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1. Introduction

Recently Suszycki [22] defined the notion of multi-retractions on compact

metric spaces and considered Interesting properties. The author [15] extended

that notion to the case of metric spaces and announced some properties related

to shape theory. First the notion of multi-retractions resulted from inverses of

C£-maps. But in shape theory we studied various kinds of Vietoris-type maps.

Then in this paper we shall define notions of various multi-valued functions

and consider related topics.

Throughout this paper we assume that all spaces are metrizable and all

maps are continuous. AR and ANR mean those for metric spaces. Dimension

means covering dimension and by dim X we denote the covering dimension of

a space X.

Let X and Y be spaces. By a multi-valued function <p: Y-^Y we mean a

function assigning to each point i£la non-empty closed subset <p(x)of Y. A

multi-valued function <p: X^Y is compact if <p(x)is compact for every x£l

A multi-valued function <p: X-*Y is said to be upper semi-continuous (shortly

u. s.c.) provided for each point ie! and for each neighborhood V of <p(x) in

Y there exists a neighborhood U of x in X such that <p(U)= ^J{<p{z)＼z^U}dV.

For a multi-valued function <p: X―>Y, the graph of <p is defined as follows

0={(x, y)<EXxY＼y^<p(x), xgI}.

And let p: 0―>X and q: @^Y be the natural projections. Then if a multi-

valued function <p: X-*Y is u. s.c, the graph 0 of <pis closed in Xx Y. More-

over if ip is compact, then the natural projection p: 0―>X is a proper map.

For each n=0, 1, 2, 3, ･･･,oo we say that an u.s.c. compact multi-valued

function cp: X-^Y is a compact n-multi-map (shortly a c-n-niulti-map)if <p(x) is

ACn (see [3] or [7]) for every xgI Moreover if <p(x) has the trivialshape

(see [3] or [7]) for every x^X, then we simply call a compact multi-map

shortly a c-multi-mat.
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It is clear that on compact metric spaces our definition of a c-mulii-map

agrees with Suszycki's one of a multi-map [22].

A space X is said to be countable dimensional if X can be represented as

the union of a countable number of zero-dimensional subspaces. A space X is

said to have the property C (to be a C-space) if for every sequence {Uj}ial of

open covers of X there is a sequence {^BJjgi of collectionsof pairwise disjoint

open subsets of X such that family U 33$is a cover of X and 33^ refines It*for

each z'Sil. The notion of C-spaces was originally defined by Haver [11] and

studied further by Addis and Gresham [1]. It is well-known that a countable

dimensional space is a C-space (see [1] Corollary 2.10 or [2] Lemma 3.3). Hence

it seems to us that the class of allC-spaces is sufficientlywide. But we remark

that by the example of Pol [21] the converse of the assertion is not valid (see

[9] Example 8.18). The property C plays an important part in ANR theory

and shape theory.

We refer readers to [3] and [7] for shape theory.

The author would like to express his thanks to the referee for his valuable

suggestions.

2. Shape morphisms induced by c-multi-maps.

Let <p: X-+Y be a c-multi-map from a C-space X to a space Y. Let <P be

the graph of <p and let p: #-*.X and ^: 0-^Y be the natural projections. Now

p is a CE-map, because <pis a c-multi-map. Since X has the property C, by

[2] Corollary 5.3,and remarks below the Main Theorem 3.2,p is a hereditary

shape equivalence (see [7] or [17]). Hence we can define a shape morphism

S(g)°S(p)''1:X-+Y, where S(f) is the shape morphism induced by a map/.

Then we shall call S(q)aS(p)~1 the shape morphism induced by <p and denote by

S(<p):X->Y (cf. [13]).

2.1.Theorem. Let <p: X―>Y be a c-multi-map from a C-space X to a space

Y. If there exists a map g: Y-≫X such that y^<p(g(y)) for every y^Y, then

S(<p):X―yY is a shape domination. Therefore Sh{X)^Sh(Y).

Proof. Let 0 be the graph of <p and let p: @->X and q: 0->Y be the

natural projections. Define the map h: Y―>0 by h(y)=(g(y), y) for each ye.Y.

Then q°h=idY. Hence S((p)o(S(p^S(h)) = S(q)"S(pr^S(p)^S(h) = S(q)oS(h)^

S(idY). Therefore S(<p)Is a shape domination.

2.2.Corollary. Under the hypothesis of Theorem 2.1 if X satisfiesa here-
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ditary shape preperty (P), for example, MAR, MANR, movability, Sd{X)^n, ･･･,

etc, then Y also satisfies (P).

