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DIMENSION OF fc-LEADERS

By

Ken-ichiTamano

Introduction.

Let X be a T2-space. The k-leader kX of the space X is the set X with

the topology generated by the family of all subsets of X that have closed in-

tersections with all compact subspaces of X (see [1]).

A. Koyama [2] introduced the notion of a c-refinablemap and showed that

if /: X^-Y is a e-refinablemap between normal spaces, then dimZ^dimF. He

asked: Is there a normal space X satisfying dim&X^dimX?

The purpose of this note is to give a positive answer to the question by

constructing a Lindelof non-zerodimensional space X with the property that

every compact subspace of X is finite. Note that the ^-leader kX of the space

X is discrete.

The letter N denotes the set of positive integers.

The example.

Example. There exists a Lindelb'f space X such that dim^>0 and every

compact subspace of X is finite.

The real line with the natural topology is denoted by the letter R. Let S

and T be subsets of R2 satisfying:

(a) R2=SuT, Sr＼T=0; and

(b) ＼Fr＼S＼--=＼Fr＼T＼=cfor every closed uncountable subsets F of R2. For

the existence of such subsets S and T, see [3], Ch. Ill,40, I, Theorem 1.

Let {Fa : a<t＼ be a enumeration of all closed uncountable subsets of R2.

Lemma. There exist{sa: a<c} and {tan: n£Af},a<c, such that

(a) sa<^Far＼Sand sa=£spfor each a, /3<c with a^fi; and

(b) {tan: n^N}dFar＼T and for each a<c, {tan: n<=N＼ converges to sa.

Proof.

uncountable

For each a<c, by the property of the sets S and T, Far＼T is

and hence (CI (Far＼T))r＼S is uncountable. Thus by a transfinite
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induction on a<c, we can obtain the desired sequences.

Construction. We shall construct the example (X, r>. Define X=RZ as

the set. Each point of T is defined to be isolated in <Z, r>. Denote by p and

d the natural topology and the usual distance function of the space R2. Let

{sa: a<c} and {£an:neiV}, a<c be the sequences obtained by the above

Lemma. For each sgS, we define a sequence {^}cT which p-converges to

the point s. If s―sa for some ≪<c, then define fn―tan for each neAf. If s<£

{sa: a<c}, then t'nbe an arbitrary sequence converging to s. We can choose

the sequence because T is p-dense in R2.

For each point xei?2 and e>0, define BB{x)={y^Rz: d{x,y)<s}. For each

seS, meJV and a function /: N->N, define

f/(s,/, n)=(s}UU{Bi//(i)(≪)-{≪} : k^n}.

Now the basic neighborhood system of the point sgS in (X, r> is defined to be

the collection

{£/($,/,n): n^N,f: N~->N}.

It is easy to see that the space <Z, r> is a regular TVspace.

Claim 1. X is Lindelof.

Proof. Let V be an open cover of (X, r>. Define <=V={lntpU: £7el/}.

Since <i?2,p) is hereditarily Lindelof, there exists a countable subcollection cUf

of HJ such that U^^UIInt^ U: £/e<U'}. We need only show that the set

R2―＼Jcv is countable. Suppose the contrary, there is a closed uncountable

subset F of R2―XJcv which is dense in itself with respect to the ,0-tQpology.

Then F=Fa for some a<c. By the construction of Lemma, there are s―sae.

Far＼S and {t'n}= {tan}ClFaP＼T. Since HJ is a cover of <X, r>, there is an open

set f/ei/ and a basic neighborhood U(s, f, n) of s such that s^U(s,f, n)dU.

Then (lntp U(s,f, n))nFa±0, because B1/f(n)(tsn)-{tsn}C.lntpU(s, f, n) and t'nis

a non-isolated point of Fa with respect to the p-topology. Thus (Int^ U)C＼Fai=

0. On the other hand, (Int, U)r＼Fa=0, because FaC^'-U0^ and *ntP f/^q7.

Claim 2. dim XX).

Proof. For every Lindelof space, the condition indX―0, IndX=0 and

dimZ=0 are equivalent (see [1]). We need only show that indX>0. To see

this, we claim that if U is r-open, bounded with respect to the usual metric d
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of J?2 and lntpU^0, then Bdr U^0. Let U be a r-open set with the above

properties. Put V^Int^ U. Then V is bounded with respect to the usual metric

of R2 and hence Bd^ V is a closed uncountable subset of (R2, p}. Therefore

there is a ^-closed uncountable subset F of Bd^ V which is dense in itself with

respect to the ^-topology. Then F―Fa for some ≪<c. By the construction of

Lemma, there are s=sa<=Far＼S and {t'n}―{tan}dFar＼T satisfying the condition

of Lemma. Since PnGBdpV, B1/fln)(t'n)―{t'n}r＼V*0 for each f:N^N and

each n(EN. Thus seClr VcClr U. It remains to show that s U. Suppose

s^U, then there is a basic neighborhood U(s,f, n) of s such that se(7(s, /, n)CL

U. But then B1/f(n)(tsn)-{tsn}c:lntpU(ZV. On the other hand, Bllf(n)(tsn)nFa

is infinitebecause fn^Fa and Fa is dense in itselfwith respect to the ^-topology.

This contradicts the fact that FnCZX―V.

Claim 3. Every compact subset of X is finite.

Proof. Suppose that there exists a compact subset C of X of infinitecar-

dinality. Then there is a non-isolated point s of C. Since every point of T is

isolated, s&S. By the definition of the neighborhood system of s, it is easy to

find an increasing sequence {nk: n^N] of positive integers and a sequence

{ck : k^N) of points of C such that ck<^Bll2k(tsnk)r＼C―{tsn:neiV} for each

k^N. Then {ck: keN} converges to s with respect to the ^-topology. But a

simple observation of the basic neighborhood system of the point sgS verifies

that s&C＼T{Ck: k^N}. Hence {ck: k^N} is a closed infinitesubset of C, which

contradicts the compactness of C. The proof is completed.

Remark. In a recentletterto A. Koyama, E. van Douwen announced that

for each n=l, 2,■･･,oo, there is a normal space Xn with the property that

dlmXn―n and every compact subsetof Xn is finite.However his examples are

not Lindelofand indX,=0 for each n.

Question. Is there a Lindelofspace X with dimX=n and dim£Z=0 for

each n=2, 3,･･･,oo?

[1]

[2]

I am greatly indebted to H. Ohta for many helpful discussions.
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