the same method as in Lemma 3.17.

Lemma 3.25. $\tilde{\omega}_{1}$ is a closed 1 -form so that there exists a smooth function $\tilde{\phi}_{1}: M \rightarrow \boldsymbol{R}$ with $d \tilde{\phi}_{1}=\tilde{\omega}_{1}$.

Since ξ_{0} is G-invariant, there exists the 1-parameter group of transformations ϕ_{t}^{0} generated by ξ_{0}. Let $c_{p}(s)$ be an integral curve of ξ_{1} through a point $p \in M$. Then, for each point $p \in M, c_{p}(t)$ is defined for any $t \in \boldsymbol{R}$, because of the G invariance of ξ_{1}. Define the vector field ζ on M by $\zeta(p)=\exp \left(\kappa \alpha \psi_{0}(p)\right) \xi_{1}(p)$ ($p \in M$). Let ϕ_{s}^{1} be the 1-parameter group of transformations generated by ζ. Then we have $\phi_{s}^{1}(p)=c_{p}\left(\exp \left(\kappa \alpha \psi_{0}(p)\right) s\right)$ so that ϕ_{s}^{1} is complete. Noting [$\left.\xi_{0}, \zeta\right]$ $=0$, we have $\phi_{i}^{0} \phi_{s}^{1}=\phi_{s}^{1} \phi_{t}^{0}$. We can verify the following:

$$
\begin{aligned}
& \phi_{0}\left(\phi_{t}^{0}(p)\right)-\kappa t+\psi_{0}(p), \quad \phi_{0}\left(\phi_{s}^{1}(p)\right)=\psi_{0}(p) \\
& \tilde{\phi}_{1}\left(\phi_{i}^{0}(p)\right)=\tilde{\psi}_{1}(p), \quad \tilde{\psi}_{1}\left(\phi_{s}^{1}(p)\right)=\kappa s+\tilde{\psi}_{1}(p) .
\end{aligned}
$$

Let M_{1}^{o} be a connected component of $M_{1}:=\left\{p \in M ; \psi_{0}(p)=\tilde{\psi}_{1}(p)=0\right\}$. Then by the same procedure as in the case II, we have Lemmas 3.26, 3.27, 3.29, 3.30 and Remark 3.28.

Lemma 3.26. M_{1}° is a connected ($n-2$)-dimensional spacelike closed submanifold of M.

Lemma 3.27. The map $F: \boldsymbol{R} \times \boldsymbol{R} \times M_{1}^{o} \rightarrow M$ defined by

$$
F(t, s, x)=\phi_{s}^{1} \phi_{t}^{0}(x) \quad \text { for } \quad(t, s, x) \in \boldsymbol{R} \times \boldsymbol{R} \times M_{1}^{0}
$$

is a diffeomorphism, and $M_{1}=M_{1}^{0}$ is simply connected.
Remark 3.28. For each $(a, b) \in \boldsymbol{R} \times \boldsymbol{R}, \quad M_{1}(a, b):=\left\{p \in M ; \psi_{0}(p)=a\right.$, $\left.\tilde{\psi}_{1}(p)=b\right\}$ is a simply connected ($n-2$)-dimensional spacelike submanifold of M.

Lemma 3.29. For each $(a, b) \in \boldsymbol{R} \times \boldsymbol{R}, M_{1}(a, b)$ is congruent to M_{1} in M.

Lemma 3.30. $\quad M_{1}$ is a homogeneous Riemannian manifold.
By the same method as in the case II, M_{1} is isometric to $S^{n-1}, \boldsymbol{H}^{n-1}$ or \boldsymbol{E}^{n-2}. We also have following Lemmas 3.31 and 3.32.