We shall show that the property C of X is essential in Theorem 2,1 and

Corollary 2.2.

2.3. Example. Let /: Y-+Q be the Taylor's cell-like map from a non-

movable continuum Y onto the Hilbert cube Q [23]. Then let X be the map-

ping cylinder (Fx[0; l]W£)/~ of /, where ~ identifies (y, 1) with f{y) for

each point y&Y. It is clear that X is an FAR. Since X contains Q, by [1]

Corollary 3.3, X is not a C-space. Moreover we define a c-multi-map <p: X-+Y

as follows

<p(Ly, G)={y] for every (y, t)^Yx[0, 1), and

<p(L^J)―f~K^) for every z<e.Q .

Defining the map g: Y-^X by g(y) = [.y, 0] for every jgF, we have that y^

<p(g(y)) for every jgF. But Sh(X)^Sh(Y), because Y is non-movable.

Let (X, x0) and {Y, y0) be pointed spaces with given base points x0 and y0

respectively. Then we write ip＼(X, xo)-+(Y', y0) if <p is a c-multi-map and yo&

<p(x0). For two c-multi-maps <p0,<px:(X, xo)^-(Y, y0) if there exists a omulti-maf

1: Xx[Q, 1]->F such that l＼Xx {0} =<po,X＼Xx {1}=^ and yo^l(xo, t) for even

fe[0, 1], we say that ^0 and ^x are compact multi-homotopic (shortly c-multi-

mc

homotopic) and we denote <pQ― (p^ Then we call X the compact multi-homotop)

(shortly c-multi-homotopy) connecting <p0 and (pt.

It is clear that the relation of the c-multi-homotopy is an equivalence rela-

tion on the set of all omulti-maps from (X, x0) to (Y, y0). We write ＼jp~]the

equivalence class of a c-multi-map (p. By M((X, x0), (Y, y0)) we denote the sei

of all those equivalence classes.

On unpointed spaces we do not require the condition of base point preserv

ing, thus we can define the notation of unpointed c-multi-homotopy and the sei

M(X, Y) of unpointed classes. On compact metric spaces our definition of c

multi-homotopy agrees with Suszycki's definition of multi-homotopy [22].

We remark that every two homotopic maps from (X, x0) to {Y, y0) are c

multi-homotopic but the converse is not valid (see [22] Example 3.2).

For each n―0, 1, 2, ･-･, oo we can similarly define the relation of compac

n-multi-homotopy (shortly c-n-multi-homotopy) of pointed and unpointed c-?z-multi

m a ns

2.4.Theorem, Let <p0 and (p±be c-multi-maps from a C-space X to a space
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me

Y. If (p0 ― <pi, then S((po)=S(<p1).

Proof. Let X: Xx[0, I]―>Y be a c-multi-homotopy connecting <po and (px.

Let 0 be the graph of 1 and let p: @->Xx [0, I] and q: 0-*Y be the natural

projections. Then by [1] Corollary 2.24 Xx[0, 1] is a C-space. Hence we can

define the shape morphism S(X)=S(q)S(p)-1: Xx[0, l]-≫7. For k=0, 1 let

gft: X^Xx[0, 1] be the embedding defined by ek(x)=(x, k) for each i£l

Defining @k = @r＼(Xx {k} xY) = p~＼Xx {k}), we can identify the graph of <pk=

l°ek with 0k. Since /> is a hereditary shape equivalence, pk ―p＼^k' $k＼Xx

{k} is a shape equivalence and by the definition S((pk)= S(qk)°S(pk)~loS(ek):

X->Y, where qk=q＼Rk: @k->Y. Let fk: Zx {^}―Xx[0, 1] and jk: 0k-+0 be

the inclusion maps. Since ik°pk ―p°jk and ik is a shape equivalence, jk is a

shape equivalence. Hence S(<pk)= S(.qk)'S(pky1°S(ek)=S(q)*SUk>StikY1°S(p)-1o

S(ik)<>S(ek)= S(q)<'S(p)'1''S(ik°ek)―S(T)''S(ik''ek) for each k=0, 1. Since z><?0~

ii°eu 5(fooe0)=5(fi°e1). Therefore S(^0)=S(^3). We complete the proof of

Theorem 2.4.

■y "

Xx£O, 1]-*-^―0 ―^-Y

＼ f>, I at, I!

