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A RELATION BETWEEN k-th UV*"' GROUPS AND
k-th STRONG SHAPE GROUPS

By

Naotsugu CHINEN

1. Introduction

Compacta X and Y are UV *-equivalent provided that there exist sequences
{E} 1<ism and {Filysism of compacta and sequences {f:}isism and {g:}icism Of
UV"*maps f,;: E,—F,_, and g,;: E,—F;, where F,=X and F,=Y. Replacing
UV™"-maps with CE-maps, we have the definition of CE-equivalence.
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It is well known that finite-dimensional CF-equivalent compacta are shape
equivalent (see [D-S]). The first example that shows the gap between shape
equivalence and CFE-equivalence was found by Ferry [Fel]. In [Fe3], it was
shown that UV ™-equivalent n-dimensional compacta are shape equivalent. Next
Daverman and Venema [D-V] constructed an n-dimensional L C™ *-continuum
which is shape equivalent but not UV " '-equivalent to S'. Mrozik [Mrl] ob-
tained a method to have continua which are shape equivalent but not UV'-
equivalent to each other. Moreover Mrozik [Mr2] improved the method and
had a strategy to comstruct a LC"-continuum Y from any LC"*'-continuum X
with 7,(X) infinite such that they are shape equivalent but not UV "*'-equivalent.
As a criterion of UV "-equivalence he introduced the notions of UV ™-component
7,(X) [Mrl], k-th UV "*-homotopy group z,‘™(X) and k-th CE-homotopy group
7:,CE(X) [Mr2]. Venema [Ve] investigated the groups and showed that 7, **(X)
=1, **(X)= ... =1 ,°B(X) for every continuum X and that 7, (Y )=0 for every
UV "-continuum Y.

In this paper we consider a relation between x,**P(X) and the k-th strong
shape group z.(X) [Q]. We define a natural homomorphism s;: 7, **V(X)—
7:(X) and show that, if pro-m,(X) is profinite, s, is an isomorphism. As its
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consequence we have that if pro-m,(X) is profinite, and z,"(X)={X} and
T Y(X)=0 for k=1, ---, n, then a continuum X is UV ™.

2. Definitions and lemmas.

By the Hilbert cube @, we mean the countable product of closed unit in-
tervals /=[0, 1]. By S* and D*, we denote the k-sphere and the k-ball, re-
spectively. For each k=N, a compactum X is a UV *-compactum provided that
for every embedding 7: X—M of X into an ANR M and every neighborhood U
of i(X) in M, there is a neighborhood V of i(X) in M such that UDV and the
homomorphism 7 V)—=nU) induced by the inclusion is trivial for j<k. For
each compacta X and Y, a surjective map f: X—Y is UV* provided that each
point preimage f7'(y) is a UV *-compactum. For a subspace Z of X and x<X,
by d(x, Z) we denote the number inf{d(x, z)|zeZ}, and set N.(Z)={x=X]|
d(x, Z)<e}.

If X and ¥ are compact metric spaces and j: Y—W is an embedding into
a compact AR W, then an approaching map f: X—Y is a pair (f, j), where f
is a map f: XX[0, «o)—W such that for each neighborhood U of j(Y), there is
an meN such that f(XX[m, «))cU. Two approaching maps f, g X=Y (f=
(f, 1, g=(g, 1)) are homotopic through approaching maps, if there is an appro-
aching map H: XXI-Y (H=(H, j)) such that H| XX {0} =/ and H|XX {1} =g
[Fe2].

Let h: X—Y be a map and let 7: X—Q and j: Y—Q be embeddings. De-
fine an embedding /: X—Q X by [(x)=(j-h(x), i(x)) and the projection proj: Q
X@—Q by proj(a, by=a. We assume that XC QX by the above embedding
[, and projlX=h. We take the metric on QX Q to be the supremum of the
metrics on two factors,

LEMMA 1. Let h: X—Y be a UV*map as above. If P is a finite k-dimen-
sional polyhedron, S is a subpolyhedron of P, f=(f, j): P=Y is an approaching
map, and g=(g, [): S—X is an approaching map with projeg=f|SX[0, o), then
there is an extension g*: PX[0, o0)—QXQ of g such that (g*, 1) is an approach-
ing map and that [ and (projeg*, j) are homotopic through approaching maps.

