
TSUKUBA .1. MATH.

Vol. 18 No. 2 (1994), 449―158

1

A RELATION BETWEEN k-th UVk+1 GROUPS AND

k-th.STRONG SHAPE GROUPS

By

Naotsugu Chinen

Introduction

Compacta X and Y are UV "--equivalentprovided that there exist sequences

{Ei}1Siim and {F;}0SiSm of compacta and sequences {/i},SiSniand {gi}1&iim of

£/F"-maps fi:Ei―>Fi_1 and gt: Ei~+Fi} where FQ=X and Fm=Y. Replacing

UVn~maps with C£-maps, we have the definition of CZi-equivalence.
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It is well known that finite-dimensional Cis-equivalent compacta are shape

equivalent (see [D-S]). The firstexample that shows the gap between shape

equivalence and CE-equivalence was found by Ferry [Pel]. In [Fe3], it was

shown that UV"'-equivalent n-dimensional compacta are shape equivalent. Next

Daverman and Venema [D-V] constructed an n-dimensional LC"~2-continuum

which is shape equivalent but not (/V^-equivalent to S1. Mrozik [Mrl] ob-

tained a method to have continua which are shape equivalent but not UV1-

equivalent to each other. Moreover Mrozik [Mr2] improved the method and

had a strategy to construct a LC "-continuum Y from any LCn+'-continuum X

with tci{X)infinitesuch that they are shape equivalent but not t/F"+1-equivalent.

As a criterion of UV "-equivalence he introduced the notions of UV "-component

7i^n＼X) [Mrl], yfe-thf/V'-homotopy group nk(n){X) and k-th.C£-homotopy group

7zkCE(X)[Mr2]. Venema [Ve] investigated the groups and showed that 7rAa +1)(Z)

= 7tkat+*)(X)=■■■=KkCE(X) for every continuum X and that 7tnin＼Y)=0 for every

UV "-continuum Y.

In this paper we consider a relation between 7rk(k+1)(X)and the &-th strong

shape group zk(X) [Q]. We define a natural homomorphism sk: 7ck(k+1)(X)^

Ek(X) and show that, if pro-TixiX)is profinite,sk is an isomorphism. As its
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consequence we have

7ck<*+1>(X)=0 for k = l,

that

･･ . n
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if pro-rc^X) is profinite, and 7rnO)(X)= {X} and

, then a continuum X is UVn.

2. Definitions and lemmas.

By the Hilbert cube Q, we mean the countable product of closed unit in-

tervals I=[_0, 1]. By 5* and Dk, we denote the ^-sphere and the &-ball, re-

spectively. For each k^N, a compactum X is a UVk-compactum provided that

for every embedding i: X^M of X into an ANR M and every neighborhood U

of i{X) in M, there is a neighborhood V of i{X) in M such that UZDV and the

homomorphism 7ij(V)^7tj(U) induced by the inclusion is trivialfor j^k. For

each compacta X and Y, a surjective map /: X―>Y is UVk provided that each

point preimage f~＼y)is a £/F*-compactum. Fora subspace Z of X and jcgI,

by d(x, Z) we denote the number inf{d(x, z)＼z^Z}, and set NS(Z)= {x<=X

d(x, Z)<s}.

If X and F are compact metric spaces and /: Y-+W is an embedding into

a compact AR W, then an approaching map f: X-^-Y is a pair (/, j), where /

is a map /: Xx[0, oo)-*W such that for each neighborhood U of j(Y), there is

an meJV such that /(Ix[m, oo))cf/. Two approaching maps /, ^: X-^Y (f=

(f, j)> g=(g> J)) are homotopic through approaching maps, if there is an appro-

aching map H:XXI-*Y (H=(H, j)) such that H＼Xx{0}=f and H＼Xx{l}=g

[Fe2].