XX {k}^ ^-0k *~Y

For spaces X and Y we denote the set of all shape morphisms from X to

Y by Sh(X, Y). If Y is an ANR, every shape morphism from X to Y is gen-

erated by a map from X to Y. Hence we have the following.

2.5.Corollary. // X is a C-space,for an arbitraryspace Y the corre-

spondence S induces a functionfrom M{X, Y) to Sh(X, Y). Moreover if Y is an

ANR, S is surjective.

Let 0Xo: {X, xo)-*(X, x0) be the constant map to x0. We say that (X, x0) is

compact multi-contractible (shortly c-multi-contractible) if OXq ―id(.x,x^. If (X ^o)

is c-multi-contractible for every xoeX, X is simply said to be compact multi-

contractible (shortly c-multi-contractible). For each n = l, 2, ･･･, oo we can simi-

larly define the notation of compact n-multi-contractibility (shortly c-n-multi-

contractibility). In the case of compact metric spaces our definition of c-multi-
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contractibilityagrees with Suszycki's definitionof multi-contractibility(see [22]).

2.6. Corollary. // C-space X is c-multi-contractible,then X has the trivial

shabe. Therefore X is an MAR.

Since there is a c-multi contractible compact space which is not an FAR

(see Remark 4.16 and 4.18), the property C of X is essentialin Corollary 2.6.

But it is unknown whether the converse of Corollary 2.6 is valid. We remark

that every FAR c-multi-contractible(see T221 3.9).

Problem 1. Is every MAR c-midti-contractible?

Next we shall consider the pointed version. Let <p:(X, xo)-+(Y', y0) be a

pointed c-multi-map from a compact C-space X to a compact space Y. Then

the graph 0 of <p is compact and (x0, yo)e#. Let />: CP-^Z and 9: @->Y be

the natural projections. Then p(x0, yG) ― x0 and ^(x0, yo)=yo- Since /) is a

hereditary shape equivalence, by [8] Theorem 7.10 and Corollary 4.6, p :(0, (x, y0))

―>(X, Xo) is a fine shape equivalence.1*0 Hence we can define the fine shape

morphism Sf(g)<>Sf(p)~1: (X, x0)―>(Y, y0), where Sf(g) is the fine shape morphism

induced by a map g. Then we shall call Sf(q)≪Sf(p)~1 the fine shape morphism

induced by and denoted by Sf(<p): (X, xo)―*(Y, y0). By the same way as Theo-

rem 2.1 we can prove the following.

2.7. Theorem. Let <p: (X, x0)―*(Y, y0) by a c-multi-map from a compact C-

space X to a compact space Y. If there exists a map g: (Y, yo)-*(X, x0) such

that y<^<p(g(y)) for every y^Y, then Sf(<p): (X, x0)―>(Y, y0) is a fine shape

domination. Therefore Shf{X, xo)~^Shf(Y, y0), especially Sh(X, x)^Sh(Y, y).

2.8. Corollary. Under the hypothesis of Theorem 2.7 if X satisfies a pointed

hereditary {fine) shape property (P), for example, pointed FANR, pointed (n-)

movability, fine (n-) movability, , etc, then Y also satisfies (P).

By Example 2.3 the property C of X is essential in Theorem 2.7 and Corol-

lary 2.8. By slight modifications using the result of [4], we can prove the

pointed version of Theorem 2.4 and Corollary 2.5. Here we leave readers the

detail nf nronf≪

2.9. Theorem. Let (X, x0) be a pointed compact C-space and (Y, y0) a

*} Fine shape theory defined in [14] is equivalent to strong shape theory defined in [8]

In this paper we shall use the terminology " fine shape."



326 Akira Koyama

Proof. By the proof of Corollary 3.3 and Theorem 3.1 Y is compact and

the number of all components of Y is finite. Hence we may assume that X and

Y are continua. Let us fix a point j/gF. Since (X, g(y)) is a pointed FANR

by [10], for every k = l, 2, ･･･ pro-7r*(X, g(y)) is stable in pro-c and rck(X, g(y))

is a countable group. They by Corollary 3.4 and Theorem 3.1 pro-7tk(Y, 3;)is

stable in pro-R and 7zk(Y, y) is a countable group for every k = l, 2, ･･･. Hence

since Fd(Y)<00, (Y, y) is a pointed FANR (see [5] or [24]). Therefore Y is

an FANR.

3.7.Remark. By Example 2.3 the movability of Y and the being Fd(Y)<00

are essentialin Corollarv 3.5 and Corollary 3.6.respectively.