Proor. By Corollary 1.2 of [Fe3], we get a sequence {0} »-o 0f positive
numbers satisfying :
(1) 6,<min{6,-4, 1/2"} for nz=1, §,<1 and
(2) for any finite (k+1)-dimensional polyhedron K, subpolyhedron L of K,
map «: K—N;,(Y) and map a,: L—N;»(X) with projea,=a| L, there
exists an extension a*: K—N;,_(X) of a, such that projea*=a.
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Since f is an approaching map, there is a monotone increasing sequence {n}nx:
with f(PX[i,, ©))CNs,.(X) for n=1. For each n&=N set f,=f|PX[tn, ins1]-
By (2) we get an extension g,: PX[in. 11— Nsa(X) of g|SX[in, 7ns:] With
projeg,=f,. For each ne&N, define H,: PXI—N;,(Y) by H,(x, )=f(x, tz:1)
for each xeP and t<1, and H, ,: Px {0, 1} >N;s.(X) by H, (x, O=g.(x, i5.1),
H, olx, D=gn.(x, t,,1) for each xP. And by (2) there exists an extension
H*,: PXI—Ns, (X)) of H,, with projeH*,=H,. Define g*,: PX[in, tns1]—
OXQ as

galx, A—20)in+2t n11) if t=[0, 1/2]
g¥(x, A—=t)ip+tip, )=

H*,(x, 2t—1) if t=l1/2, 1]

Then g*=\Upeny g%.: PX[7,, ©)—QXQ is a desired extension of g and the
proof is finished.

For each pointed compactum (X, x,) and each k=1, let UV™, (X, x,) be the
class of all triples A=(C, a, B), where C isa UV™ compactum and a: S*'—C,
B: C—X are maps with Bea(S* )= {x,}. Given two such triples A=(C, a, B)
and A'=(C’, o/, B’), we write A’>=A if there exists a map 7: C’'—C such that
commutativity holds in each triangle of the following diagram.

a’ c’ B
o P l,\
I /,9,

Let = denote the equivalence relation generated by = (i.e. A’=A iff there
exists a sequence of triples A=A, A,, - Ay, =47 in UV™,(X, x,) such that
A=Ay, 7=1, -+, r) and let 7, ™ (X, x)=UV™ (X, x,)/=. The equivalence
class of A=(C, a, ) in =, (X, x,) will be denoted by [A]J=[C, a, 8.

Let k: S*¥'—(S*! x)V(S* !, %) denote the usual comultiplication map on
the H-cogroup S*°' and p: (X, x,)V(X, x,)—X the folding map. For [A;]=
[C, a;, BilEn, ™ (X, x,), i=1, 2, define a multiplication by

$ [AI[AI=[(Cy, ar(:)V(Cy, as(*)), (@, V as)ek, ﬂ"(ﬁl\/ﬁz)] .

Obviously this is a group multiplication on =, (X, x,): The neutral ele-

X
c

ment is Ax,=[ {*}, const, const], where const is the constant map. An inverse
for [A]=[C, a, B] is given by [A~'], where A'=(C, a-y, 8) and y: S*"1-S*-!
is the usual homotopy inverse on the H-cogroup S*! (see [Mr2]).

LEMMA 2. Let (X, x,) be a pointed compactum and k=1. Then for each
[C, a, Bler, ** (X, x,), there exists a [C/, a’, B'Jem,**V(X, x,) such that
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(1) «:S*'—C’ is an embedding,
(2) dim C’'<k+2 and
@) [C, a, g1=[C, a’, B'].

