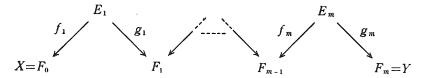
A RELATION BETWEEN k-th UV^{k+1} GROUPS AND k-th STRONG SHAPE GROUPS

By

Naotsugu Chinen

1. Introduction

Compacta X and Y are UV^n -equivalent provided that there exist sequences $\{E_i\}_{1 \le i \le m}$ and $\{F_i\}_{0 \le i \le m}$ of compacta and sequences $\{f_i\}_{1 \le i \le m}$ and $\{g_i\}_{1 \le i \le m}$ of UV^n -maps $f_i : E_i \rightarrow F_{i-1}$ and $g_i : E_i \rightarrow F_i$, where $F_0 = X$ and $F_m = Y$. Replacing UV^n -maps with CE-maps, we have the definition of CE-equivalence.



It is well known that finite-dimensional CE-equivalent compacta are shape equivalent (see [D-S]). The first example that shows the gap between shape equivalence and CE-equivalence was found by Ferry [Fe1]. In [Fe3], it was shown that UV^m -equivalent n-dimensional compacta are shape equivalent. Next Daverman and Venema [D-V] constructed an n-dimensional LC^{n-2} -continuum which is shape equivalent but not UV^{n-1} -equivalent to S^1 . Mrozik [Mr1] obtained a method to have continua which are shape equivalent but not UV^1 -equivalent to each other. Moreover Mrozik [Mr2] improved the method and had a strategy to construct a LC^n -continuum Y from any LC^{n+1} -continuum X with $\pi_1(X)$ infinite such that they are shape equivalent but not UV^{n+1} -equivalent. As a criterion of UV^n -equivalence he introduced the notions of UV^n -component $\pi_0^{(n)}(X)$ [Mr1], k-th UV^n -homotopy group $\pi_k^{(n)}(X)$ and k-th CE-homotopy group $\pi_k^{CE}(X)$ [Mr2]. Venema [Ve] investigated the groups and showed that $\pi_k^{(k+1)}(X) = \pi_k^{(E+1)}(X) = \cdots = \pi_k^{CE}(X)$ for every continuum X and that $\pi_n^{(n)}(Y) = 0$ for every UV^n -continuum Y.

In this paper we consider a relation between $\pi_k^{(k+1)}(X)$ and the k-th strong shape group $\underline{\pi}_k(X)$ [Q]. We define a natural homomorphism $s_k:\pi_k^{(k+1)}(X) \rightarrow \underline{\pi}_k(X)$ and show that, if $\text{pro-}\pi_1(X)$ is profinite, s_k is an isomorphism. As its

Received January 5, 1993, Revised August 24, 1993.

consequence we have that if $\operatorname{pro-}\pi_1(X)$ is profinite, and $\pi_0^{(1)}(X) = \{X\}$ and $\pi_k^{(k+1)}(X) = 0$ for $k = 1, \dots, n$, then a continuum X is UV^n .

2. Definitions and lemmas.

By the Hilbert cube Q, we mean the countable product of closed unit intervals I = [0, 1]. By S^k and D^k , we denote the k-sphere and the k-ball, respectively. For each $k \in N$, a compactum X is a UV^k -compactum provided that for every embedding $i: X \to M$ of X into an ANR M and every neighborhood U of i(X) in M, there is a neighborhood V of i(X) in M such that $U \supset V$ and the homomorphism $\pi_j(V) \to \pi_j(U)$ induced by the inclusion is trivial for $j \leq k$. For each compact X and Y, a surjective map $f: X \to Y$ is UV^k provided that each point preimage $f^{-1}(y)$ is a UV^k -compactum. For a subspace Z of X and $x \in X$, by d(x, Z) we denote the number $\inf\{d(x, z) | z \in Z\}$, and set $N_{\varepsilon}(Z) = \{x \in X | d(x, Z) < \varepsilon\}$.

If X and Y are compact metric spaces and $j: Y \rightarrow W$ is an embedding into a compact AR W, then an approaching map $\underline{f}: X \rightarrow Y$ is a pair (f, j), where f is a map $f: X \times [0, \infty) \rightarrow W$ such that for each neighborhood U of j(Y), there is an $m \in \mathbb{N}$ such that $f(X \times [m, \infty)) \subset U$. Two approaching maps $\underline{f}, \underline{g}: X \rightarrow Y$ ($\underline{f} = (f, j), \underline{g} = (g, j)$) are homotopic through approaching maps, if there is an approaching map $\underline{H}: X \times I \rightarrow Y$ ($\underline{H} = (H, j)$) such that $\underline{H} \mid X \times \{0\} = \underline{f}$ and $\underline{H} \mid X \times \{1\} = \underline{g}$ [Fe2].