4. m?-ANR, rnc~ANR, ntf-AR and me-AR.

Let F be a subset of a space X Then a c-n-multi-map <p: X-*Y, where

n = 0, 1, 2, ･･･, oo, is said to be a compact n-multi-retraction (shortly a c-n-multi-

retraction) of X onto Y provided y ^.<p{y) for every j?eF. Similarly we call a

c-multi-map ip : X―>F a compact multi-retraction (shortly a c-multi-retraction) of ^

onto F provided y<E(p(y) for every jigF. If there exists a c-n-multi-retractlon

(resp. c-multi-retraction) of X onto Y, then we say that Y is a compact n-muli-

reiract (resp. compact multi-retract) (shortly c-n-multi-retract (resp. c-multi-

retr act)) of X

Obviously for every Osgnsgm^oo every 77t-multi-retraction of X onto F is a

on-multi-retraction. Every retraction of X onto F is a c-multi-retraction. If

there exists au u.s.c. compact multi-function <p: Ar-≫F such that y^<p(y) for

every y<=Y, Y is a closed subset of X. Therefore if F is a e-O-multi-retract

of X, Y is a closed subset of X

Let F be a subset of X If there exist a neighborhood £/ of F in X and

c-n-multi-retraction (resp. c-multi-retraction) <p: U-+Y, then we way that F is a

neighborhood compact n-multi-retract (resp. neighborhood compact 'multi-retract)

of X

For n=0, 1, 2, ･･･, oo a space F is said to be an absolute neighborhood com-

pact n-multi-retract (shortly m?-ANR) provided for every space M containing F

as a closed subset F is a neighborhood compact n-multi-retract of M. If for

every space M containing F as a closed subset F is a c-n-multi-retract of M,

we say that F is an absolute compact multi-retract (shortly m%-ANR). Similarly

by using notions of a neighborhood compact multi-retract and a compact multi-

retract we can define notions of an absolute neighborhood compact multi-retract

(shortly mr-ANR) and an absolute compact multi-retract (shortly mc-AR).
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It is easily seen that our definitions are topological invariants. By defini-

tions it is clear that for every O^k^n^oo every rri^-AR (resp. ntf-ANR) is an

mkc~AR (resp. mkc-ANR) and every mc-AR (resp. me-ANR) is an m -AR (resp.

m^-ANR). In the case of compact metric spaces our definitions of mc-AR and

mc-ANR agree with Suszycki's definitions of m-AR and m-ANR (see [22]).

We easily have following properties, where n― 0, 1, 2, ･■･, oo (see [221 2.5-2.8).

4.1.
^4 space

Y is an m^-AR {resp. mc-AR) if and only if Y is a c-n-multi-

retract (resp. c-multi-retract)of every (equivalently some) AR-space N containing

Y as a closed subset.

4.2. A space Y is an m^-ANR (resp. ?nc-ANR) if and only if Y is a neigh-

borhood compact n-multi-retract (resp. neighborhood compact multi-retract) oj

every (equivalently some) ANR-space N containing Y as a closed subset.

4.3. A space Y is an rn^-AR (resp. mc-AR) if and only if for every closed

subset X of a space M and for every map f: X―*Y there exists a c-n-multi-map

(resp. c-multi-map) <p: M-^Y such that f(x)^<p(x) for every xeX

4.4. A space Y is an m*-ANR (resp. mc-ANR) if and only if for every

closed subset X of a space M and for every map f: X-+Y there exist a neigh-

borhood U of X in M and a c-n-multi-map (resp. c-multi-map) cp: U-^Y such that

f(x)<E.(p(x) for every xgI

4.5. Remark. Every AR (resp. ANR) is clearly an mc-AR (resp. mc-ANR).

In [22] 2.9 Suszycki essentially proved that every c-1-mulri-retract of a locally

connected space is also locally connected. Hence for every n^l every rn^-ANR

is locally connected. On the other hand every continuum is an m^-AR. Indeed,

for every continuum Y and for every space M containing Y we can define a

c-O-multi-retraction <p: M-*Y by cp(z)=Y for every zeM. Similarly every FAR

is an mc-AR. But Suszycki [22] 2.27 showed that there is a 1-dimensional

planar FANR which is not an mc-ANR. Indeed, his example is not an ml-ANR

and has the shape of the 1-sphere. Therefore notions of m*-ANR and mc-ANR

is not shape invariants.

In the case of non-compact spaces the next problem is still open.

