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ON LORENTZ MANIFOLDS WITH ABUNDANT ISOMETRIES
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0. Introduction.

Let M be an n-dirnensional Lorentz manifold with metric < , > of signature

(―, +, ･･･,+). Then there is no r-dimensional isometry group whose isotropy

subgroup at every point is compact for n(n ―l)/2+l<r^n(n+l)2 (c.f., [5],

Proposition). In [6], we determined n-dimensional Lorentz manifolds M which

admit an n(n―l)/2+l-dimensional isometry group with compact isotropy sub-

group at every point for n^4.

The firstpurpose of this note is to determine simply connected M admitting

an nin ―l)/2-dimensional isometry group with compact isotropy subgroup at

every point for n^4 (see §2). We will prove the following Theorem A.

Theorem A. Let (M, < , ≫ be a simply connected n-dimensional Lorentz

manifold admitting a connected n(n―l)/2-dimensional isometry group with compact

isotropy subgroup at every pointin M(n^4). Then M isisometric to the warped

product manifold (IxN, ~dt2-＼-^{t)ds＼)where I is an open interval and N is the

simply connected {n ―l)-dimensional Riemannian manifold with metric ds2Nof con-

stant curvature and <fr(t)is a positivefunction on I.

For isometry groups whose dimension are less than n{n ―1)/2, we will have

the following proposition in §1.

Proposition 1.1. // n~^6, there is no r-dimensional isometry group with

compact isotropy subgroup at every point for (n ―l)(n―2)/2+3^r^n(n ―1)/2―1.

In view of Proposition 1.1,it is natural to ask which Lorentz manifold of

dimension n admits an (≪―1)(≪―2)/2+2-dimensional isometry group with

compact isotropy subgroup. The second purpose of this note is to determine

simply connected manifold M admitting an isometry group of dimension

(n ―l)(n―2)/2+2 with compact isotropy subgroup at every point (see §3). We

will prove the following Theorem B.
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Theorem B. Let (M, < ,≫ be a simply connected n-dimensional Lorentz

manifold adimitting a connected (n ―l)(n―2)/2+2~dimensional isomery group with

compact isotropy subgroup at every point (n^6). Then (M, < , ≫ must be one

of the following:

(1) (L2xVn-＼ dsl+dsl)',

(2) (LzXEn~l, ―dt2+ds*+exp(―2cot―2c1s)ds2E) (c0 and cx are some constants

such that co=£0or c^O);

(3) (U2xVn~2, dsl+ds2v);

(4) {U2XEn'＼ dsl+f*ds%) (f=y'C2, c2 is a non-zero constant);

(5) (UzxVn~z, dsl/a2+dsy) (a is a non-zero constant);

(6) (U2XEn~2, dsl/p*+hlds2E) (h=(($y)-c＼ c3 and (i are non-zero constants);

If n=9, then the following additional case is possible:

(7) (RxEs, ―df8+exp(-2c4f)ds!) (c4>0: a constant).

Here {U, ds＼) is the 2-dimensional Minkowski space, (Em, ds%) the m-

dimensional Euclidean space and (Fn~2, ds＼) the simply connected (n―2)-

dimensional Riemannian space of constant curvature. Further, (t/2,rfs2)is the

upper half-space Uz={(x, y); y>0＼ with metric ―2dxdy/yz (when ≪=0)

ic(dx2―dy%)/yz (when /c―1or ―1).

Remark 0.1. The space (6) with c3=l is the upper half-space Un=

{(xu ･･･, xn); xn>Q} with constant curvature 1 or ―1 according to k―1 or ―1

respectively. The space (7) is isometric to the 9-dimensional upper-half space

with constant curvature c＼by the transformation

RxE8^(t, xu ･･･,jc8)―> (xu ･･･, xB, eCit/c4)(=U9.

For these spaces, see [4] and [8].

The space (4) with c2=l is the upper half-space with constant curvature 0.

Throughout this note, we shall be in C°°-categoryand manifolds shall be

connected, unless otherwise stated.

1. Preliminaries.

Let (M, < , ≫ be an n-dimensional Lorentz manifold with metric < , > of

signature (―, +, ･･･,+). Let G be a connected isometry group of (M, < , ≫, HQ

the isotropy subgroup of G at a point ogM and G(o) the G-orbit of o. Then

the linear isotropy subgroup H0={dh; h<^H0} acting on T0M is a closed sub-

group of 0(1, n―l)={A(^GL(n, R); lASA=S}, where S is the matrix
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subgroup of O(l)X0(n-l) (c.f., [10

Lemma 1.2. // dim H0―(n ―l)(n―2)/2 and i/0 /s compact, then dimG(o)^l

or ~^n―1 /or n^3.

PROOF. Since i/0 is compact and of dimension (n―l)(n―2)/2=dim(O(l)X

O(n―1)),HO contains the connected component lxSO(n ―1) of O(l)XO(n―1).