Let $h: X \rightarrow Y$ be a map and let $i: X \rightarrow Q$ and $j: Y \rightarrow Q$ be embeddings. Define an embedding $l: X \rightarrow Q \times Q$ by $l(x) = (j \circ h(x), i(x))$ and the projection proj: $Q \times Q \rightarrow Q$ by proj(a, b) = a. We assume that $X \subset Q \times Q$ by the above embedding l, and proj|X = h. We take the metric on $Q \times Q$ to be the supremum of the metrics on two factors,

LEMMA 1. Let $h: X \rightarrow Y$ be a UV^k -map as above. If P is a finite k-dimensional polyhedron, S is a subpolyhedron of $P, \underline{f} = (f, j): P \rightarrow Y$ is an approaching map, and $\underline{g} = (g, l): S \rightarrow X$ is an approaching map with $\operatorname{proj} \circ g = f \mid S \times [0, \infty)$, then there is an extension $g^*: P \times [0, \infty) \rightarrow Q \times Q$ of g such that (g^*, l) is an approaching map and that \underline{f} and $(\operatorname{proj} \circ g^*, j)$ are homotopic through approaching maps.

PROOF. By Corollary 1.2 of [Fe3], we get a sequence $\{\delta_n\}_{n\geq 0}$ of positive numbers satisfying:

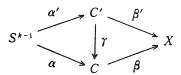
- (1) $\delta_n < \min \{\delta_{n-1}, 1/2^n\}$ for $n \ge 1$, $\delta_0 < 1$ and
- (2) for any finite (k+1)-dimensional polyhedron K, subpolyhedron L of K, map $\alpha: K \to N_{\delta n}(Y)$ and map $\alpha_0: L \to N_{\delta n}(X)$ with $\text{proj} \circ \alpha_0 = \alpha \mid L$, there exists an extension $\alpha^*: K \to N_{\delta n-1}(X)$ of α_0 such that $\text{proj} \circ \alpha^* = \alpha$.

Since \underline{f} is an approaching map, there is a monotone increasing sequence $\{i_n\}_{n\geq 1}$ with $f(P\times [i_n,\infty))\subset N_{\delta n+1}(X)$ for $n\geq 1$. For each $n\in N$ set $f_n=f|P\times [i_n,\,i_{n+1}]$. By (2) we get an extension $g_n\colon P\times [i_n,\,i_{n+1}]\to N_{\delta n}(X)$ of $g\mid S\times [i_n,\,i_{n+1}]$ with $\operatorname{proj}_{\sigma}g_n=f_n$. For each $n\in N$, define $H_n\colon P\times I\to N_{\delta n}(Y)$ by $H_n(x,\,t)=f(x,\,i_{n+1})$ for each $x\in P$ and $t\in I$, and $H_{n,\,0}\colon P\times \{0,\,1\}\to N_{\delta n}(X)$ by $H_{n,\,0}(x,\,0)=g_n(x,\,i_{n+1})$, $H_{n,\,0}(x,\,1)=g_{n+1}(x,\,i_{n+1})$ for each $x\in P$. And by (2) there exists an extension $H^*_n\colon P\times I\to N_{\delta n-1}(X)$ of $H_{n,\,0}$ with $\operatorname{proj}_{\sigma}H^*_n=H_n$. Define $g^*_n\colon P\times [i_n,\,i_{n+1}]\to Q\times Q$ as

$$g_n^*(x, (1-t)i_n + ti_{n+1}) = \begin{cases} g_n(x, (1-2t)i_n + 2ti_{n+1}) & \text{if } t \in [0, 1/2] \\ H_n^*(x, 2t-1) & \text{if } t \in [1/2, 1] \end{cases}$$

Then $g^* = \bigcup_{n \in \mathbb{N}} g^*_n : P \times [i_1, \infty) \to Q \times Q$ is a desired extension of g and the proof is finished.

For each pointed compactum (X, x_0) and each $k \ge 1$, let $UV^m{}_k(X, x_0)$ be the class of all triples $\Delta = (C, \alpha, \beta)$, where C is a UV^m compactum and $\alpha : S^{k-1} \to C$, $\beta : C \to X$ are maps with $\beta \circ \alpha(S^{k-1}) = \{x_0\}$. Given two such triples $\Delta = (C, \alpha, \beta)$ and $\Delta' = (C', \alpha', \beta')$, we write $\Delta' \ge \Delta$ if there exists a map $\gamma : C' \to C$ such that commutativity holds in each triangle of the following diagram.