Problem 2. Is it valid that every MAR is an ?nc-AR?

Using results of sections 1 and 2 we can easily point out properties of

m?-AR, m^-ANR, mc-AR and mc-ANR.
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4.6. // Y is an mne~AR, then Y^ACn, pro-Hk(Y)=0 in pro-c and Hk(Y)=G

in ($ for every integer k, O^k^n.

4.7. // Y is an mf-ANR, then pro-Kk(Y, y) and pro-Hk(Y) are stable in

pro-@ for every y&Y and every integer k, l^k^n.

4.8. // Y is a compact m?-ANR, Xh(Y, y) is countable,and Hk(Y) and Hk{Y)

are finitelygenerated for every y^Y and every integer k, O^k^n. Moreover

if Y is an m~-ANR, Hk(Y)=0=Hk(Y) for almost all k^l.

4.9. Every compact connected m^-ANR is pointed Sk-movable for every integer

k, l^k^n. In particular, every compact connected m^-ANR (nSil) is pointed

1-movale.

4.10. // Y is a compact mnc-AR and Fd(Y)^n<oo, then Y is an FAR.

Therefore for a compactum Y with Fd(Y)<oo Y is an mc-AR if and onlyif Y

is an FAR.

4.11. Every compact movable mc-AR is an FAR.

4.12. // Y is a compact mc-ANR and Fd(Y)<m, then Y is an FANR.

Related to above propertiesfollowingproblems remain open.

Problem 3. Does every compact mc-ANR Y with Fd(Y)<oo have a shape

of a finitepolyhedron?

Problem 4. // Y is an mc-AR iresp.mc-ANR) and Sd(Y)<oo, then isit

validthat Y is an MAR (rest.MANR)?

We remark that by Theorem 2.1,Corollary2.2 and [12] Corollary1 above

problems in the case dimF<oo are valid.

By the same way as [22] 2.10 we can prove the following.

4.13. Lemma. Let <p: X-~≫Ybe a c-n-multi-map, where n=0, 1, 2, ･･･, oo. Let

g: Y-^X be a map such that y^(p{g(y)) for every y^Y. Then if X is an AR

(resp. ANR), Y is an m%-AR {resp. m^-ANR). In particular, if <p is a c-multi-

map, then Y is an mc-AR {resp. me-ANR).

4.14. Example. For n=0, 1, 2, ･･･ let Sn+1 be the (n+l)-sphere and let

/: Sn+1->Sn+1 be a map with deg/=2. Then let us define Xi=Sn+1 and /<=/:

Xi+1^Xi for every i=l, 2, ･･･. Then the inverse limit X(n) ―1jm{Xi, ft} is the
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(n+l)-dimensional dyadic solenoid. Since X(n)^ACn, then by Lemma 4.12 X{n)

is an nic-AR. But X{ri)is not an m2+1-ANR because X(n) is not Sn+1-movable.

Therefore an m?-AR does not always imply an nic+1-AR.

4.15.Example. In the Hilbert cube Q for each k = l, 2, ･･･let us define the

^-dimensional sphere

xk
f/
＼ ^,1

r 2&+1 i2,
2.

. . r i

x<=0 if i>k + l＼

Now let us define a continuum X as follws

*={(0, 0, -)}＼J(＼JXk)
*21

Then for each n

}■

=1, 2, ■■■,Xn is an ANR and {(0, 0, -)}W( ＼J Xk) is an ACn
Afen+l

continuum. Hence by Lemma 4.13 X is an nQ-ANR for every n=0, 1, 2,･･･

But HJX)±0 for every n^l. Therefore by 4.8 X is not an m^-ANR.

By Example 4.14and Example 4.15 there are gaps between m%-ANR and

m?+1-ANR and between m?-ANR for every n2^0 and m -ANR. But the follow-

ing is open.

Problem 5. Is therean m^-ANR which is not an mc-ANR?

4.16.Remark (Suszycki[22]). Let /: Y-*Q be the Taylor's C£-map [23]

(see Example 2.3).Then by Lemma 4.13 Y is an mc-AR. Therefore on pro-

perties3.10-3.12our assumptions are essential.

4.17.Remark. The continuum X in Example 4.15is an approximative poly-

hedron (see [19]). Therefore we have an approximative polyhedron which is

not an mc-ANR. Conversely the continuum in Remark 4.16 is an mc-AR but

not an approximative polyhedron.