Thus T0M is naturally decomposed into the direct sum of 1-dimendional and

(n―l)-dimensional subspaces which are i^0-invariant and irreducible. On the

other hand, To(G(o)) is also f/0-invariant. Therefore we have dimT0(G(o))^l

or >n―1.

Proof of Proposition 1.1. Let G be a connected isometry group of

dimension r. Assume that (n ―l)(n―2)/2+3^r^n(n ―1)/2―1. Then, dimHo―

dimG-dim(G///0)=dimG―dimG(o)^(n-2)(n-3)/2+l. Since Ho is compact,

we can regard Ho as a subgroup of O(l)xO(n-l). If n―1=£4, there is no k-

dimensional subgroup of O(n-l) for (n-2)(n-3)/2<£<(n-l)(n-2)/2. There-

fore dimiJ0=(n ―1)(≪―2)/2so that we have 3^dimG(<9)^M―2. This contradicts

Lemma 1.2.

Remark 1.3. There exist 5-dimensional Lorentz manifolds M admitting

a 9(=(5―1)(5―2)/2+3)-dimensionalisometry group G with compact isotropy

subgroup. For example, let M be a product manifold RxC2 with metric

―df+ds% and G―RxG' where ds% is the Euclidean metric of C2 and G' is

the matrix group consistingof allmatricesof the form

ri, where A<=U(2), t^C2

Then dimG=9 and the isotropy subgroup at the origin is £7(2)which is compact.

2. The case where dim G = n(n ―l)/2.

Let G be a connected isometry group of dimension n(n ―1)/2 with compact

isotropy subgroup Hx at every point xeM. Then Hx is conjugate to a sub-
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group of O(l)xO(n-l), so that we have dimHx£(n ―l)(n―2)/2. On the othe:

hand, dim#*^dimG-dimM=(n-l)(n-2)/2-l. Thus we have dimHx=

(n-l)(n-2)/2 or (n-l)(n-2)/2-l. For n-1^4, O(n-l) contains no prope:

closed subgroup of dimension>(n―2)(n―3)/2 other than SO(n-l) (c.f., [2, p

48]). Thus, when n-l*4, dim#x=(n-l)(n-2)/2. For n-l=4, 0(n-l

contains no subgroups of dimension 5=(5―1)(5―2)/2―1 (c.f., [1, p. 347])

Thus, for n^4, we have dim Hx=(n ―l)(w―2)/2, so //* contains the connectec

component lxSO(n ―1) of O(l)xO(n-l). Therefore, TXM is naturally de

composed into the direct sum of 1-dimensional and (n ―l)-dimensional subspace;

which are /^-invariant and irreducible. On the other hand, Tx(G(x)) is Hx

invariant and of dimension n ―1. Thus we have irreducible decomposisior

T1(x)+Tx(G(x)) of TXM by the linear isotropy representation of Hx on TXM.

Since Hx is compact, the restriction -q of the metric of M to Tx(G(x)) is

positive definite,zero or negative definiteby the Schur's lemma. Since n ―1^3

■qmust be positive definite. Therefore we have

Lemma 2.1. Each orbit G(x) (xgM) is a spacelike hypersurface.

Since Hx contains lxSO(n-l), we have <7＼(x),T*(G(x))>=0 so that T^x.

is timelike. Let £(x)be a unit timelike vector belonging to 7＼(x).

Lemma 2.2. If M is time-orientable, then the vector field !;(p)'.=dg(l-(x)]

(p=gx, g^G) is well-defined on G(x) and G-invariant and it is extended to the

vector field on M.

Proof. The firstpart of this Lemma is proved by the same method as

the proof of Lemma 2 in [6]. Since M is time orientable, there exists a unit

timelike vector field £ on M. Then we can extend £ on M so as to be

<e, cxo.

From now on, we assume that M is time-orientable. We note that G acts

effectivelyon G{x). In fact,if g<sG acts on G(x) trivially,we have dg＼TxG(x)

-id. and rfg(£(x))=f(x),so that dg=id. on TxM=R{$(x)} + TxG(x). There-

fore g―id. on M. Furthermore we note that each G-orbit G{x) is isometric

to En~l, Sn~＼F"-1 or Hn~l, because the (n ―l)-dimensional Riemannian mani-

fold G(x) admits an isometry group G of maximum dimension n(n ―1)/2.

Lemma 2.3. Each integral curve oj £is a geodesic.

Proof. Let X be an arbitrary fixed non-zero vector in TXM such that

<f(x), ^f>=0. Since Hx contains lxSO(n-l) and n ―1^3, there exists h<BHx
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such that dh(X)=-X and dh^(x))-$(x). We have <7£,X>=<dh?7g), dh(X)>

=―<7^, X} so that we have <Ve£,Z>=0. Since A"is an arbitraryvector

orthogonalto $ and <7^, ^>=(l/2) ^<f,f>=0, we have 7^=0. Thus each

intpcrrnlrurvp of£i<3p ocpnrlpQir

Lemma 2.4. V*£=X(ic(X))X for any X such that <X, £>=0 where n is the

natural projection of the tangent bundle: TM―>M and X is a function on M which

The proof of Lemma 2.4is similarto that of Lemma 8 in [6]

Lemma 2.5. The l-form m defined by g>(X)=<X, £>is closed.