Let \equiv denote the equivalence relation generated by \geq (i. e. $\Delta'\equiv\Delta$ iff there exists a sequence of triples $\Delta_1=\Delta$, Δ_2 , \cdots $\Delta_{2r+1}=\Delta'$ in $UV^m{}_k(X,\ x_0)$ such that $\Delta_{2i}\geq\Delta_{2i\pm 1},\ i=1,\ \cdots,\ r)$ and let $\pi_k{}^{(m)}(X,\ x_0)=UV^m{}_k(X,\ x_0)/\equiv$. The equivalence class of $\Delta=(C,\ \alpha,\ \beta)$ in $\pi_k{}^{(m)}(X,\ x_0)$ will be denoted by $[\Delta]=[C,\ \alpha,\ \beta]$.

Let $\kappa: S^{k-1} \rightarrow (S^{k-1}, *) \lor (S^{k-1}, *)$ denote the usual comultiplication map on the *H*-cogroup S^{k-1} and $\mu: (X, x_0) \lor (X, x_0) \rightarrow X$ the folding map. For $[\Delta_i] = [C_i, \alpha_i, \beta_i] \in \pi_k^{(m)}(X, x_0)$, i=1, 2, define a multiplication by

$$[\Delta_1][\Delta_2] = [(C_1, \alpha_1(*)) \vee (C_2, \alpha_2(*)), (\alpha_1 \vee \alpha_2) \circ \kappa, \mu \circ (\beta_1 \vee \beta_2)].$$

Obviously this is a group multiplication on $\pi_k^{(m)}(X, x_0)$: The neutral element is $\Delta x_0 = [\{*\}, \text{ const}, \text{ const}]$, where const is the constant map. An inverse for $[\Delta] = [C, \alpha, \beta]$ is given by $[\Delta^{-1}]$, where $\Delta^{-1} = (C, \alpha \circ \nu, \beta)$ and $\nu: S^{k-1} \to S^{k-1}$ is the usual homotopy inverse on the H-cogroup S^{k-1} (see [Mr2]).

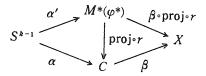
LEMMA 2. Let (X, x_0) be a pointed compactum and $k \ge 1$. Then for each $[C, \alpha, \beta] \in \pi_k^{(k+1)}(X, x_0)$, there exists a $[C', \alpha', \beta'] \in \pi_k^{(k+1)}(X, x_0)$ such that

- (1) $\alpha': S^{k-1} \rightarrow C'$ is an embedding,
- (2) dim $C' \leq k+2$ and
- (3) $[C, \alpha, \beta] = [C', \alpha', \beta'].$

PROOF. By Theorem 2.1.9 of [Be], there exists a compactum C^* with $\dim C^* \leq k+2$, and a UV^{k+1} -map $f \colon C^* \to C$. Since C is UV^{k+1} , C^* is UV^{k+1} . Let $i \colon C^* \to Q$ and $j \colon C \to Q$ be embeddings. Define $l \colon C^* \to Q \times Q$ by $l(x) = (j \circ f(x), i(x))$. For convenience we may assume that $\operatorname{proj}|C^* = f$ as before. Moreover define $\varphi \colon S^{k-1} \times [0, \infty) \to Q$ by $\varphi(x, t) = \alpha(x)$ for each $x \in S^{k-1}$ and $t \in [0, \infty)$. By the proof of Lemma 1 there exists a map $\varphi^* \colon S^{k-1} \times [0, \infty) \to Q \times Q$ such that (φ^*, l) is an approaching map and $\operatorname{proj} \varphi^* = \varphi$. The mapping cylinder $M(\varphi^*)$ of φ^* is the space obtained from $(S^{k-1} \times [0, \infty) \times I) \oplus (\varphi^*(S^{k-1} \times [0, \infty)) \cup C^*)$ by identifying for each $y \in \varphi^*(S^{k-1} \times [0, \infty))$ the set $(\varphi^{*-1}(y) \times \{1\}) \cup \{y\}$ to a single point. Identifying of C^* and $S^{k-1} \times [0, \infty) \times [0, 1)$ as subspaces of $M(\varphi^*)$, we set

$$M^*(\varphi^*) = C^* \cup \{ [x, s, s/(1+s)] \in M(\varphi^*) | x \in S^{k-1}, s \in [0, \infty) \}.$$