Lemma 3.31. The map

$$
F:\left(\boldsymbol{R} \times \boldsymbol{R} \times M_{1},-\kappa\left(d t^{2}-\exp (-2 \alpha t) d s^{2}\right)+\exp \left(-2 c_{0} t\right) d s_{M_{1}}^{2}\right) \rightarrow(M,\langle,\rangle)
$$

is an isometry.
Lemma 3.32. If $M_{1}=S^{n-2}$ or \boldsymbol{H}^{n-2}, then $c_{0}=0$.
We note that $\left(\boldsymbol{R} \times \boldsymbol{R},-\kappa\left(d t^{2}-\exp (-2 \alpha t) d s^{2}\right)\right.$ is isometric to $\left(U^{2}=\{(x, y)\right.$; $\left.y>0\}, d s_{\kappa}^{2}=\kappa\left(d x^{2}-d y^{2}\right) /(\alpha y)^{2}\right)$ by the transformation $(t, s) \rightarrow(x=s, y=\exp (\alpha t) / \alpha)$.

Thus, in case III, $(M,\langle\rangle$,$) must be one of the following:$
(v) $\left(U^{2} \times M_{1}, d s_{+1}^{2} / \alpha^{2}+d s_{M_{1}}^{2}\right)$;
(vi) $\left(U^{2} \times E^{n-2}, d s_{+1}^{2} / \alpha^{2}+(1 / \alpha y)^{2 c / \alpha} d s_{E}^{2}\right)$,
and in case IV, $(M,\langle\rangle$,$) must be one of the spaces$
(vii) $\left(U^{2} \times M_{1}, d s_{-1}^{2} / \alpha^{2}+d s_{M_{1}}^{2}\right)$,
(viii) $\left(U^{2} \times E^{n-2}, d s_{-1}^{2} / \alpha^{2}+(1 / \alpha y)^{2 c / \alpha} d s_{E}^{2}\right)$,
where ($M_{1}, d s_{M_{1}}^{2}$) is a simply connected ($n-2$)-dimensional Riemannian manifold of constant curvature.

The case $n=9$. When $n-1=8, \tilde{H}$ is isomorphic to $S O(7)$ or $\operatorname{Spin}(7)$ which has a spin representation. When H is isomorphic to $S O(7)$, the argument is the same as in the case $n-1 \neq 8$. Therefore it is enough to deal with the case that H is isomorphic of $\operatorname{Spin}(7)$.

Since \tilde{H} is conjugate to the subgroup $\operatorname{Spin}(7)$ of $S O(8)$, there exists a timelike G-invariant vector field ξ on M with $\langle\xi, \xi\rangle=-1$.

By the same method as the proof of Lemma 2.5, we have
Lemma 3.33. The 1 -form ω defined by $\omega(X)=\langle\xi, X\rangle$ is G-invariant and closed so that threre exists a smooth function $f: M \rightarrow \boldsymbol{R}$ with $d f=\omega$.

The G-invariance of ξ implies the completeness of ξ. There exists the 1 parameter group of transformations ϕ_{t} generated by ξ. Then we have $f\left(\phi_{t}(p)\right)$ $=-t+f(p)(t \in \boldsymbol{R}, p \in M)$. Put $N=\{p \in M ; f(p)=0\}$. Then a connected component N^{o} of N is a connected closed 8-dimensional spacelike hypersurface of M. By the similar way as in the case I, N^{o} is a homogeneous Riemannian manifold admitting an isometry group $G^{\prime}:=\left\{g \in G ; g\left(N^{o}\right)=N^{\circ}\right\}$ of dimension $8(8-1) / 2+1=29$ which acts effectively on N^{o} and includes H. Then, by the theorem in [8], N^{o} is isometric to \boldsymbol{E}^{8} and $G^{\prime}=\operatorname{Spin}(7) \boldsymbol{R}^{8}$ (a semi-direct product). We have $\nabla_{X} \xi=-c X$ for any X orthogonal to ξ where c is a constant. In fact, $\operatorname{Spin}(7)$ acts transitively on $S^{7}:=\left\{Z \in T_{X} M ;\langle Z, \xi\rangle=0,\langle Z, Z\rangle=1\right\}$ so that the proof is the same as in [6, Lemma 8]. We also have that the map $F: \boldsymbol{R} \times N^{o}$ $\rightarrow M$ defined by $F(t, x)=\phi_{t}(x)$ for $(t, x) \in \boldsymbol{R} \times N^{o}$ is a diffeomorphism and the map $F:\left(\boldsymbol{R} \times N^{0},-d t^{2}+\exp (-2 c) d s_{N}^{2}{ }^{0} \rightarrow(M,\langle\rangle\right.$,$) is an isometry.$

4. Final Comment.

In connection with Remark 3.2, we must correct some parts in the previous paper [6]. There are some ambiguous stataments in [6]. In the Theorem, the statement "whose isotropy subgroup is compact" should be "whose isotropy
subgroup at every point is compact". The statement " H is compact" that precedes Lemma 1 should be " H is compact at every point". We cannot remove the condition that the isotropy subgroup at every is compact, by the following example.