PROOF. The l-form (d is G-invariant and so da> is G-invariant (especially,

//^-invariant). Since Hx contains lxSO(n-l) and the linearisotropy represent-

ation of HT on Tt(G(x)) is irreducible, we have da)=0.

Proof of Theorem A. M is time-orientable,because M is simply connected.

Since a)is a closed 1-form from Lemma 2.5, there exists a smooth function

/: M->R such that df=a>. Let yv{t) be an integral curve of £ such that

Tp(0)―p- Then we can see f(TP(t))=―t+f(p). We may assume that /(M) is

some open interval containing 0eJ2. Let A7" be a connected component of

f~＼0). Then we have N―G(o) for some oeAf. For each xeiV, let Ix be the

domain of yx. Since f is G-invariant on N―G{o), for any p, q^N, we have

Ip―Iq which is denoted by /. Then the Theorem A will follow immediately

frnm thf npvf T.pmmn 9.fianrl T.pmma 2 7

Lemma 2.6. The map F: IxN->M defined by

Fit, x)=Expt$(x)=rx(t)

is a diffeomorphism.

Lemma 2.7. The map F: {IxN, -df+6(t)ds2N)->(M, < ,≫is an isometry

where the metric ds2N on N induced from < , > and $(t)=exp2(＼ X(s)ds)

[6]

The proof of Lemmas 2.6 and 2.7 is similar to that of Lemmas 5 and 9 in
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3. The case where dimG=(n-l)(n-2)/2+2.

We assume that dimG=(n ―l)(n―2)/2+2 and Hx is compact for every

point xgM.

Proposition 3.1. G actstransitivelyon M for n^4 and n^5.

Proof. Assume that G does not act transitivelyon M. Then dimG(o)<^

n―1 for some oeM. Hence dimiJ0^dimG-(n―l)==(n―2)(n―3)/2+l. By the

same method as in the proof of Proposition1.1, we can see that dimifo=

(≪―l)(w―2)/2.Hence dimG(o)=2 which contradictsthe Lemma 1.2.

Remark 3.2. In the Proposition 3.1, we cannot remove the condition that

the isotropy subgroup at every point is compact. In fact,let M be the Lorentz

manifold RxN with metric df+ds2N, where (N, ds2N)is the (n―l)-dimensionai

de-Sitterspace and G be the group RxG' where G' is the matrix group of the

form

r(l+a2+|X|2)/(2a) x (l-a2+|Z|2)/(2a)l

a>0, l ERn-＼

(l/a)All A a/a)A*X

A^S0(n-2).

_(l-a2-|Z|2)/(2a) -X (1+a2-|Z|2)/(2c)

G' is the connected subgroup of the proper Lorentz group SO+(1, n―1) acting

on N (c.f. [7]). Then G is an (n―l)(w―2)/2+2-dimensionalisometry group

which has noncompact isotropy subgroups and does not act on M transitively

(see§4).

Remark 3.3. There exists a 5-dimensional Lorentz manifold M aditting an

8(=(5―1)(5―2)/2+2)-dimensional isometry group G with compact isotropy

subgroup such that G does not acts transitivelyon M. In fact, take the space

in Remark 1.3 as M and set G ―lxG' (G' is the same as in Remark 1.3).

Then G is not transitive on M.

From now on, we assume n^6. Set H=H0 for some ogM. By Proposition

3.1,we have dim H=(n―2)(n―3)/2. Since //is compact and connected,if is

conjugate to a subgroup of SO(l)xSO(n ―1)so that we can regard H as an

(n―2)(w―3)/2-dimensionalsubgroup of SO(n ―1). In the case n―1^8, a

(n―2)(n―3)/2-dimensionalsubgroup // of SO(n-l) leaves one and only one 1-

dimensional subspace of Rn~linvariant. In the case n―1=8, we have either

H=S0(7) (which leaves one and only one 1-dimensionalsubspace of R8 invari-

ant) or H―Spin(J) with spin representation(see Kobayoshi [2, p. 49]).
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Let q and J)be the Lie algebras of G and H respectively. By the use of

an Ad(H)-'mvanant positive definite inner product on g whose existence is

guaranteed by the compactness of H, we have a decomposition g=Ij+m (direct

sum) of g such that [Ij,m]cm. Let it: G->G/H be the natural projection.