Then $M^*(\varphi^*)$ is UV^{k+1} . Let $r: M(\varphi) \to \varphi^*(S^{k-1} \times [0, \infty)) \cup C^*$ be the natural retraction of the mapping cylinder and define an embedding $\alpha': S^{k-1} \to M^*(\varphi^*)$ by $\alpha'(x) = [x, 0, 0]$. Since we can obtain a commutative diagram:



we infer $[M^*(\varphi^*), \alpha', \beta \circ \operatorname{proj} \circ r | M^*(\varphi^*)] = [C, \alpha, \beta] \in \pi_k^{(k+1)}(X, x_0).$

If X and Y are compact metric ANR's, a map $p: X \rightarrow Y$ is said to have the approximate homotopy lifting property (AHLP) with respect to a compact space Z if for every homotopy $f: Z \times I \rightarrow Y$, map $F_0: Z \rightarrow X$ with $p \circ F_0 = f \mid Z \times \{0\}$, and $\varepsilon > 0$ there is a map $F: Z \times I \rightarrow X$ such that $F_0 = F \mid Z \times \{0\}$ and $d(p \circ F(z, t), f(z, t))$ $< \varepsilon$ for each $(z, t) \in Z \times I$. We will call p an AF^n -map if p has the AHLP for all n-dimensional compacta.

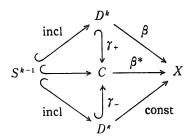
For a finite or infinite inverse sequence $\{(X_i, f_i)\}$ of compacta, $\operatorname{CMap}^+((X, f_i))$ is defined by S. Ferry, (Definition 5.2, [Fe2]). We remark that the inverse limit $\varprojlim(X_i, f_i)$ is regarded a subspace of $\operatorname{CMap}^+((X_i, f_i))$ and that if the spaces X_i 's are ANR's, then $\operatorname{CMap}^+((X_i, f_i))$ is an AR.

Next we shall define a homomorphism $t_k: \pi_k(X, x_0) \to \pi_k^{(k+1)}(X, x_0)$. For

each $[\beta] \in \pi_k(X, x_0)$, where $\beta : D^k \to X$ is a map with $\beta(S^{k-1}) = \{x_0\}$, define $t_k([\beta]) = [D^k, \text{ incl}, \beta]$. Here, incl: $S^{k-1} \to D^k$ is the inclusion map [Mr2].

LEMMA 3. If $X = \underline{\lim}(K_i, f_i)$, where each K_i is a finite polyhedron and each f_i is an AF^i -map, then the homomorphism $t_k : \pi_k(X, x_0) \to \pi_k^{(k+1)}(X, x_0)$ is isomorphic for each $k \ge 1$.

PROOF. a) Injectivity. Let β be a map $\beta: D^k \to X$ such that $t_k([\beta]) = [D^k, \text{incl}, \beta] = 0 \in \pi_k^{(k+1)}(X, x_0)$. By the proof of Theorem 2.7 in [Mr2], there exist UV^{k+1} -compactum C and maps satisfying the following commutative diagram:



Define $\gamma\colon S^k\to C$ by γ the upper hemisphere $=\gamma_+$, γ the lower hemisphere $=\gamma_-$. Let $i\colon C\to Q$ be an embedding. Since C is UV^{k+1} , we get a map $\gamma^*\colon D^{k+1}\times [0,\infty)\to Q$ such that (γ^*,i) is an approaching map and $\gamma^*(x,t)=\gamma(x)$ for each $x\in S^k$, $t\in [0,\infty)$. There is an extension $\beta^{**}\colon Q\to \mathrm{CMap}^+((K_i,f_i))$ of β^* . By Corollary 5.5 of [Fe2], there exists a map $g^*\colon D^{k+1}\times [0,\infty]\to \mathrm{CMap}^+((K_i,f_i))$ such that $g^*(x,\infty)=\beta^*\circ\gamma(x)$ for each $x\in S^k$, and that $g^*(S^k\times \{\infty\})\subset X$. Since $[g^*|S^k\times \{\infty\}]=[\beta^*\circ\gamma]=[\beta]\in\pi_k(X,x_0)$, $[\beta]=0$.