Let h: X―>Y be a map and let i: X^Q and ./:F-^Q be embeddings. De-

fine an embedding /: X-^QxQ by l(x)=(j°h{x),i(x))and the projection proj: Q

XQ->Q by proj(a, 6)= a. We assume that XdQxQ by the above embedding

/, and pro')＼X=h. We take the metric on QxQ to be the supremum of the

metrics on two factors,

Lemma 1. Let h : X―+Y be a UVk-map as above. If P is a finite k-dimen-

sional polyhedron, S is a subpolyhedron of P, f=(f, j): P―>Y is an approaching

map, and g=(g, l):S―*X is an approaching map with proj°^=/|Sx[0, oo), then

there is an extension g* : PX[0, co)^QxQ of g such that (g*, /)is an approach-

ing map and that f and (proj°,g*,j) are homotopic through approaching maps.

Proof. By Corollary 1.2 of [Fe3], we get a sequence ＼8n}ni0 of positive

numbers satisfying:

(1) 8n<min{dn^, 1/2"} for n^l, do<l and

(2) for any finite(£+ l)-dimensional polyhedron K, subpolyhedron L of K,

map a: K~~*N5n(X)and map a0: L―>Nsn(X) with pro)°a0=a ＼L, there

exists an extension a*: K-^Ngn-i(X) of a0 such that proj°a*=a.
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Since / is an approaching map, there is a monotone increasing sequence {in＼n^＼

with f{PX＼jn, co))czNSn+1(X) for n^l. For each ne/V set fn=f＼Px[in, *n+i].

By (2) we get an extension gn:Px[in.in+{]-^N8n(X)oi g＼SX[in, in+1~]with

proj≫£B=/B. For each neiV, define Hn: PxI-^N5n{Y) by Hn(x, t)=f(x, in+1)

for each xeP and fe/, and //,,,:Px {0, 1}->N≪B(A) by Hn,0(x, 0)―gn(x, in+1),

Hn,0(x, l)=gn+1(x, in+1) for each xg?. And by (2) there exists an extension

H*n: PxI^N8n-i(X) of //n,0 with proj°//*n=//ra. Define ,§･*,:Px[fn, fn+1]-

QXC? as

f ^B(x, (l-20≫B+2^B+1) if fe[0, 1/2]

i i/*B(x, 2t-l) if fe[l/2, 1]

Then g*=＼Jn<=N g*n-PX[ilt °°)―>QxQ is a desired extension of g and the

proof is finished.

For each pointed compactum (X, x0) and each k^l, let UVmk(X, x0) be the

class of all triplesA=(C, a, j8),where C is a UVm compactum and a: Sk~1-^C,

/3: C-+X are maps with ^°a{Sk~1)={x0). Given two such triples A=(C, a, /3)

and A'=(C, a', f}'),we write A'^A if there exists a map j: C'~>C such that

commutativity holds in each triangle of the following diagram.

Q*-i

a'^ C 0'

≪^C ^0

X

Let = denote the equivalence relation generated by :> (i.e. A'=A iff there

exists a sequence of triples A^A, A2, ･･･A2r+i=A/ in UVmk(X, xQ) such that

A2i^A2i±1,z= l, ･･･,r) and let xk(m)(X, xo)=UVmk(X, xo)/= . The equivalence

class of A=(C, a, /3)in w*(m)(^, x0) will be denoted by [A] = [C, a, /3].

Let ≪:S*"1―(S*"1, *)V(5A"1, *) denote the usual comultiplication map on

the //-cogroup S*"1 and [x:(X, xo)V(X, xQ)^X the folding map. For [Af] =

[_Ci,au (Hi~]e7ckim)(X,x0),i=l, 2, define a multiplication by

($) [A1][A2] = [(C1, aMW{C2, ≪2(*)),(a1V≪2)'>≪,ff^Vfr)'] .

Obviously this is a group multiplicationon jrA(m)(X,x0): The neutral ele-

ment is Axo=[{*}, const, const], where const is the constant map. An inverse

for [A] = [C, a, 0] is given by [A"1], where A'^CC, a≫V)^) and y: S'-'^S*"1

is the usual homotopy inverse on the //-cogroup S*"1 (see [Mr2]).

Lemma 2. Let (X, x0) be a pointed compactum and k>l. Then for each

[C, a, /3]e7r*(*+1)(^,x0), there existsa ＼_C,a', $'^^xk(k+iKX, x0) such that
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a': Sk 1―>C is an embedding,

dim C'^k+2 and

＼_C,a,8-＼= lC',a',B'＼

Proof. By Theorem 2.1.9 of [Be], there exists a compactum C* with

dimC*^/H~2, and a UVk +1-map f: C*-^C. Since C is UVk+1, C* is £/F*+1.