We identify the tangent space T0M and m by dx. The Lorentz inner product

on T0M induces the Lorentz inner product < , >m on m so that d%: m^T0M is

a linear isometry. Then the linear isotropy group H acting on T0M corresponds

to Ad(H) on m by means of dn. We note that the inner product < , >OT is

^4<i(i7)-invariant.
We define the Lorentz inner product B on g so that

fl(l&,m)=0, 5|m=<,>m

and jB|f,is positive definite. We extend B to the G-left invariant Lorentz

metric on G which is denoted by the same letter B. Then (G, B) is a Lorentz

manifold and ?r: G->G/H=M is the semi-Riemannian submersion (for the defini-

tion of the semi-Riemannian submersion, see O'Neill [9, p. 2121).

The structure of g for n ―1^8. We assume n ―1=£8. Since Ad(H) is

compact and dim^rf(i/)=(n-2)(n-3)/2, Af(//) acts on m as J2xSO(n-2).

Then m decomposes naturally into 2-dimensional subspace tn2 and (n―2}

dimensional subspace nti such that Ad{H)＼m2=id. and Ad(H)＼mi=SO(n―2).

Using Schur's lemma, we have that nti is spacelike. Furthermore, we have

<nti,tn2>m=0 so that m2 is timelike. Thus we have a decomposition g=^+mi-F

m2 such that

W, mxlcnti, tt, tna]= {0}.

Lemma 3.4. [m2, nti] zs either {0} or nti. More precisely, there exists a

linear map L: m2―≫JSsuch that ＼_A,X~＼―L{A)X for any A^va2 and any Zenti.

Here L is either zero or onto map.

Proof. For any fixed ^4em2, we define a linear map fA: n＼1->Q by

fA(X)=＼_A, X~](Zenti). Let p0, pi and p2 be orthogonal projection from g to

t),mi and m2 respectively. Since f),mx and m2 are 74<i(/f)-invariantand Ad(h)fA

=fAAd(h) for any /ie/f, we have

(*) pifAAd(h)=Ad(h)pifA for any h<=H(i=0, 1,2).

Step 1. We claim [m2, mjc^+mi. Since Ker(p2fA) is Arf(i/)-invariantby

(*) and the adjoint representation of H on nti is irreducible, we have Ker{pzfA)

= {0} or mi. Suppose Ker(p2fA)―{0} for some i£tn2. Then ^2/^: mi-≫nt2is

injective so that dimIm(p2fA)=n―2>2=dimm2. Hence we have Ker(p2/4)=nti
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for any A<=m2> that is, [m2, mJcKj+nti.

Step 2. We claim [m2, mjcnti. By the same procedure as that of Step

1, we have Ker(p0fA)={0} or mi. Suppose Ker(p0fA)―{0} for some AGm2.

Then dim£0/x(mi)=n―2. We can verify easily that pofA^＼) is ideal in I).

On the other hand, there is no ideal of dimension n―2 in lj=§o(n―2). Hence

we have Ker(pofA)=m1 for any ^Gitt2, that is [m2, mjcmi.

Step 3. By the above discussion, fA is a linear map from m i.into itself

and commutes with the action of Ad(H)=SO(n―2) on mi. Hence there exists

linear map L: m2-^R such that [A, X~＼= L(A)X (A^m2, iGm,).

Lemma 3.5. [rah mjcl).

Proof. Let p0, pi and pz be maps as in the proof of Lemma 3.4. Given

orthonormal vectors X and Y in mu there exists h^H such that Ad{h)=id.

on m2 and Ad(h)X=-X, Ad{h)Y=Y (for, n-2^4). Then we have

P2IX, Y-]=Ad(h)p2[X, Yl=p2[Ad(h)X, Ad(h)Y^

= -p,lX, F]

which implies p£_X, F]=0. Hence p£w.u nii]= {0}. Let express pi＼_X,Y~] as

aX+bY+cZ, where Z is a unit vector orthogonal to X and Y. Since n―2^4,

there exists h'<=H such that Ad(h')=id. on m2 and A/C/z')^―X, Ad(h')Y=

-Y, Ad(h')Z=-Z. The equality Ad{h')p,lX, Y']=p1Ad(h')lX, F] implies

pi[X, F]=0. Thus we have [mi, nti]c:l).

From the same method as in Kobayashi and Nagano [3, p. 212], we have

Lemma 3.6. [m2, m2]Cnt2.

From Lemma 3.6, there exists a basis {eQ)ex＼of m2 such that B(eQ, eo)= ―1,

B(eu 0i)=l and 5(eo, 0i)=O, and there exist constants a and b such that

[e0, e1]=ae0+^ei. Then there are the following four possibilities:

Case I: [e0, e^] is a zero vector (i.e., m2 is commutative);

Case II: [g0, ej is a non-zero null vector (i.e., a^O, b=da, where <52= 1);

Case III: [e0, ej is a spacelike vector (i.e., b2―ai=a2, a>0);

Case IV: [e0,≪i]is a timelike vector (i.e.,^>2―a2= ―a2, a>0).