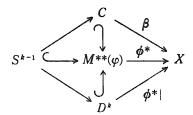
b) Surjectivity. Let $[C, \alpha, \beta] \in \pi_k^{(k+1)}(X, x_0)$. By Lemma 2 we may assume that $\dim C \leq k+2$ and α is an embedding. Since C is UV^k , we get a map $\varphi \colon D^k \times [0, \infty) \to Q$ such that $\varphi(x, t) = \alpha(x)$ for each $x \in S^{k-1}$ and $t \in [0, \infty)$, and that (φ, i) is an approaching map, where $i \colon C \to Q$ is an embedding. The mapping cylinder $M(\varphi)$ of φ is the space obtained from $(S^{k-1} \times [0, \infty) \times I) \oplus (\varphi(D^k \times [0, \infty)) \cup C)$ by identifying for each $y \in \varphi(D^k \times [0, \infty))$ the set $(\varphi^{*-1}(y) \times \{1\}) \cup \{y\}$ to a single point. Identifying of C and $D^k \times [0, \infty) \times [0, 1)$ as subspaces of $M(\varphi)$, we set

$$M^{**}(\varphi) = C \cup \{ [x, s, s/(1+s)] \in M(\varphi) | x \in D^k, s \in [0, \infty) \} \supset M^*(\varphi)$$
 (see Lemma 2).

Let $j: M^{**}(\varphi) \to Q$ be an embedding. We will construct a map $\phi: M^{**}(\varphi) \times [0, \infty) \to Q$ with (ϕ, j) an approaching map satisfying the following condition:

(#)
$$\phi(x, t) = x$$
 for each $x \in M^*(\varphi)$ and $t \in [0, \infty)$.

For a while, we assume that there exists a map ϕ as above. Let $\beta^*: Q \to \operatorname{CMap}^+((K_i, f_i))$ be an extension of β satisfying $\beta^*([x, s, s/(1+s)]) = \beta(x)$ for each $x \in S^{k-1}$ and $s \in [0, \infty)$ and apply Corollary 5.5 of [Fe2] to $\beta^* \circ \phi$, then there exists a map $\phi^*: M^{**}(\varphi) \to X$ with $\phi^* | M^*(\varphi) = \beta^* | M^*(\varphi)$. Identifying D^k with $\{[x, 0, 0] \in M(\varphi) | x \in D^k\}$, and from the following commutative diagram:



and the fact that $M^{**}(\varphi)$ and C are shape equivalent, we have $t_k([\phi^*|D^k])=[C,\alpha,\beta]$. Therefore it is sufficient to construct a map ϕ with the condition (\sharp) . Since C and $M^*(\varphi)$ are shape equivalent, $M^*(\varphi)$ is UV^{k+1} . There exists a sequence $\{U_n\}_{n\geq -2}$ of neighborhoods of $M^*(\varphi)$ in Q such that

- (1) $U_n \supset U_{n+1}$ for each $n \ge -2$, and
- (2) for each $n \ge -2$, $l \le k+1$ and map $\alpha : S^l \to U_{n+1}$, there exists an extension $\alpha^* : D^{l+1} \to U_n$ of α .

Since $M(\varphi) \supset M^*(\varphi)$, there exists a monotone sequence $\{s_m\}_{m \geq 0}$ of positive numbers such that $D^k \times \{s_m\} = \{[x, s_m, s_m/(1+s_m)] \in M(\varphi) | x \in D^k\} \subset U_{3m+1}$ for each $m \geq 0$. By (2), there exists a map $\alpha_m \colon D^k \to U_{3m+1}$ with $\alpha_m(x) = [x, 0, 0] \in M^*(\varphi)$ for each $x \in S^{k-1}$. Identifying $D^k \times [0, s_m]$ with $\{[x, s, s/(1+s)] \in M(\varphi) | x \in D^k, s \in [0, s_m]\}$, by (2) we have a map $\phi'_m \colon D^k \times [0, s_m] \to U_{3m}$ such that $\phi'_m(x, 0) = \alpha_m(x)$ for each $x \in D^k$, and $\phi'_m(x, t) = [x, t, t/(1+t)]$ for each $(x, t) \in S^{k-1} \times [0, s_m] \cup D^k \times \{s_m\}$. Since $\phi'_m(D^k \times \{0\}) \cup \phi'_{m+1}(D^k \times \{0\}) \subset U_{3m}$, by (2) there exists a map $\phi''_m \colon D^{k+1} \to U_{3m-1}$ with ϕ''_m the upper hemisphere $=\phi'_m \mid D^k \times \{0\}$ and ϕ''_m the lower hemisphere $=\phi'_{m+1} \mid D^k \times \{0\}$. Applying (2) to $D^k \times [s_m, s_{m+1}] \subset U_{3m+1}$, and three maps ϕ'_m, ϕ'_{m+1} and ϕ''_m , then we get a map $\phi^*_{m,m+1} \colon D^k \times [0, s_m] \times [m, m+1] \to U_{3m-2}$ satisfying that

$$\begin{split} \phi *_{m,\,m+1}(x,\,t,\,m) = & \phi'_{\,m}(x,\,t) & \text{if } (x,\,t) \in D^k \times [0,\,s_m], \\ \phi *_{m,\,m+1}(x,\,t,\,m) = [x,\,t,\,t/(1+t)] & \text{if } (x,\,t) \in D^k \times [s_m,\,s_{m+1}] \text{ and } \\ \phi *_{m,\,m+1}(x,\,t,\,m+1) = & \phi'_{\,m+1}(x,\,t) & \text{if } (x,\,t) \in D^k \times [0,\,s_m]. \end{split}$$

