DIMENSION OF *k***-LEADERS**

By

Ken-ichi TAMANO

Introduction.

Let X be a T_2 -space. The *k*-leader kX of the space X is the set X with the topology generated by the family of all subsets of X that have closed intersections with all compact subspaces of X (see [1]).

A. Koyama [2] introduced the notion of a *c-refinable* map and showed that if $f: X \rightarrow Y$ is a *c*-refinable map between normal spaces, then dim $X=\dim Y$. He asked: Is there a normal space X satisfying dim $kX \neq \dim X$?

The purpose of this note is to give a positive answer to the question by constructing a Lindelöf non-zerodimensional space X with the property that every compact subspace of X is finite. Note that the *k*-leader kX of the space X is discrete.

The letter N denotes the set of positive integers.

The example.

EXAMPLE. There exists a Lindelöf space X such that $\dim X > 0$ and every compact subspace of X is finite.

The real line with the natural topology is denoted by the letter R. Let S and T be subsets of R^2 satisfying:

(a) $R^2 = S \cup T$, $S \cap T = \emptyset$; and

(b) $|F \cap S| = |F \cap T| = c$ for every closed uncountable subsets F of R^2 . For the existence of such subsets S and T, see [3], Ch. III, 40, I, Theorem 1.

Let $\{F_{\alpha}: \alpha < \mathfrak{c}\}$ be a enumeration of all closed uncountable subsets of \mathbb{R}^2 .

- LEMMA. There exist $\{s_{\alpha} : \alpha < \mathfrak{c}\}$ and $\{t_{\alpha n} : n \in N\}$, $\alpha < \mathfrak{c}$, such that
- (a) $s_{\alpha} \in F_{\alpha} \cap S$ and $s_{\alpha} \neq s_{\beta}$ for each α , $\beta < \mathfrak{c}$ with $\alpha \neq \beta$; and
- (b) $\{t_{\alpha n}: n \in N\} \subset F_{\alpha} \cap T$ and for each $\alpha < \mathfrak{c}, \{t_{\alpha n}: n \in N\}$ converges to s_{α} .

PROOF. For each $\alpha < \mathfrak{c}$, by the property of the sets S and T, $F_{\alpha} \cap T$ is uncountable and hence $(\operatorname{Cl}(F_{\alpha} \cap T)) \cap S$ is uncountable. Thus by a transfinite

Received November 7, 1984.

induction on $\alpha < \mathfrak{c}$, we can obtain the desired sequences.

CONSTRUCTION. We shall construct the example $\langle X, \tau \rangle$. Define $X=R^2$ as the set. Each point of T is defined to be isolated in $\langle X, \tau \rangle$. Denote by ρ and d the natural topology and the usual distance function of the space R^2 . Let $\{s_{\alpha}: \alpha < c\}$ and $\{t_{\alpha n}: n \in N\}$, $\alpha < c$ be the sequences obtained by the above Lemma. For each $s \in S$, we define a sequence $\{t_n^s\} \subset T$ which ρ -converges to the point s. If $s=s_{\alpha}$ for some $\alpha < c$, then define $t_n^s=t_{\alpha n}$ for each $n \in N$. If $s \in$ $\{s_{\alpha}: \alpha < c\}$, then t_n^s be an arbitrary sequence converging to s. We can choose the sequence because T is ρ -dense in R^2 .

For each point $x \in \mathbb{R}^2$ and $\varepsilon > 0$, define $B_{\varepsilon}(x) = \{y \in \mathbb{R}^2 : d(x, y) < \varepsilon\}$. For each $s \in S$, $n \in \mathbb{N}$ and a function $f : \mathbb{N} \to \mathbb{N}$, define

$$U(s, f, n) = \{s\} \cup \bigcup \{B_{1/f(k)}(t_k^s) - \{t_k^s\} : k \ge n\}.$$

Now the basic neighborhood system of the point $s \in S$ in $\langle X, \tau \rangle$ is defined to be the collection

$$\{U(s, f, n): n \in \mathbb{N}, f: \mathbb{N} \rightarrow \mathbb{N}\}.$$

It is easy to see that the space $\langle X, \tau \rangle$ is a regular T_1 -space.

CLAIM 1. X is Lindelöf.