Proor. By Theorem 2.1.9 of [Be], there exists a compactum C* with
dim C*<k+2, and a UV**'-map f:C*—C. Since C is UV**, C* is UV *+,
Let 7: C*—@ and j: C—Q be embeddings. Define [: C*—Q X Q by I(x)=(j° f(x),
i(x)). For convenience we may assume that proj|C*=f as before. Moreover
define ¢: S*'X[0, c0)—Q by ¢(x, )=a(x) for each x&S*"! and t<[0, ). By
the proof of Lemma 1 there exists a map ¢*: S*7'X[0, ©)—@QX @ such that
(p*, 1) is an approaching map and proje¢*=¢. The mapping cylinder M(¢*) of
¢* is the space obtained from (S*7'X[0, o)X DB (*(S* 1 X[0, o))\ UC*) by
identifying for each y=@*(S*!'Xx[0, ) the set (p* '(y)X {I})U{y} to a single
point. Identifying of C* and S*'X[0, 00)X[0, 1) as subspaces of M(p*), we
set

MHp¥)=C*U{[x, s, s/(I+s)JeMle®) | xeS* !, s[0, oo)}.

Then M*(p*) is UV**'. Let r: M(g)—¢*(S*'X[0, ) UC* be the natural
retraction of the mapping cylinder and define an embedding a’: S*'—M*(p*)
by a’(x)=[x, 0, 0]. Since we can obtain a commutative diagram :

’ M*(SD*) /9 .
a/7 *Projer
st \ lprojor X
«a

—5

we infer [M*(¢*), a’, Beprojer | M*(p*)1=[C, a, Blex, **V(X, x,).

C

If X and Y are compact metric ANR’s, a map p: X—Y is said to have the
approximate homotopy lifting property (AHLP) with respect to a compact space
Z if for every homotopy f: ZXI—=Y, map F,: Z—X with p-F,=f|Zx {0}, and
¢>0 there is a map F: ZX[—X such that F,=F|Zx {0} and d(p-F(z, 1), f(z, 1)
<e for each (z, )eZx 1. We will call p an AF™map if p has the AHLP for
all n-dimensional compacta.

For a finite or infinite inverse sequence {(X;, f;)} of compacta, CMap*((X, f5))
is defined by S. Ferry, (Definition 5.2, [Fe2]). We remark that the inverse
limit lim(X;, f¢) is regarded a subspace of CMap*((X,, f,)) and that if the spaces
X,;’s are ANR’s, then CMap*((X;, f.)) is an AR.

Next we shall define a homomorphism {,: 7.(X, x,)—n,**(X, x,). For
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each [Bler(X, x,), where B: D*—X is a map with B(S* )= {x,}, define t,([8])
=[D*, incl, BJ]. Here, incl: S*~'—D* is the inclusion map [Mr2].

LEmMMA 3. If X=lm(K,, f:), where each K; is a finite polyhedron and each
fi is an AFi-map, then the homomorphism t,: w(X, xo)—m*"NX, x,) is iso-
morphic for each k=1.

PROOF. a) Injectivity. Let B be a map B: D*—X such that t.([f)=[D*,
incl, fl=0er,**"(X, x,). By the proof of Theorem 2.7 in [Mr2], there exist
UV**.compactum C and maps satisfying the following commutative diagram:

Dk
2N
I
ﬁ*

Sk-1 C C > X
kJT'At
DR

Define y: S*—~C by 7|the upper hemisphere =7,, 7r|the lower hemisphere =7_.
Let 7: C—Q be an embedding. Since C is UV**!, we get a map 7*: D**'X
[0, c0)—@Q such that (y*, ¢) is an approaching map and y*(x, {)=7(x) for each
x&S*, t=[0, ). There is an extension f**: Q—CMap*((K,, f) of B*. By
Corollary 5.5 of [Fe2], there exists a map g*: D**1X[0, co]—CMap*(K;, f4)
such that g*(x, oo)=B*-7(x) for each x&S*, and that g*(S*X {eo})X. Since
Lg*[S*X {eo} J=[B*or]=[Blems(X, xy), [B]=0.