Let i: C*^Q and /: C-^Q be embeddings. Define /: C*-^QxQ by l{x)={j°f{x),

i(x)). For convenience we may assume that proj|C*=/ as before. Moreover

define <p: S^XCO, oo)->Q by ^>(x,t)=a(x) for each xgeS*"1 and fe[0, 00). By

the proof of Lemma 1 there exists a map ^*: S*"XX[O, oo)-^Qx<5 such that

(<p*,I) is an approaching map and proj°<p*=(p. The mapping cylinder M(<p*) of

<p* is the space obtained from (S^'XCO, c≪)x/)c(^)*(5ft-1X[0, oo))uC*) by

identifying for each ^G^*(5*"1X[0, oo)) the set ((p*~＼y)X{1})VJ{y} to a single

point. Identifying of C* and S*-1X[0, oo)x[0, 1) as subspaces of M((p*), we

set

Af*ty>*)=C*U{|>, s, s/a+s^GM^I^eS'-1, sce[0, oo)}.

Then M*(<p*) is f/F* +1. Let r: MtyO―p+CS^xEO, oo))uC* be the natural

retraction of the mapping cylinder and define an embedding a': Sk~1~^M*((p*)

by a'(x)=＼_x,0, 0]. Since we can obtain a commutative diagram:

we infer [M*(cp*)t a', /3°proj°rjM*(≪*)] = [C, a, B^^7tk(k+1＼X, x0)

If X and Y are compact metric ANR's, a map p: X-^Y is said to have the

approximate homotopy lifting property (AHLP) with respect to a compact space

Z if for every homotopy /: Zx/->F, map Fo: Z-*X with p°F0=f＼Zx {0}, and

£>0 there is a map F: ZxI^X such that F0=F|Zx {0} and d(p°F(z, t),f(z, t))

<s for each (z, t)^ZxI. We will call />an AFn-map if /> has the AHLP for

all n-dimensional compacta.

For a finiteor infiniteinverse sequence {{Xif fi)} of compacta, CMap+((Z, /*))

is defined by S. Ferry, (Definition 5.2, [Fe2]). We remark that the inverse

limit ＼^m{Xiffi) is regarded a subspace of CMap+(GY*, /*))and that if the spaces

Xt's are ANR's, then CMap+((^, ft))is an AR.

Next we shall define a homomorphism tk: itk{X, xo)^nkik+1)(X, x0). For
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each [j8]ejr*(Z, x0), where 0 : Dfe―X is a map with ^(S*-1)^ {x0}, define f*([|S])

= [Z)*,incl,j8]. Here, incl: Sk~1-^Dk is the inclusion map [Mr2],

Lemma 3. // X=ljm(Ki, fi), where each Kt is a finitepolyhedron and each

ft is an AFi-map, then the homomorphism tk: Ttk(X, xo)~^7tk(k+1)(X,xQ) is iso-

morphic for each &2^1.

Proof, a) Injectivity. Let /3 be a map /3:Dk^X such that ^([/3])=[£>＼

incl, pi=Qenk(k+1>(X, x0). By the proof of Theorem 2.7 in [Mr2], there exist

£/F*+1-compactum C and maps satisfying the following commutative diagram:

Dk

s*

incly1 n ＼ j8

'C ^ C ―° > X

InclX^J '/const

D*

Define j: Sk-*C by 7-1theupper hemisphere = y+, j＼thelower hemisphere =T-

Let i: C^Q be an embedding. Since C is UVk+1, we get a map r*: Dk+1X

[0, co)^Q such that (7-*,i) is an approaching map and y*(x, t)=y(x) for each

xgS4, fe[0, 00). There is an extension ft**: Q―CMap+((Ki, /<))of j8*. By

Corollary 5.5 of [Fe2], there exists a map g*: D*+1X[O, cxj]-*CMap+((/Ti,/*))

such that #*(*, oo)=fi*<,y(x)for each xeS', and that g*(SkX {<^})ClX. Since

te*|S*X{oo}] = [i8*.r]= [i9]eff*(^, x0),[i8]=0.