PROOF. Let \mathcal{U} be an open cover of $\langle X, \tau \rangle$. Define $\mathcal{V} = \{\operatorname{Int}_{\rho} U : U \in \mathcal{U}\}$. Since $\langle R^2, \rho \rangle$ is hereditarily Lindelöf, there exists a countable subcollection \mathcal{U}' of \mathcal{U} such that $\bigcup \mathcal{C} = \bigcup \{\operatorname{Int}_{\rho} U : U \in \mathcal{U}'\}$. We need only show that the set $R^2 - \bigcup \mathcal{C}$ is countable. Suppose the contrary, there is a closed uncountable subset F of $R^2 - \bigcup \mathcal{C}$ which is dense in itself with respect to the ρ -topology. Then $F = F_{\alpha}$ for some $\alpha < \mathfrak{c}$. By the construction of Lemma, there are $s = s_{\alpha} \in$ $F_{\alpha} \cap S$ and $\{t_n^s\} = \{t_{\alpha n}\} \subset F_{\alpha} \cap T$. Since \mathcal{U} is a cover of $\langle X, \tau \rangle$, there is an open set $U \in \mathcal{U}$ and a basic neighborhood U(s, f, n) of s such that $s \in U(s, f, n) \subset \mathcal{U}$. Then $(\operatorname{Int}_{\rho} U(s, f, n)) \cap F_{\alpha} \neq \emptyset$, because $B_{1/f(n)}(t_n^s) - \{t_n^s\} \subset \operatorname{Int}_{\rho} U(s, f, n)$ and t_n^s is a non-isolated point of F_{α} with respect to the ρ -topology. Thus $(\operatorname{Int}_{\rho} U) \cap F_{\alpha} \neq \emptyset$. On the other hand, $(\operatorname{Int}_{\rho} U) \cap F_{\alpha} = \emptyset$, because $F_{\alpha} \subset R^2 - \bigcup \mathcal{C}$ and $\operatorname{Int}_{\rho} U \in \mathcal{C}$. Contradiction.

CLAIM 2. dim X > 0.

PROOF. For every Lindelöf space, the condition $\operatorname{ind} X=0$, $\operatorname{Ind} X=0$ and $\dim X=0$ are equivalent (see [1]). We need only show that $\operatorname{ind} X>0$. To see this, we claim that if U is τ -open, bounded with respect to the usual metric d

of R^2 and $\operatorname{Int}_{\rho} U \neq \emptyset$, then $\operatorname{Bd}_r U \neq \emptyset$. Let U be a τ -open set with the above properties. Put $V = \operatorname{Int}_{\rho} U$. Then V is bounded with respect to the usual metric of R^2 and hence $\operatorname{Bd}_{\rho} V$ is a closed uncountable subset of $\langle R^2, \rho \rangle$. Therefore there is a ρ -closed uncountable subset F of $\operatorname{Bd}_{\rho} V$ which is dense in itself with respect to the ρ -topology. Then $F = F_{\alpha}$ for some $\alpha < \mathfrak{c}$. By the construction of Lemma, there are $s = s_{\alpha} \in F_{\alpha} \cap S$ and $\{t_n^s\} = \{t_{\alpha n}\} \subset F_{\alpha} \cap T$ satisfying the condition of Lemma. Since $t_n^s \in \operatorname{Bd}_{\rho} V$, $B_{1/f(n)}(t_n^s) - \{t_n^s\} \cap V \neq \emptyset$ for each $f: N \to N$ and each $n \in N$. Thus $s \in \operatorname{Cl}_r V \subset \operatorname{Cl}_r U$. It remains to show that $s \in U$. Suppose $s \in U$, then there is a basic neighborhood U(s, f, n) of s such that $s \in U(s, f, n) \subset$ U. But then $B_{1/f(n)}(t_n^s) - \{t_n^s\} \subset \operatorname{Int}_{\rho} U \subset V$. On the other hand, $B_{1/f(n)}(t_n^s) \cap F_{\alpha}$ is infinite because $t_n^s \in F_{\alpha}$ and F_{α} is dense in itself with respect to the ρ -topology. This contradicts the fact that $F_{\alpha} \subset X - V$.

CLAIM 3. Every compact subset of X is finite.

PROOF. Suppose that there exists a compact subset C of X of infinite cardinality. Then there is a non-isolated point s of C. Since every point of T is isolated, $s \in S$. By the definition of the neighborhood system of s, it is easy to find an increasing sequence $\{n_k : n \in N\}$ of positive integers and a sequence $\{c_k : k \in N\}$ of points of C such that $c_k \in B_{1/2k}(t_{n_k}^s) \cap C - \{t_n^s : n \in N\}$ for each $k \in N$. Then $\{c_k : k \in N\}$ converges to s with respect to the ρ -topology. But a simple observation of the basic neighborhood system of the point $s \in S$ verifies that $s \notin Cl_r \{c_k : k \in N\}$. Hence $\{c_k : k \in N\}$ is a closed infinite subset of C, which contradicts the compactness of C. The proof is completed.

REMARK. In a recent letter to A. Koyama, E. van Douwen announced that for each $n=1, 2, \dots, \infty$, there is a normal space X_n with the property that dim $X_n=n$ and every compact subset of X_n is finite. However his examples are not Lindelöf and ind $X_n=0$ for each n.

QUESTION. Is there a Lindelöf space X with dim X=n and dim kX=0 for each $n=2, 3, \dots, \infty$?

I am greatly indebted to H. Ohta for many helpful discussions.

References

- [1] Engelking, R., General Topology, Polish Scientific Publishers, Warszawa 1977.
- [2] Koyama, A., Refinable maps in dimension theory, Topology and Appl. 17 (1984), 247-255.

[3] Kuratowski, K., Topology, vol. I, rev. ed., Academic Press, New York, London; PWN, Warsaw 1966.

> Faculty of Liberal Arts Shizuoka University 836 Ohya, Shizuoka 422 Japan