For each $m \ge 0$ define $p_m : \{D^k \times [s_m, \infty) \cup C\} \times [m, m+1] \to M^{**}(\varphi)$ by $p_m(x, t, s) = [x, t, t/(1+t)]$ for each $(x, t, s) \in D^k \times [s_m, \infty) \times [m, m+1]$, and

 $p_m(y, s)=y$ for each $(y, s)\in C\times[m, m+1]$. We set

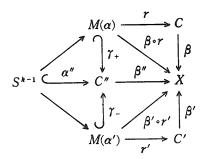
$$\phi_{m, m+1} = \phi^*_{m, m+1} \cup p_m : M^{**}(\varphi) \times [m, m+1] \longrightarrow U_{3m-2}, \text{ and}$$

$$\phi = \bigcup_{m \in N} \phi_{m, m+1} : M^{**}(\varphi) \times [0, \infty) \longrightarrow U_{-2}.$$

Clearly by the construction as above, the map ϕ satisfies the condition (#).

3. Main results

The k-th homotopy pro-group, the k-th shape group and the strong shape group of a space X are denoted pro- $\pi_k(X)$, $\underline{\pi}_k(X)$ and $\underline{\pi}_k(X)$, respectively. We will construct a homomorphism $s_k: \pi_k^{(k+1)}(X, x_0) \to \underline{\pi}_k(X, x_0)$. Let $[C, \alpha, \beta] \in \pi_k^{(k+1)}(X, x_0)$ and let $i: C \to Q$ be an embedding. Since C is UV^{k+1} , there exists a map $\phi_C: D^k \times [0, \infty) \to Q$ such that $\phi_C(x, t) = \alpha(x)$ for each $x \in S^{k-1}$ and $t \in [0, \infty)$, and that (ϕ_C, i) is an approaching map. Suppose that $X = \varprojlim (K_i, f_i)$, where K_i 's are finite polyhedra, then there exists a map $\beta^*: Q \to \operatorname{CMap}^+((K_i, f_i))$ which is an extension of β . Define $s_k: \pi_k^{(k+1)}(X, x_0) \to \underline{\pi}_k(X, x_0)$ by $s_k([C, \alpha, \beta]) = [\beta^* \circ \phi_C]$. Since C is UV^{k+1} , the definition as above is independent of a choice of ϕ_C . By the proof of Theorem 2.7 in $[\operatorname{Mr2}]$, if $[C, \alpha, \beta] = [C', \alpha', \beta']$, there exists the following commutative diagram:



Here γ_+ and γ_- are embeddings and $[C'', \alpha'', \beta''] \in \pi_k^{(k+1)}(X, x_0)$. By the commutative diagram as above,

$$[\beta \circ \phi_C] = [\beta \circ r \circ \phi_{M(\alpha)}] = [\beta'' \circ \phi_C''] = [\beta' \circ r' \circ \phi_{M(\alpha')}] = [\beta' \circ \phi_{C'}] \in \underline{\pi}_k(X, x_0).$$

 s_k turns out to be well-defined. Clearly s_k is a homomorphism.

An inverse sequence $\{G_i, h_i\}$ of groups and homomorphisms is *profinite* if for each i there is a j>i such that im $h_{i+1}\circ \cdots \circ h_j(G_j) \subset G_i$ is finite. A continuum X has pro- $\pi_1(X)$ profinite if whenever X is written as an inverse limit $X=\varprojlim(K_i, \alpha_i)$ of finite CW complexes, the system $\{\pi_1(K_i), \alpha_{i*}\}$ is profinite.

MAIN THEOREM. If (X, x_0) is a pointed continuum with pro- $\pi_1(X)$ profinite,

then $\pi_k^{(k+1)}(X, x_0)$ and $\pi_k(X, x_0)$ are isomorphic for each $k \ge 1$.

PROOF. We will show that s_k is an isomorphism.