b) Surjectivity. Let [C, a, ^je^^^"1"1^^ x0). By Lemma 2 we may as-

sume that dim C<,k+2 and a is an embedding. Since C is£/F*,we get a map

9: Z)*X[Q, oo)->£ such that <p(x,t)=a(x) for each xeS*""1 and fe[0, 00),and

that (<p,i) is an approaching map, where i: C-^Q is an embedding. The map-

ping cylinder M(<p) of <pis the space obtained from (S^^CO, <x>)xI)Q)((p(Dkx

[0, 00))＼JC) by identifying for each y^(p(DkX[0, 00)) the set (^*"1(j)X {1})W

{3>} to a single point. Identifying of C and Z}*X[0, oo)x[0, 1) as subspaces of

M((p), we set

M**{<p)=CKJ{[_X, S, s/(l+ sft(EM((p)＼x<=Dk, S E[0, oo)}ZDM%)

(see Lemma 2).

Let j: M**(<p)―>Q be an embedding. We will construct a map ^:M**(^)X

[0, co)―>Q with (A, j) an approaching map satisfying the following condition:
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(#) $(x, t)=x for each xeAf%) and £e[0, oo).

For a while, we assume that there exists a map <f>as above. Let /3*:£)―*

CMap+((/Ti, /i)) be an extension of /3 satisfying 0*(|>, s, s/(1+s)])=j8(jc) for

each xgS*'1 and sg[0, oo) and apply Corollary 5.5 of [Fe2] to /S*°^,then

there exists a map 0*: M**(^)-^X with 0*|M*(^>)=/3*|M*(^). Identifying L>fe

with {[x, 0, 0]gM(w)| igD*} , and from the following commutative diagram:

X

and the fact that M**(<p) and C are shape equivalent, we have tk([_0*＼Dk])=

[C, a, /3]. Therefore it is sufficient to construct a map 0 with the condition (#).

Since C and M*(<p) are shape equivalent, M*{<p) is £/F* +1. There exists a

sequence {t/n}
713-2
of neighborhoods of M*(<p) in (? such that

(1) UnZDUn+1 for each n^―2, and

(2) for each n^―2, /^& + l and map a: S'―>£/re+1,there exists an exten-

sion ≪*: Dl+1->Un of a.

Since M((p)Z)M*((p), there exists a monotone sequence {sm}ms0 of positive num-

bers such that DkX {sm} = {[x, sm, sra/(l+sm)]GM(^)|xGDs}c[/3m+i for each

m^O. By (2), there exists a map am: Dk~^Usm+1 with ≪m(x)=[x, 0, 0]geM*(<p)

for each x^Sk~l. Identifying DkX[0, sm] with {[*, s, s/(1+s)]e%)| xgeD*,

sg[0, Sm']}, by (2) we have a map 0^: D*X[0, sm]-^U3m such that ^ (x, 0)=

am(x) for each xeD*, and <j>'m(x,t)=[x, t, t/(l+t)] for each (x, t)^Sk~1Xl0f sm]

UD'XW. Since $'m(D"X {0})＼J$'m+1(DkX{0})aU3m, by (2) there exists a

map <j>"m: Dk+1~~^U3m^1 with ^r/m| the upper hemisphere =<j)'m＼DkX {0} and

^*m|the lower hemisphere =0'm +
1＼DkX

{0}. Applying (2) to 7)*X[sTO, sm+1]c

f/3m+i, and three maps $'m, <j>'m+iand <f>"m, then we get a map 0*m,m+i: D*X

[0, sm]X[_m, m+l]-^f/3m_2 satisfying that

^*m,m+i(^, f, m)=0/m(x, 0 if (x, 0gO'X[0, sm],

0*m,m+i(x, f, m)=[x, t, t/(l+t)] if (x, 0eZ)*X[sm, sm+1] and

0*m.m +i(^, f, m + l) = ^/TO+1(X, t) if (X, f) EZ>*X[0, Sm] .