In the proof of [22] 3.8 by using Kuratowski-Wajdysiawski theorem instead

of the embedding theorem of compacta into the Hilbert cube, we have the fol-

lowing.

4.18. Every m%-AR is c-n-multi-contractible. Every mc-AR is c-multi-con-

tractible.

4.19. Every FAR is c-multi-contractible.Therefore every compact connected

m?-AR Y with Fd(Y)f=?n<co is c-multi-contractible.
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The converse of 4.19 is partiallyheld by Corollary 2.6 but in general, it is

not valid by Remark 4.16. We notice that the continuum X(n) in Example 4.14

is a (n-fl)-dimensional m^-AR which is not c-multi-contractible.

By the same way as F221 3.12 we have the next result.

4.20. Every c-n-multi-contractihleANR is an m?-AR. Every c-multi-con-

tractible ANR is an m,-AR.

4.21. Every n-dimensional c-n-multi-contractibleANR, where n is finite,is

an AR. If a c-viulti-contractibleANR has the property C, then it is an AR.

5. Topological operations of m"-AR, m?-ANR, mc~AR and mc-ANR.

In [22] Suszycki asked the followingproblem: Do mc-AR (resp.mc-ANR)-

spacesare invariantunder CE-maps, ? We do not know whether his problem is

valid. But bv the same way as F221 2.12 we have its non-compact version.

5.1.Theorem. Let g: F->Z be a CE-map. Let M be an AR containing X

as a closed subset. If there exist a neighborhood U of X in M and a c-multi-

retraction <p:U-^X such that dim <p(z)<oo for every z<e.U, then Y is an mc-ANR.

Moreover if U―M, then Y is an mc-AR.

5.2.Remark. On Theorem 5.1 the assumption "dim cp(z)<oo for every

z^U" is necessary to show that

(*) Sh(g-K<p(z)))=Sh((p(z)) for every ztzU.

Then if we added some assumption for holding (*), by the same way we have

following results.

5.3.Corollary. Let g: Y-^X he a hereditary shape equivalence. If X is

an mc-AR (rest. mc-ANR), then Y is also an mc-AR {rest. mc-ANR).

5.4.Corollary. Let g: Y―>X be a CE-map. If X is a C-space and an mc-

AR (resp. mc-ANR), then Y is also an mc-AR (resp. mc-ANR).

On the other hand for m%-AR and m"-ANR we have the following theorem.

5.5.Theorem. Let g: Y-*X be a proper map such that g~＼x)^ACn for

every xgI, where n=0, 1, 2, ･■■, oo. If X is an ntf-AR {resp. m"-ANR), then

Y is also an mf-AR (resp. m?-ANR).
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Proof, Let M and N be ARs' containing X and Y as closed subsets,

respectively. Then g has a continuous extension g: N-+M. Then if X is an

triZ-ANR, there are a neighborhood U of X in M and a c-n-multi-retraction<p:

U―+X. Define a neighborhood V ―g'^U) of Y in iV and a u.s.c. compact multi-

valued function </>:V―>Y as follows

(p(z)=^g"1((p"g(z)) for every zeF.

Then (p°g{z)£zACn for every zeF. Hence applying Vietoris theorem in shape

theory (see [6] or [20]) to the restriction g＼<p(z):(p(z)^<p°g(z),we have that

<p(z)<=ACn for every zeF. Moreover it is clear that y<^<p(y) for every jeF.

That is, <f>is a c-n-multi-retraction of V onto Y. Therefore, by 4.2,F is an

Mc-ANR. Similarly we can prove the case X is an m%-AR.

It is unknow whether the converse of Theorem 5.5 is valid. That is.

Problem 6.

for every xg!

m?-ANR)?

Let g: Y-+X be a proper surjectivemap such that g~＼x)^ACn

Then if Y is an rn^-AR (resp.m?-ANR), is X an m?-AR (resp.

Next by using the standard way we can easily prove following.

5.6.Theorem If Xt is an m^-AR (resp. mc-AR) for every i=l, 2,■■■,then

the preduct space II Xt is also an m%-AR {resp. mc-AR).

161

5.7.Theorem // XY and Xz are m^-ANRs' (resp. mc-ANRs'), then the pro-

duct space XxXX2 is also an m^-ANR {resp. mc-ANR).

Since every single-valued u. s.c. function is continuous, every totally discon-

nected m°c-ANR is an ANR. Hence the Cantor set is not an m°c-ANR. There-

fore we can not generally extend Theorem 5.7 to infiniteproducts.
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