First we may consider a special case that f_i is an AF^i -map for each $i \ge 1$. Then we will construct a homomorphism $u_k : \underline{\pi}_k(X, x_0) \to \pi_k^{(k+1)}(X, x_0)$. Let $\varphi : S^k \times [0, \infty) \to \operatorname{CMap}^+((K_i, f_i))$ such that $\varphi(\{s_0\} \times [0, \infty)) = \{x_0\}$, where s_0 is the basepoint of S^k , and such that (φ, j) is an approaching map, where $j : X \to \operatorname{CMap}^+((K_i, f_i))$ is the inclusion. By Corollary 5.5 of [Fe2], there exists a map $\varphi' : S^k \to X$ such that defining $\varphi'' : S^k \times [0, \infty) \to X$ by $\varphi''(x, t) = \varphi'(x)$ for each $x \in S^k$ and $t \in [0, \infty)$, $[\varphi''] = [\varphi] \in \underline{\pi}_k(X, x_0)$. Define $u_k : \underline{\pi}_k(X, x_0) \to \pi_k^{-(k+1)}(X, x_0)$ by $u_k([\varphi]) = [D^k$, incl, $\varphi' \circ p$], where incl: $S^{k-1} \to D^k$ is the inclusion and $p : D^k \to D^k/S^{k-1} = S^k$ is the projection. Because of Corollary 5.5 of [Fe2] and [Mr2], u_k is well-defined. It is clear that $s_k \circ u_k = id$. Since $t_k : \pi_k(X, x_0) \to \pi_k^{-(k+1)}(X, x_0)$ is an isomorphism by Lemma 3, for each $[C, \alpha, \beta] \in \pi_k^{-(k+1)}(X, x_0)$ there exists a map $\gamma : D^k \to X$ such that $\gamma(S^{k-1}) = \{x_0\}$ and $[C, \alpha, \beta] = [D^k, \operatorname{incl}, \gamma]$, where incl: $S^{k-1} \to D^k$ is the inclusion. Because $u_k \circ s_k([D^k, \operatorname{incl}, \gamma]) = [D^k, \operatorname{incl}, \gamma]$, $u_k \circ s_k = id$. That is, s_k is an isomorphism.

Next we consider the general case. Since $\operatorname{pro-}\pi_1(X)$ is profinite, by Theorem 3' and Lemma 3.2 of [Fe2], there exists a continuum X' such that X' and X are shape equivalent and $X'=\varprojlim(K'_i,\ f'_i)$, where K'_i 's are finite polyhedra and f'_i 's are AF^i -maps. Moreover, by Theorem 2 of [Fe3], X' and X are UV^n -equivalent for each $n\geq 0$. There exist a compactum X'' and UV^{k+1} -maps $\xi_1\colon X''\to X,\ \xi_2\colon X''\to X'$. Let $x''_0\in X''$ with $\xi_1(x''_0)=x_0$.

By Theorem 1.6 of [Mr2], ξ_{1*} and ξ_{2*} are isomorphisms, and by Lemma 1, $\underline{\xi}_{1*}$ and $\underline{\xi}_{2*}$ are isomorphisms. Since this diagram is commutative and s_k is an isomorphism, so is s_k .

A space X will be called UV^n -connected provided that for any two points x, $x' \in X$ there exist a UV^n -compactum C and a map $\gamma : C \to X$ with x, $x' \in \gamma(X)$. By a UV^n -component of X we mean a maximal UV^n -connected subspace of X. Denote $\pi_0^{(n)}(X)$ the set of all UV^n -components of X.

LEMMA 4. Let X be a continuum. If $\pi_0^{(1)}(X) = \{X\}$, then $\underline{\pi}_0(X, x_0) = 0$ for

each $x_0 \in X$.

PROOF. Let $x_0 \in X$ be an arbitrary point. Since $\pi_0^{(1)}(X) = 0$, for each $x_1 \in X$ there exist a UV^1 -compactum C and a map $\gamma: C \to X$ with $x_0, x_1 \in \gamma(C)$. Let M and M' be AR's, $i: C \to M$ and $j: X \to M'$ be embeddings and $\gamma^*: M \to M'$ be an extension of γ . Taking points $y_0, y_1 \in C$ with $\gamma^*(y_0) = x_0, \gamma^*(y_1) = x_1$, since C is UV^1 , there exists a map $\phi: I \times [0, \infty) \to M$ such that (ϕ, i) is an approaching map and $\phi(\delta, t) = y_\delta$ for each $t \in [0, \infty)$ and $\delta \in \{0, 1\}$. Since $(\gamma^* \circ \phi, j)$ is an approaching map, $\pi_0(X, x_0) = 0$.