For each m^0 define pm : {J9*X[sra, oo)＼jC} X [m, m + 1] -≫M**(^>) by

/)m(x, f, s) = [x, f, ^/(l+O] for each (x, t, s) ge D*x[sm, oo)x[w, m+1], and
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Pmiy, s)=y for each (y, s)eCx[ra, m+1]. We set

0m,m+i=0*m,m+iW£m:M**(^>)X[m, m+l]―>LT8m_2, and

0=Umey0m.m+i:M**(9)X[O, oo)―>/7_2.

Clearly by the construction as above, the map <j>satisfiesthe condition (#).

455

3. Main results

The &-th homotopy pro-group, the &-th shape group and the strong shape

group of a space X are denoted pro-7rA(X), xk(X) and xk(X), respectively. We

will construct a homomorphism sk: 7r*c*+1)(X,xo)->^ft(Z,x0). Let [C, ≪,/3]e

7rft(*+1)(Z,*,) and let i: C-^<5 be an embedding. Since C is (/F*+1, there exists

a map <f>c'.DkX[0, c&)^Q such that <pc(x,t)=a(x) for each zgS*"1 and £<s

[0, oo),and that (<f)C,i) is an approaching map. Suppose that X=ljm(Ki, ft),

where /C/s are finitepolyhedra, then there exisitsa map /3*:Q~^CMap+((Ki, ft))

which is an extension of /3. Define sk : nk(k+1)(X, xo)-^7zk(X,x0) by s*([C, a, j8])

= [j8*o^c]. Since C is UVk+1, the definitionas above is independent of a choice

of <j)C. By the proof of Theorem 2.7 in [Mr2], if [C, a,
iS]=
[C/, a', j8'],there

exists the following commutative diagram:

M(a)
r―^

S*'1

J

M(a') ;-*

c

[

X

A

c

Here j+ and f_ are embeddings and ＼C",a", ft"^<^7rkik+l)(X,x0). By the com-

mutative diagram as above,

[J9≫?iP]=[|S=r^(≪)] = [^'o^"] = [^or/of＼(rt()]= [J3'o^v]Gp(I) x0).

sk turns out to be well-defined. Clearly sk is a homomorphism.

An inverse sequence {Giy hi) of groups and homomorphisms is profiniteif

for each i there is a j>i such that im/zi+1°･･･°hj(Gj)ziGiis finite. A con-

tinuum X has pro-7ti(X) profiniteif whenever X is written as an inverse limit

X=ljm(Ki, at) of finite CW complexes, the system {tt^/Q, ≪**}is profinite.

Main Theorem. // (X, x0) is a pointed continuum with pro-rc^X) profinite,
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then 7ik(-k+1){X, x0) and 7tk(X, x0) are isomorphic for each k~2il.

Proof. We will show that sk is an isomorphism.

First we may consider a special case that ft is an ^F^-map for each z'2>l.

Then we will construct a homomorphism uk: 7:k(X, xo)-^7rA(*+1)(X, x0). Let

<p: S*X[0, oo)-^CMap+((Kt, /,)) such that <p({so}X[Q, oo))={;c0}, where so is the

basepoint of Sk, and such that (<p, j) is an approaching map, where j: X-^

CMap+((Ki, fi)) is the inclusion. By Corollary 5.5 of [Fe2], there exists a map

<p'＼Sk-+X such that denning <p": S*X[0, oo)^X by (p"{x, t)=ip'(x) for each

xeS* and fe[0, oo), [^] = [^]es,(X, x0). Define m*: nk(X, xo)^7ikck+1KX, xo)

by w&([^])=[JD&, incl, (p'°p}, where incl: Sk~1^Dk is the inclusion and />: Dk^>

Dk/Sk-1=S" is the projection. Because of Corollary 5.5 of [Fe2] and [Mr2],

uk is well-defined. It is clear that sk°uk=id. Since tk '■nk(X, xo)-*7tk(k+1)(X, x0)

is an isomorphism by Lemma 3, for each [C, a, p^<=7rk'-k+1)(X, x0) there exists

a map ?:Dk->X such that 7'(S*"1)= {x0} and [C, a. j8]= [Z>*, incl, r], where

incl: Sk-1->Dk is the inclusion. Because MAoSft([D*, incl, 7*])=[.D*, incl, f],

uk°Sk=id. That is, s* is an isomorphism.