b) Surjectivity. Let [C, a, flEx,** (X, x,). By Lemma 2 we may as-
sume that dim C<k+2 and a is an embedding. Since C is UV*, we get a map
¢: D*X[0, o0)—~Q such that ¢(x, t)=a(x) for each x&S** and t[0, =), and
that (¢, 7) is an approaching map, where 7: C—@Q is an embedding. The map-
ping cylinder M(¢p) of ¢ is the space obtained from (S* !X [0, o)X )P (p(D* X
[0, o)UC) by identifying for each y=¢e(D*X[0, o)) the set (e* Y (y)x {1}HU
{y} to a single point. Identifying of C and D*X[0, «)x[0, 1) as subspaces of
M), we set

M**()=C\U{[x, s, s/(1+s)]eM(p)| xeD*, s&[0, )} DM*(¢p)
(see Lemma 2).

Let j: M**(p)—Q be an embedding. We will construct a map ¢: M**(p) X
[0, «0)—Q with (¢, /) an approaching map satisfying the following condition:
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() o(x, H=x for each xeM*(¢) and t=[0, ).

For a while, we assume that there exists a map ¢ as above. Let f*: Q—
CMap*((K;, f:)) be an extension of B satisfying S*([x, s, s/(14s)D)=8(x) for
each x&S*' and s<[0, ) and apply Corollary 5.5 of [Fe2] to B*-¢, then
there exists a map ¢*: M**(¢p)—X with ¢*|M*(p)=8*IM*(p). Identifying D*
with {[x, 0, 0J=M(p)|x=D*}, and from the following commutative diagram:

and the fact that M**(¢) and C are shape equivalent, we have t,([¢*|D*])=
[C, a, B]. Therefore it is sufficient to construct a map ¢ with the condition ().

Since C and M*(¢p) are shape equivalent, M*(¢) is UV**1. There exists a
sequence {U,},._, of neighborhoods of M*(¢) in @ such that

(1) U,DU,,, for each n=—2, and

(2) for each n=—2, [<k+1 and map a: S'—U,.,, there exists an exten-

sion a*: D'*'-U, of a.

Since M(p)DM*(¢p), there exists a monotone sequence {$n}nxo 0f positive num-
bers such that D*X{su}={[%, su, sSn/(I+sn)]EM(@)ix=D* CUspm,, for each
mz=0. By (2), there exists a map an: D*—U;pn,, with ax(x)=[x, 0, 0JeM*(p)
for each xeS*!. Identifying D*X[0, s, ] with {[x, s, s/(1+s)]eM(p)|x= D*,
se<[0, sn]}, by (2) we have a map ¢, : D*X[0, sp]—Us, such that ¢n(x, 0)=
au(x) for each xeD* and ¢,(x, H=[x, ¢, t/(1+1)] for each (x, HeS* ' X[0, s, ]
UD*X {sn}. Since ¢/, (D*X{0}WJ@Q' 0 (D*X{0})CUsn, by (2) there exists a
map ¢”,: D*'—=U,,_, with ¢”,|the upper hemisphere =¢’,|D*x {0} and
¢”, |the lower hemisphere =¢’,.,,|D*X {0}. Applying (2) to D*X[sn, Sns]C
Usm+1, and three maps ¢',, ¢'»,: and ¢”,, then we get a map ¢*,, n,i: D*X
[0, sp1X[m, m+1]—-U,,_, satisfying that

O mar(X, £, M)=@ n(x, 1) if (x, )eD*X[0, snl,
OFn ma(x, £, m)=[x, t, t/(1+D)] if (x, )&eD*X[sm, Sms+1] and
O, mei(X, £, mELD=¢ (X, 1) if (x, HeD*X[0, s,].