COROLLARY. Let X be a continuum with pro- $\pi_1(X)$ profinite. If $\pi_0^{(1)}(X) = \{X\}$ and $\pi_k^{(k+1)}(X, x_0) = 0$ for each $x_0 \in X$ and $k = 1, 2, \dots, n$, then X is UV^n .

PROOF. It follows from Main theorem and Lemma 4 that $\underline{\pi}_k(X, x_0)=0$ for each $x_0 \in X$ and $k=0, 1, \cdots, n$. By [Wa] $\lim^1(\text{pro-}\pi_{k+1}(X, x_0))=0=\underline{\pi}_k(X, x_0)$. Moreover by Theorem 11 and Lemma 2 of Theorem 12 in § 6.2 [M-S], pro- $\pi_k(X, x_0)=0$ for each $x_0 \in X$ and $k=1, 2, \cdots, n$. Since X is connected, X is UV^n .

4. Remarks and problems.

Mrozik [Mr2] and Venema [Ve] gave fundamental properties of k-th UV^n -groups for an arbitrary continuum $X:\pi_k^{(1)}(X)=\pi_k^{(2)}(X)=\cdots=\pi_k^{(k-1)}(X)=0$ and $\pi_k^{(k+1)}(X)=\pi_k^{(k+2)}(X)=\cdots=\pi_k^{CE}(X)$. Thus the groups have some meaning only in the cases n=k and k+1. Moreover Venema showed that, for every UV^n -compactum $X,\pi_n^{(n)}(X)=0$. Considering Corollary and Venema's result, we have a natural problem:

PROBLEM 1. Is a continuum X with $\pi_k^{(k)}(X)=0$ for $k=1, \dots, n$, a UV^n -compactum?

On the other hand, we clearly have a natural homomorphism $h_{k,\,k+1}$: $\pi_k^{(k+1)}(X,\,x_0) \rightarrow \pi_k^{(\kappa)}(X,\,x_0)$ as follows: for each $[C,\,\alpha,\,\beta] \in \pi_k^{(k+1)}(X,\,x_0)$ where C is UV^{k+1} , and $\alpha: S^{k+1} \rightarrow C$ and $\beta: C \rightarrow X$, define

$$h_{k,k+1}([C, \alpha, \beta])=[C, \alpha, \beta].$$

However, we do not have any information about $h_{k,\,k+1}$. It is obvious that if $h_{k,\,k+1}$ is a monomorphism, Problem 1 has the affirmative answer. Therefore we pose the following problem:

PROBLEM 2. When is the homomorphism $h_{k,k+1}$ a monomorphism? In particular, consider the case that $pro-\pi_1(X)$ is profinite.

References

- [Be] Bestvina, M., Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 380 (1988).
- [D-V] Daverman, R.J. and Venema, G.A., CE equivalence and shape equivalence of 1-dimensional compacta. Topology and its Appl. 26 (1987), 131-142.
- [D-S] Dydak, J. and Segal, J., Shape theory, Lecture Notes in Mathematics 688 (Springer, Berlin, 1978).
- [Fe1] Ferry, S., Shape equivalence does not imply CE equivalence, Proc. Amer. Math. Soc. 80 (1980), 154-156.
- [Fe2] Ferry, S., A stable converse to the Vietoris-Smale theorem with applications to shape theory, Trans. Amer. Math. Soc. 261 (1980), 369-386.
- [Fe3] Ferry, S., *UV^k*-equivalent compacta, Proceedings of the 1986 Dubrovnik Conference, Lecture Notes in Mathematics 1283 (Springer, Berlin, 1987), 88-114.
- [Mr1] Mrozik, P., Continua that are shape equivalent but not UV^1 -equivalent, Topology and its Appl. 30 (1988), 199-210.
- [Mr2] Mrozik, P., CE equivalence and shape equivalence of LC^n compacta, Topology and its Appl. 50 (1993), 11-33.
- [M-S] Mardešić, S. and Segal, J., Shape Theory (North-Holland, Amsterdam, 1982).
- [Ve] Venema, G.A., Cell-like images and UV^m groups, Topology and its Appl. 50 (1993), 35-46.
- [Wa] Watanabe, T., On a problem of Y. Kodama, Bull. Acad. Polon. Soci. Math. Astonom. Phys. 25 (1977), 981-985.
- [Q] Quigley, J.B., Equivalence of fundamental and approaching groups of movable pointed compcta, Fund. Math. 91 (1976), 73-83.

Department of Mathematics Osaka Kyoiku University Ten-noji, Osaka, 543 Japan

Current address Institute of Mathematics University of Tsukuba Tsukuba-shi, Ibaraki, 305 Japan