Next we consider the general case. Since pro-^i(Z) is profinite, by Theorem

3' and Lemma 3.2 of [Fe2], there exists a continuum X' such that X' and X

are shape equivalent and X'―l^m{K'i, /'*), where i££'sare finite polyhedra and

f't's are ,4F*-maps. Moreover, by Theorem 2 of [Fe3], X' and X are f/Fn-

equivalent for each n^O. There exist a compactum X" and /7F*+1-maps

fx: X≫-+X, £S:X"->X'. Let x",gI* with B1(x＼)=x0.

Tl^KX, X0)

6.

fl*

7Tk<k +iKX", X＼)

Sk"
I

y

Kk(X, %0) < 7Tk(X", X＼)

By Theorem 1.6 of [Mr2], &* and |2* are

&.

f2*

ff≫<4+ 1)(*', £".(**o))

7lk{X', $＼(X＼))

isomorphisms, and by Lemma 1,£1*

and |2* are isomorphisms. Since this diagram is commutative and sk' is an

isomorphism, so is sk.

A space X will be calledUVn-connected provided that for any two points

x, x'<^X there exist a f/yn-compactum C and a map y: C-^X with x, x'e

?(X). By a UVn-component of Z we mean a maximal £/V"-connectedsubspace

of X. Denote no{n){X)the set of allUV"-components of X.

Lemma 4. Let X be a continuum. If 7ro(1)(X)={X＼, then no(X, xo)=O for
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each xoel.

Proof. Let xo^X be an arbitrary point. Since ko'-1)(X)―O>for each xx^X

there exist a t/F^compactum C and a map j＼C-^X with x0, x^j{C). Let

M and M' be AR's, i: C-^M and /: X-+M' be embeddings and ?*: M^M' be

an extension of j. Taking points yQ, y^C with Y*(yo)=xo, y*(y1)=x1, since

C is C/F1, there exists a map ^: /X[0, co)―M such that (0, f)is an approach-

ing map and </>(d,t)=y8 for each fe[0, cx>)and 5e {0, 1}. Since (J*°0,7) is an

approaching map, 7to(X,xa)=0.

Corollary. Let X be a continuum with pro-TTiCX)pro finite. If 7ro(I)(X)=

{X} and rrk(k+1)(X,xo)=O for each xo^X and k = l, 2, ■■■,n, then X is UVn.

Proof. It follows from Main theorem and Lemma 4 that xk(X, xo)=0 for

each xo^X and k = 0, 1, ･■■,n. By [Wa] lim1(pro-^*+i(A',Xo))=0―Kk(X, xo).

Moreover by Theorem 11 and Lemma 2 of Theorem 12 in §6.2 [M-S], pro-

7tk(X, xo)=O for each x,gI and k = l, 2, ･･･, n. Since X is connected, X is UVn.

4. Remarks and problems.

Mrozik [Mr2] and Venema [Ve] gave fundamental properties of &-th UVn-

groups for an arbitrary continuum X: 7rka＼X)=7tk(2)(X)= ･■･= 7cklk~1)(X)=0and

7t^k+^(X)=7rk(k+2＼X)= ･･･=7rkCE(X). Thus the groups have some meaning only

in the cases n = k and k-＼-l. Moreover Venema showed that, for every UVn-

compactum X, 7in{n)(X)=0. Considering Corollary and Venema's result, we

have a natural problem:

Problem 1. Is a continuum X with 7rk(k)(X)―0 for k = l, ■･■,n, a UVn-

com-bactum ?

On the other hand, we clearly have a natural homomorphism hkik+1:

7T,(*+1)(X,xo)-+xkl'>(X, x0) as follows: for each [C, a, /3]6Ett*(*+1)(Xx0) where

C is UVk+1, and a: 5ft+1-^C and /3: C^Z, define

/i*.*+i([C,a, /3])=[C, a,/3].

However, we do not have any information about hkik+1. It is obvious that if

hk,k+i is a monomorphism, Problem 1 has the affirmative answer. Therefore

we pose the following problem:

PROBLEM 2. When is the homomorphism hktk+1 a monomorphism ? In parti-

cular, consider the case that prO-jr/X) is profinite.
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