Example. Let M be the n-dimensional de-Sitter space $S_{1}^{n}=\left\{\left(u_{0}, u_{1}, \cdots, u_{n}\right)\right.$ $\left.\in \boldsymbol{R}^{n+1} ;-u_{0}^{2}+u_{1}^{2}+\cdots+u_{n}^{2}=1\right\}$ and G the matrix group of the form

$$
\left[\begin{array}{ccc}
\left(1+a^{2}+|\chi|^{2}\right) /(2 a) & \chi & \left(1-a^{2}+|\chi|^{2}\right) /(2 a) \\
(1 / a) A^{2} \chi & A & (1 / a) A^{t} \chi \\
\left(1-a^{2}-|\chi|^{2}\right) /(2 a) & -\chi & \left(1+a^{2}-|\chi|^{2}\right) /(2 a)
\end{array}\right] \quad \begin{aligned}
& a>0, \chi \in \boldsymbol{R}^{n-1} \\
& A \in S O(n-1)
\end{aligned}
$$

(c.f., Remark 3.2). Then, for every point p in S_{1}^{n} such that $u_{0}+u_{n}>0$ (resp. <0), the G-orbit of p is $U^{+}=\left\{\left(v_{0}, \cdots, v_{n}\right) \in S_{1}^{n} ; v_{0}+v_{n}>0\right\}$ (resp. $U^{-}=\left\{\left(v_{0}, \cdots, v_{n}\right)\right.$ $\left.\in S_{1}^{n}: v_{0}+v_{n}<0\right\}$) and the isotropy subgroup at p is compact. But, for every point q in S_{1}^{n} such that $u_{0}+u_{n}=0$, the G-orbit of q is a lightlike hypersurface of S_{1}^{n} and the isotropy subgroup at q is non-compact.

Acknowledgement. The author would like to thank Professors H. Kitahara and S. Yorozu for their helpfull advice and encouragement. The author also would like to thank the referee for his kind and useful advice.

References

[1] Ishihara, S., Homogeneous Riemannian spaces of four dimensions, J. Math. Soc. Japan 7 (1955), 345-370.
[2] Kobayashi, S., Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, 1972.
[3] Kobayashi, S. and Nagano, T., Riemannian manifolds with abundant isometries, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 195-219.
[4] Matsuda, H., A note on an isometric imbedding of upper half-space into anti de -Sitter space, Hokkaido Math. J. 13 (1984), 123-132.
[5] Matsuda, H., On n-dimensional Lorentz manifolds admitting an isometry group of dimension $n(n-1) / 2+1$, Proc. of Amer. Math. Soc. 100 (1987), 329-334.
[6] Matsuda, H., On n-dimensional Lorentz manifolds admitting an isometry group of dimension $n(n-1) / 2+1$ for $n \geqq 4$, Hokkaido Math. J. 15 (1986), 309-315.
[7] Nomizu, K., The Lorentz-Poincaré metric on upper half-space and its extension, Hokkaido Math. J. 11 (1982), 253-261.
[8] Obata, M., On n-dimensional homogeneous spaces of Lie groups of dimension $n(n-1) / 2+1$, J. Math. Soc. Japan 7 (1955), 371-388.
[9] O'Neill, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
[10] Wolf, J., Spaces of Constant Curvature, Publish or Perish, Boston, 1984.
Department of Mathematics, Kanazawa Medical University, Uchinada-machi, Ishikawa-ken, 920-02, Japan

[^0]: Received August 24, 1987. Revised April 7, 1988.