For each m =0 define pu: {D*X[sm, ©o)JC} X [m, m41]— M**p) by
pulx, t, 8) =[x, t/(1+1)] for each (x,t, s) & D*X[sn, «0)X[m, m+1], and
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<l

Py, )=y for each (y, s)eCx[m, m+1]. We set
¢m,m+l:¢*m.m+1Upm: M**(SD)X[mv m+l] - US'M—-Z: and
¢:Um€N ¢7n,m+1: 1\/[**(§0>X[0, oc) - U—2 .

Clearly by the construction as above, the map ¢ satisfies the condition ().

3. Main results

The k-th homotopy pro-group, the k-th shape group and the strong shape
group of a space X are denoted pro-z.(X), z.(X) and z.(X), respectively. We
will construct a homomorphism s,: 7,“**V(X, x,)—zm:(X, %,). Let [C, a, Bl
7, **O(X) x,) and let 7: C—Q be an embedding. Since C is UV**!, there exists
a map ¢eo: D¥X[0, 00)—Q such that ¢e(x, H)=a(x) for each x=S* ! and te
[0, o), and that (¢, 7) is an approaching map. Suppose that X=lim (K, f,),
where K,’s are finite polyhedra, then there exisits a map 8*: Q—CMap*((K,, f.))
which is an extension of 8. Define s, : @, **V(X, x)—z(X, x0) by s:([C, a, B])
=[B*go]. Since C is UV**!, the definition as above is independent of a cheice
of ¢¢. By the proof of Theorem 2.7 in [Mr2], if [C, a, 81=[C’, a’, B’], there
exists the following commutative diagram:

M(a) -——) C

S

gk-1 C

\Jf—% &

M) —— '

Here 7, and y_ are embeddings and [C”, a”, B”]en**V(X, x,). By the com-
mutative diagram as above,

[{9"(750]:[ﬁ°7’°¢ma>]:[,B"°¢C"]:[ﬂ"’?’/"{bﬂm')]:[ﬁ’°¢0']egk(X, Xp).

sy turns out to be well-defined. Clearly s, is a homomorphism.

An inverse sequence {G;, h;} of groups and homomorphisms is profinite if
for each 7 there is a ;>7 such that im h,,,° - <A (G;)CG; is finite. A con-
tinuum X has pro-z,(X) profinite if whenever X is written as an inverse limit
X=lim (K, a;) of finite CW complexes, the system {m,(K;), a:} is profinite.

MAIN THEOREM. [If (X, x,) is a pointed continuwm with pro-m(X) profinite,
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then m, **"(X, xo) and mx(X, x,) are isomorphic for each k=1.

PrOOF. We will show that s, is an isomorphism.

First we may consider a special case that f; is an AF‘map for each :=1.
Then we will construct a homomorphism u;: £x(X, x,)—m,*"P(X, x,). Let
¢ SEX[0, 0)—>CMap*((K;, f;)) such that o({s,} X[0, o))={x,}, where s, is the
basepoint of S*, and such that (p, j) is an approaching map, where j:X—
CMap*((K;, f4) is the inclusion. By Corollary 5.5 of [Fe2], there exists a map
¢’ S*—X such that defining ¢”:S*X[0, 0)=X by ¢”(x, )=¢'(x) for each
x€S* and t=[0, ), [p”]1=[plex:(X, x,). Define u;: zo(X, x9)—m,**(X, x)
by ux([¢])=[D*, incl, ¢’-p], where incl: S*~'=D* is the inclusion and p: D*—
D*¥/S*¥-1=S* is the projection. Because of Corollary 5.5 of [Fe2] and [Mr2],
u, is well-defined. It is clear that s eu,=id. Since t;: mx(X, xo)—mr *V(X, x,)
is an isomorphism by Lemma 3, for each [C, a, flerm,**V(X, x,) there exists
a map 7:D*—X such that y(S*Y)={x,} and [C, a. B]=[D*, incl, y], where
incl: S®'—D* is the inclusion. Because u,°s.([D*, incl, y1)=[D*, incl, 7],
uzos,=td. That is, s, is an isomorphism.