There exists a basis /0, /i such that

in case II,

B(fOffo)=O^B(fuf1)> B(/o,/1)=-l, C/o,/i]=/i,

in case III.
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J3(/o,/0)=-l, B(flt /x)=l, B(/o, /t)=0 and [/,,/i] = a/,

in case IV,

fl(/o,/≫)=1, Wi,/.)=-l, B(/o, A)=0 and [/o,/i]=a/i.

In case I, we denote e0 and ex by /0 and /i respectively. Hereafter, in any

cases, we consider /0 and /i instead of e0 and eu Furthermore, in any cases,

we denote L(f0) and L(/0 by c0 and d respectively where L is the linear map

in Lemma 3.4.

Lemma 3.7. In cases II, III, and IV, we have Ci=0.

Proof. Let X be a non-zero vector belonging to trti. By the Jacobi's

identity

C/o, [A, *]]=[[/., /i], *]+[/i, C/o, ^]],

we have CoCi^^jSciZ+CoCi^ (j8=l or a) so that we have Ci=0.

Determination of M for n ―1^8. Since M is simply connected, // is

connected so that Ad(H) acts on m2 as the identity transformation. Therefore

we have

Lemma 3.8. For each /uem2 (u=0, 1), the vector field t-udefined by

%u(P): =dgdK{fu{e)) (p=g(o), ge=G)

is well-defined on M and G-invariant where e is the identity in G.

We have the following formulas (**) according to the above each case I~

IV:

Case I. Vfu£,=0, Vx£≪=-cM* (m, v=0, 1);

Case II. Vfo£0=-£o, Vfo^=^, Vfl£0=0,

(**) Vfl^=0, VxZo=-coX, 7^i=0;

Cases III and IV. 7^0=0, V^^O, 7fl$0=-af,

Here Z is any vector field orthogonal to £0 and £x and 7 is the Levi-Civita

connection of the Lorentz metric < , > on M.

By the G-invariance of i-u and the above formulas, we have

Lemma 3.9. (1) In the cases I and II, theintegral curve of £iis a complete

geodesic.
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(2) In the cases I, III and IV, the integral curve of £0 is a complete geodesic.

By the similar way as the proof of Lemma 2.5, we have

Lemma 3.10. (1) In the cases I. Ill and IV, the I-form <Dn on M defined

<o0(X):=<X, £0>

is G-invariant and closed.

(2) In the cases I and II the 1-form (Di on M defined by

is G-invariant and closed.

Now we will determine G/H―M in each cases I, II,III and IV.

Case I. Lemma 3.10 implies that there exist smooth functions <paand <px

such that d(pu=Q)u (u―0, 1). Since £0 and £tare G-invariant, there exist 1-

parameter groups of transformation 0? and §＼generated by £0 and $t respec-

tively. We can verify easily that for AgM,

(#)

<f>1(P))=UP), 0i(^i(/>))=s+<&1(/>).

Let M＼ be a connected component of Mi={p^M',<po{p)=(pi(p)=O}. Then
M

is a connected (n―2)-dimensional closed submanifold of M. Furthermore M'

is spacelike, because £0and £1are orthogonal to Mx.

Lemma 3.11. The map F: RxRxMI^M defined by

F(t, s, *)=#(#(*))

zs a diffeomorphism, and Mi―Mi is simply connected.

Proof. Suppose that Fit, s, x)=F(t', s', x'). Then, from (#), we have

t=f and s=s'. Therefore we have <f>1(<f>＼(x))=<p＼{<j)＼(x'))so that we have x = x'.

Thus F is injective. It is clear that F is smooth. Setting N=F(RxRxMD,

then AT is open in M. It remains to be shown that N is closed in M. Suppose

that {F(tk, sk, xk)=pk} is a sequence converging some point q in M.
Since

tk=
~<J>o(Pk)

and sk=<J>i(Pk), we have tk-^t0:= ―<p^q) and
sk->s0:=<pi(q) as

&-≫co. Since xk=$Llk(,$Uk(Pk)) converges x0:―0LSo(0-£o(^))as ^-^co and
M? is

closed, x0 belongs to M? so that ^=^?o(^so(;co))belongs to N. Thus AT is closed.

Thus we have N=F(RxRxM!＼
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Remark3.12. For each (a, fytERxR, Mv{a, b):= {p<E:M;(pa{p)=a,<px{p)=b}

is a simply connected (n―2)-dimensional spacelike submanifold of M.

Lemma 3.13. For each (a, h)(BRxR, M^a, b) is congruent to M1=M1(0, 0)

in M.

Proof. Since G acts on M transitively,for some point p in Mi(a, b) there

exists geG such that g(o)=p(o^Mi). Then we have g(Mi)cMi(a, b). In fact,

for each point q<=g(Mx), there exists a smooth curve c: [0, l]->g(Mt) such that

c(0)=p and c(l)=^. Put c:=g~1c. Then c is a smooth curve in MU so we

have (po(c(s))=Q=<p1(c(s))for any se[0, 1]. Therefore we have

(d<pu/ds)(c(s))=<Uc(s)＼ d(s)>=<dg£u(c(s)),dgc(s)}

=<6u(c(s))f≪J(s)>=(d0B/ds)(c(s))=O (u=0, 1).

