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A CHARACTERIZATION OF REAL HYPERSURFACES

OF QUATERNIONIC PROJECTIVE SPACE

By

J.D. Perez

Abstract. We study a condition that allows us to characterize all

real hypersurfaces of quaternionic projective space known untilnow.

1. Introduction.

Let M be a connected real hypersurface of the quaternionic projective space

QPm, nu?2, endowed with the metric g of constant quaternionic sectional

curvature 4. Let iV be a unit local normal vector fieldon M and Uk =―JkN,

k = l, 2, 3, where {/*}*=i,2,s is a local basis of the quaternionic structure of

QPm. Let us denote by D±=Span{U1, U2) U3} and by D its orthogonal com-

plement in TM.

Recently, [1], J. Berndt, generalizing previous results of A. Martinez and

the author, [6], has proved that any real hypersurface of QPm, m^2, such that

g(AD, D1)={0}, where A is the Weingarten endomorphism of M, is congruent

to an open subset of either a tube of radius r, 0<r<17/2, over the canonically

(totally geodesic) embedded quaternionic projective space QPk, &e{0, ･･･,m―1}

or a tube of radius r, 0<r<IJ/4, over the canonically (totally geodesic) em-

bedded complex projective space CPm.

In [5], A. Martinez introduced ruled real hypersurfaces of QPm, obtaining

several examples, as real hypersurfaces for which the distributionD is in-

tegrable. This is equivalent to the fact that g(AD, D)={0}, [7].

Moreover, if M is a real hypersurface of QPm, TM is a subbundle of TQPm

over Mand T°M={X^TM＼X±Uiy i=l, 2, 3} is a subbundle of TM. Both TM

and T°M have metric connections induced from TQPm. The orthogonal com-

plement of T°M in TQPm is denoted by N°M, which is also a subbundle of

TQPm with the induced metric connection.

Denote by 7, 7, 7° and 71 the connections of TQPm, TM, T°M and N°M,

respectively. Then we have

(1.1) 1XY=1°XY+A1(XXY)
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(1.2) 1XY=1XY+AIX){Y)

for any Y'^C^T0M) and X<=TM, where Ax and A2 are the second fundamental

forms of the subbundle T°M in TM and TQPm, respectively. Set A°= A2＼T°M,

which is a smooth section of Hom(T°M, Hom(T°M, N°M)). The connection on

Hom(T°M, Hom(T°M, N°M)) is also denoted by V°. The covariant derivative

of A° is defined by

(1.3) {lxAa)(Y){Z)=lxA＼Y){Z)-A＼lxY){Z)-A＼Y){lxZ)

for any IgTM and Y, ZeLC~(T°M).

M is said to be Ty-parallelif g((lxA)Y, Z)=0 for any Z, F, ZeD. It is

easy to see from the expressions of their Weingarten endomorphisms, [6], that

any tube of radius r, 0<r</7/2, over QPk, &e{0, ■･■, m―1} or of radius r, 0

<r<77/4 over CPm is ^-parallel. Also any ruled real hypersurface of QPm

is 77-parallel.

On the other hand, we say that A0 is ^-parallelif V°XA°=O, for any Ig

C°°(T°M).

The purpose of the present paper is to give a characterization of all the

real hypersurfaces of QPm, m^2, known until now by the following.

Theorem. Let M be a real hypersurface of QPm, m~^2. Then A° is y-

parallel and A is 7]-parallelif and only if M is congruent to an open subset of

either

i) A tube of radius r, 0<r<77/2, over the canonically {totally geodesic)

embedded quaternionic projective space QPk, for some &<={0, ･･･, m―1}, or

ii) A tube of radius r, 0<r</7"/4, over the canonically (totallygeodesic)

embedded complex projective space CPm, or

iii) A ruled real hypersurface.

Remark. The conditionsof ^-paralleinessof A and A° for real hyper-

surfaces of complex projectivespace have been studied by M. Kimura and S.

Maeda, [3], and S. Maeda and S. Udagawa, [4], respectively.

2. Preliminaries.

Let M be a real hypersurface (any real hypersurface is considered to be

connected in the following) of QPm, m^2, and {Jlt J2, J3＼a local basis of the

quaternionic structure of QPm, see [2], N a local normal unit vector fieldon

M and Ut=-JtN, i=l, 2, 3.

Let X be a tangent vector field on M. We write JiX=^iX+fi(X)N, i=



A characterization of real hypersurfaces 317

1, 2, 3, where <f>iXis the tangent component of JtX, and fi(X)=g(X, £/*),i=

1, 2, 3. As J＼=―Id, i=l, 2, 3, where Id denotes the identity endomorphism

on TQPm, we get

(2.1) ^iX=-X+fi(X)Ui, *=1, 2,3,

and

(2.2) fi^tX)=0, (piU^Q, j= 1, 2, 3,

for any X tangent to M.