Next we consider the general case. Since pro-z,(X) is profinite, by Theorem
3’ and Lemma 3.2 of [Fe2], there exists a continuum X’ such that X’ and X
are shape equivalent and X’'=lim(K’;, f’;), where K{’s are finite polyhedra and

s are AF‘maps. Moreover, by Theorem 2 of [Fe3], X’ and X are UV"-
equivalent for each n>0. There exist a compactum X” and UV**‘maps
E 1 X"—X, &: X"—>X'. Let x”,€X” with &(x”)=x,.

El* 52*
ﬂ'k(kﬂ)(X, xo) ﬂ'k(kH)(X”. x//ﬂ) > ﬁk(kﬂ)(X/, 5”2(«\'”0»
Sk Sklll Sk,
gl* Sz*

(X, %) (X7, x7) (X, E7a(x70)).

By Theorem 1.6 of [Mr2], &,» and &, are isomorphisms, and by Lemma 1, &«

’

and &« are isomorphisms. Since this diagram is commutative and s,” is an

isomorphism, so is s;.

A space X will be called UV ™-connected provided that for any two points
x, x’&X there exist a UV™compactum C and a map y:C—X with x, v’
7(X). By a UV™component of X we mean a maximal UV ™-connected subspace
of X. Denote n,(X) the set of all UV ™components of X.

LEMMA 4. Let X be a continuum. If w,V(X)={X}, then z X, x0)=0 for



A Relation between k-th UV*#*! Groups 457

each x,=X.

PROOF. Let x,&X be an arbitrary point. Since 7,""(X)=0, for each x,=X
there exist a UV'-compactum C and a map 7: C—X with x,, x,€7(C). Let
M and M’ be AR’s, i: C—M and j: X—>M’ be embeddings and y*: M—M’ be
an extension of y. Taking points y, v,€C with 7*(y)==x,, 7*(y,)=x,, since
C is UV, there exists a map ¢: IX[0, c0)—M such that (¢, 7) is an approach-
ing map and ¢(4, )=y, for each t<[0, ) and d= {0, 1}. Since (r*o¢, j) is an
approaching map, zo(X, x,)=0.

COROLLARY. Let X be a continuum with pro-z,(X) profinite. If my""(X)=
{X} and 7w, **Y(X, x0)=0 for each x,cX and k=12, .-, n, then X is UV ™.

ProOF. It follows from Main theorem and Lemma 4 that z.(X, x,)=0 for
each x,€X and k=0, 1, -, n. By [Wa] lim'(pro-m,, (X, x.))=0=r(X, x,).
Moreover by Theorem 11 and Lemma 2 of Theorem 12 in §6.2 [M-S], pro-
(X, x,)=0 for each x,&X and k=1, 2, ---, n. Since X is connected, X is UV ™.

4. Remarks and problems.

Mrozik [Mr2] and Venema [Ve] gave fundamental properties of k-th UV *-
groups for an arbitrary continuum X: 7, V(X)=7r,?(X)= - =z, Y(X)=0 and
T O X =7, **(X)= ... =x,°%(X). Thus the groups have some meaning only
in the cases n=Fk and k£+1. Moreover Venema showed that, for every UV™-
compactum X, 7,™(X)=0. Considering Corollary and Venema’s result, we
have a natural problem :

PROBLEM 1. Is a continuum X with =,®(X)=0 for k=1, ---, n, a UV"-
compactum ?

On the other hand, we clearly have a natural homomorphism #h, ,,,:
T (X, xg)— 7 (X, x,) as follows: for each [C, a, Blenr,**(X, x,) where
C is UV**, and a: S**'—C and §: C—X, define

hk.k+1([cy a, ﬁ]):[C7 «, ﬁ] .

However, we do not have any information about A; ,;. It is obvious that if
Ru -1 18 @ monomorphism, Problem 1 has the affirmative answer. Therefore
we pose the following problem :

PROBLEM 2. When is the homomorphism h, ., a monomorphism ? In parti-
cular, consider the case that pro-z(X) is profinite.
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