Thus we have <po(q)=a and <p1(q)=b so that we have g(Mi)cMi(a, 6). Since

^CMO is open and closed in M^a, b), we have g(Mi)=M1(a, b).

Lemma 3.14. Mx is a homogeneous Riemannian manifold.

Proof. For any p, q^Mu there exists g^G such that g{p)―q. By the

same method as in the proof of Lemma 3.13, we can see that g＼Ml is an iso-

metric transformation of Mu

Set G1:={g<E.G; gM1=M1}. Then Gx is a Lie subgroup of G. We can

verify that H is included in Gi by the same discussion as in the proof of Lemma

3.13. Furthermore, Gx acts on Mx effectively. Thus dim G 1=dim Mx+dim H―

(n ―l)(n―2)/2. Therefore the simply connected (n―2)-dimensional Riemannian

manifold Mt admitting an isometry group Gi of maximum dimension

(n ―l)(n―2)/2 is isometric to Sn~＼Hn'2 or En~＼

Lemma 3.15. The map

F :(RxRxMu -dt2-＼-dsz+exp(~2c0t-2cls)ds2Ml) ―> (M, < , ≫

is an isometry where ds2Ml is the metric of Mx.

Proof. Let (V, O=(t2, ■■■
>
^n-i))be a local coordinate around a point p in

M^ Then (RxRxV, idX0=(t, s, t2>■■■, tn-i))is a _local coordinate around

(a,b,p) in RxRxMu Put Vi^FiRxRxMJ and define R: V-*Rn by

(idX0)°F~K Then (V, 0―(xo> xu ･■･, xn-0) is a local coordinate around p =

F{a, b, p) in M. Since [f0,^i]=0, we can see dF(d/dt)=d/dxo=& and dF(d/ds)

=d/dx1=£1. Furthermore we have dFCd/dt^d/dx, (;=2, ･･･. n-l). We can
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also see that (o/dxu, d/dx^―O (u=0, 1). In fact

<d/dxu, d/dXj>=<£u, dF(d/dtj))=(d/dtMu(F(t, s, x))

Since 7^u=-cuX (u=Q, 1) for any X orthogonal to £0and $u we have

d/dt<d/du,d/dtd=-2co<d/dti, d/dtt>

and

so that we have

Thus we have

d/ds<d/dtt, d/dtjy = -2c1<d/dti, d/dtj}

<d/dtu d/dtjy=exp(-2cot~2c1s)gij(t2> - , *,_,)

F*< , y= -dt2+dsi+exp(-2c0t-2c1s)dsiM,

Lemma 3.16. // Mx is Hn~2 or Sn~2, then cQ=c1=O, i.e., the metric of

RxRxMi is a product metric.

Proof. Since, for each (a, b)<=RxR, M^a, b) is isometric to Mx by

Lemma 3.13, the scalar curvature S(a, b) of Mx{a, b) coincides with the scalar

curvature 5(0, 0) of Mx which is non-zero. On the other hand, we have

S(a, 6)=exp(―2c0a―2d6)XS(0, 0) by Lemma 3.15. Since a and b are arbitrary,

we have Co^Ci^O.

We notice that, in the case Mx―En'2, there are two cases (1) co=Ci=0

and (2) co^O or Ci=£0.

Summing up, in the case I, (M, < , ≫ must be one of the following:

(i) (L2xMi, dsl+ds2Ml) where (L2, ds＼) is the 2-dimensional Minkowski

space and {Mu ds2Ml)is a simply connected (n―2)-dimensional Riemannian mani-

fold of constant curvature;

(ii) (R2XEn-2, -dt2+ds2+exp(-2c0t-2c1s)ds2E) where co^O or c^O.

Case II. Since a)xis closed, there exists a smooth function <px:M^-R such

that d<pi=o)i. Define the vector field 07 on M by 7](p):=exp(―(p1(p))$0(p)

(P^M).

Lemma 3.17. The 1-form w0 defined by 6&0(X):=(7}, X) is closed so that

there exists smooth function So: M^>R such that d6o=wo.
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Proof. Since ddJ0(X, Y)=(lxf), Y>―<Vr^, X} for any vector fields X and

Y, we can verify that &0 is closed by formulas (**).

Since £0 is G-invariant, there exists the 1-parameter group of transform-

ations 0s generated by £0. Let cp{t) be the integral curve of £x through a point

p<=M. From the G-invariance of $u cp(t) is defined for any te.R. Define the

vector field C on M by C(<?)=exp(01((?))^1(^) (q^M). Let $1 be the 1-parameter

group of transformations generated by £･ Then we have ^＼(p)=cp(exp(<p1(p))t)

so that <f>＼is complete. Noting that [£0,C]=0, we have (j>*<f>＼=<j>＼<l>＼.We can

verify the following:

^oW))=^o(£), ^i(^))=-t+$o(P),

&($(/>))=-s+0i(/O, M^MP))=MP) for iGl.

Let Ml be a connected component of M1'.= {p^M;^Q{p)=<bi{p)=0} Then M?

is an (n ―l)-dimensional closed submanifold of M. Furthermore M° is space-

like, because f0 and & are orthogonal to M?.

Lemma 3.18. The map F: RxRxMf-*M defined by

F(t, s, x)=<f>＼<j>l(x)for (t, s, X^RXRXM?

is a diffeomorphism, and MX=M1 is simply connected.

The proof is similarto that of Lemma 3.11.

Remark 3.19.For each(a, b)^RxR, M^a, b):={p<EM; $0(p)=a, <pi(p)=b]

is a simply connected (n―2)-dimensionalspacelikesubmanifold of M.

The following two Lemma 3.20 and 3.21 are proved by the same method

as in Lemma 3.13 and 3.14 respectively.

Lemma 3.20. For each {a, b)<=RxR, Mx{a, b) is congruent to Mx in M.

Lemma 3.21. Mx is a homogeneous Riemannian manifold.

Set G1: = {g^G; g(Mx)=Mx}. Then we also have that Gx is a closed Lie

subgroup of G and includes H. G＼ acts effectively on Mx so that Mx is Sn~2,

ffn-2 o En-2

Lemma 3.22. The map F: (RxRxMu -2exp(-s)dtds+exp(-2c0s)ds2Mi)^

(M, < ,≫ is an isometry.
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Proof. As in the proof of Lemma 3.15, we take a local coordinate (V, R ―

(t2,･･･, tn-2))around a point p in Mx and a local coordinate {V, <P=(x0, xu ･･■,

xn-i)) around a point F(a, b, p) in M. Then we can see dF{d/dt)―d/dxa―

exp(-s)6,, dF(d/ds)=d/dxx=^ and dF{d/dti)=d/dXi (*=2, ･･･, n-1) at (f, s, /))

e^RxRxMu Furthermore, we can see

d/ds(d/dtu d/dtj>= -2co<d/dti, d/dtj}

and

d/dKd/dU, d/dtjy=O (i,j=2, ■■■, n-1)

so that we have

(d/dtt,d/dtj}-exp(-2cos)gij(t2> ■■■, tn-x).

Uhus we have

F*< , >=-2exp(-s)rffds+exp(-2c0s)rfsSfl.

We also have the following Lemma 3.23 by the same method as in the

case I.

Lemma 3.23. // M, is Sn~2 or Hn~＼ then co=O.

We note that the space (RxR, ―2exp(―s)dtds) is isometric to the upper

half-space U2={(x, y); y>0＼ with flatmetric ―2dxdy/y* by the transformation

(t, s)-≫(x,y)―{ttexp(s)).

Thus, in case II, M must be one of the following:

(iii) (U*xMlt ―2dxdy/yz+ds2Ml) where (Mu ds2Ml)is a simply connected

(n―2)-dimensional Riemannian manifold of constant curvature;

(iv) (U*XEn-＼ -2dxdy/y2+(l/y)2c°ds%l

Remark 3.24.

space U2={(xlf ■■■

When £o=l, the space (iv) is the ^-dimensional upper half-

xn)°-xn>0} with flatmetric

(X/x*X-2dxn-1dxn+dxl+ ■■■+dxl-2).

Case III and IV. Since &>0is closed by Lemma 3.10, there exists a smooth

function <p0:M-^R with d(po=Q>o- Put 7](p)=exp(―/ca(pQ(p))^1(p)where

≪=<£i,£i>(i.e., k=1, ―1 in the cases III,IV respectively). Define a 1-form

<5iby d)1(Z)=<Z, iy>. Then we have the following Lemma by the same method

as in Lemma 3.17.

Lemma 3.25. &i is a closed l-form so that there exists a smooth function

$!'.M->R with d<bl=&i.



On Lorentz manifolds with abundant isometries 127

Since £0is G-invariant, there exists the 1-parameter group of transformations

$1 generated by £0. Let cp(s)be an integral curve of £1through a point £eM.

Then, for each point p^M, cp(t)is defined for any t<=R, because of the G-

invariance of £1. Define the vector field C on M by C(/O=exp(ica0o(/>))£i(/O

(p<=M). Let $1 be the 1-parameter group of transformations generated by £.

Then we have $l(p)=cp(exp(Ka<po(P))s) so that <f>＼is complete. Noting [£0,Q

=0, we have 0?0J=0J0?. We can verify the following:

Mkp))=$i(p) , H$xp))=ks+Hp) ･

Let M°x be a connected component of M1:={p^M; <po(P)=^i(P)z=0}. Then

by the same procedure as in the case II, we have Lemmas 3.26, 3.27, 3.29,3.30

and Remark 3.28.

Lemma 3.26. M? is a connected {n―2)-dimensional spacelike closed sub-

manifold of M.

Lemma 3.27. The map F: RxRxMl->M defined by

F(t, s, x)=<j>＼tj>%x) for (t,s, x)t=RxRxMl

is a diffeomorphism, and M1=M°l is simply connected.

Remark 3.28. For each (a, b)^RxR, Ml{a,b):-{p^M;<p,{p)=ai

$i(P)=b} is a simply connected (n―2)-dimensional spacelike submanifold of M.

Lemma 3.29. For each {a, b)^RxR, M^a, b) is congruent to Mx in M.

Lemma 3.30. Mi is a homogeneous Riemannian manifold.

By the same method as in the case II, Mx is isometric to Sn~＼Hn~l or

En~2. We also have following Lemmas 3.31 and 3.32.

Lemma 3.31. The map

F:(RxRxMu -K(df-exp(-2at)ds2)+exp(-2cot)ds2Ml)-+(M,< ,≫

is an isometry.

Lemma 3.32. // M,=Sn~z or Hn~＼ then co=O.

We note that (RxR, -ic(dt2-exp(-~2at)ds2) is isometric to (U2={(x, y);

y>0}, dsl=fc(dxz―dy2)/(ay)2) by the transformation (t, s)->(x= s, y=exp(at)/a).
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Thus, in case III,(M, < , ≫ must be one of the following:

( v ) (U2xMu ds2+1/a2+ds2Ml);

( vi ) {UzxEn~＼ ds%Ja*+(l/ayYeladsE),

and in case IV, (M, < , ≫ must be one of the spaces

(vii) (U2XMU dsljcf+dsbj,

(viii) (U2xEn~2, dsl1/a*+(l/ay)ie/adsE),

where (Mlt ds2Ml)is a simply connected (n―2)-dimensional Riemannian manifold

of constant curvature.

The case n=9. When n ―1=8, H is isomorphic to SO(7) or Spin(7) which

has a spin representation. When H is isomorphic to SO(7), the argument is

the same as in the case n ―1=£8. Therefore it is enough to deal with the case

that H is isomorphic of Spin(7).

Since H is conjugate to the subgroup Spin(7) of SO(8), there exists a time-

like G-invariant vector field£ on M with <£,£>= ―1.

By the same method as the proof of Lemma 2.5, we have

Lemma 3.33. The 1-form a) defined by a)(X)―{$, X} is G-invariant and

closed so that threre exists a smooth function f: M―>R with df=co.

The G-invariance of £implies the completeness of £. There exists the 1-

parameter group of transformations <j>tgenerated by £. Then we have f($t(P))

= -t+f(p) (fe/J, p^M). Put N={p^M; f(p)=0}. Then a connected com-

ponent A''0 of AT is a connected closed 8-dimensional spacelike hypersurface of

M. By the similar way as in the case I, N° is a homogeneous Riemannian

manifold admitting an isometry group G' := {g^G; g(N°)=N0} of dimension

8(8-l)/2+l=29 which acts effectivelyon N° and includes H. Then, by the

theorem in [8], N° is isometric to E8 and G'=Spin(7)R8 (a semi-direct product).

We have 7x1= ―cX for any X orthogonal to £ where c is a constant. In fact,

Spin(7) acts transitively on S': = {Z^TXM; <Z, £>=0, <Z, Z>=1} so that the

proof is the same as in [6, Lemma 8]. We also have that the map F: RxN°

->M defined by F(t, x)=$t(x) for (t, x)^RxN° is a diffeomorphism and the

map F: (RxN°, -dtz+exp(-2c)ds2N°^(M, < ,≫ is an isometry.

4. Final Comment.

In connection with Remark 3.2, we must correct some parts in the previous

paper [6]. There are some ambiguous stataments in [6]. In the Theorem,

the statement "whose isotropy subgroup is compact" should be "whose isotropy
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subgroup at every point is compact". The statement "H is compact" that

precedes Lemma 1 should be "H is compact at every point". We cannot remove the

condition that the isotropy subgroup at every is compact, by the following example.

Example. Let M be the n-dimensional de-Sitter space S?={(m0, uu ･･･, un)

ei2re+1; ―ul+ui+ ■･･+u£=l} and G the matrix group of the form

r(l + G2+|Z|2)/(2a) 1 (l-a2+m2)/(2a)]

a>0, X^R"-1

{l/a)All A (l/a)Atl

A(=SO(n-l),

_(l-a2-|Z|2)/(2a) -1 (l+a2-|X|2)/(2a)J

(c.f., Remark 3.2). Then, for every point p in S? such that uo+un>O (resp.

<0), the G-orbit of p is U+={(vOf ■･■,v≫)eS? ; vo+vn>Q} (resp. U-={(v0, ■■■,vn)

gS": vo+vn<O}) and the isotropy subgroup at p is compact. But, for every

point q in S such that ua+un―Q, the G-orbit of q is a lightlike hypersurface

of Si and the isotropy subgroup at q is non-compact.
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