As JiJj=―JjJi=Jk, where (/, /, ^) is a cyclic permutation of (1, 2, 3), we

obtain

(2.3) ^X=^kX-fk(X)Uj=-^^jX+fj(X)Uk

and

(2.4) UX)=f^kX) = -fk^jX)

for any X tangent to M, where (/,/, k) is a cyclic permutation of (1, 2, 3). It

is also easy to see that for any X, Y tangent to M and i=l, 2, 3,

(2.5) g$tX, Y)+g{X, ttY)=0, gifaX, faY)=g(X, Y)-ft(X)MY)

and

(2.6) tiU,=Uk = -tjUt,

(i,j, k) being a cyclic permutation of (1, 2, 3).

The formulae of Gauss and Weingarten of M in QPm are given, respec-

tively, by

(2.7) !xY=lxY+g(AX, Y)N

(2.8) 1XN=-AX

for any X, Y tangent to M, A being the Weingarten endomorphism of the

immersion. From the expression of the curvature tensor of QPm, ?n^2, we

have that the equation of Codazzi is given by

(2.9)
{1XA)Y-{1YA)X= S {fi(X)$iY-fi{Y)$iX+2g(X, ^Y)Ut}

i―1

for any X, Y tangent to M.

The covariant derivatives of Jifi―l, 2,3, are given by 1''xJ＼―pj(X)Jk―pk{X)J)

for any X^TQPm, where pt, i=l, 2, 3, are local 1-forms on QPm. Then from

(2.7) and (2.8) we obtain

(2.10) ixUt^-plXWt+pkWUj+faAX
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and

(2.11)

J.D. Perez

C7x0i)Y=pj(X)<?>kY--pk(X)0jY+fi(Y)AX-g(AX,Y)Ui

for any X, Y tangent to M, (i,j, k) being a cyclic permutation of (1, 2, 3).

3. Proof of the theorem.

We firstobtain the following Propositions.

Proposition 1.

a) A1(X)(Y)=--Zl=1g($iAX,Y)Ui

b) At(X)(Y)=g(AXt Y)N--ELig(t<AX, Y)Ut

c) Vrxt<)(Y)=Pk(XtyjY-p£X)tkY

d) lzN=-^Ulg{AX,Ui)Ut

e) ixU^pAXWj-p&XlUt+giAX, Ut)N-g(AX, Uk)U^g{AX, Uj)Uk

for any X&TM, Y<=C°°(T°M),(z,j, k) being a cyclicpermutation of (1, 2, 3).

The proof is straightforward bearing in mind (1.1),(1.2) and (2.1)to (2.11).

From (1.3) and Proposition 1 we have

Proposition 2. For any X^TM, Y, Z(=C~(T°M),

C7°xA°)(Y)(Z)=<p(X,Y, Z)N+%<p(X, Y, $tZ)Ut

where

(3.1) <p(X,Y, X)=g(C7xA)Y, Z)-£{ft(AZ)gWtAX, Y)

+fi{AY)g{<j>iAX, Z)+fi{AX)g<#tAY, Z)}.

From Proposition 2 A0 is ^-parallel if and only if <p{X, Y, Z)=0 for any

X, Y, ZceC~(T°M), that is,

(3.2) g({lxA)Y, Z)= S {flAZ)g{^AX, Y)

+fi{AY)g(<j>iAX, Z)+fi{AX)g{^)iAY, Z)}.

If A is ^-parallel,g((lxA)Y, Z)=0. From this and (3.2),if g(AD, Dx)=

{0}, we obtain that M is locally congruent to 1) on 2) in Theorem, [1].

Let us now suppose that siAD, DJ-)^{0}. From (3.2) we see that

(3.3) ±

i
fi(AZ)g((A^i+^iA)X, Y)=0

for any X, Y, Z<=C (T°M). We can have the following cases:
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Case 1. (AUi)D, i―l, 2, 3, are linearly Independent, where (AUi)D denotes

the D-component of AUU From (3.3) we have that g((A0i-＼-0iA)X, Y)=0 for

any X, Y<=D, i=l, 2, 3. But this is equivalent to D to be integrable and then

M must- he ruled

Case 2. {AUt)D

following subcases:

1, 2, 3, are linearly dependent. We distinguish the

Case 2-i. (AUt)D=(AU8)D=0 and (AU^^O. We suppose thatAU^jX^

PtUi+faUi+piUs. From (3.3)we obtain g^A+A^X, F)=0 for any Z, Fe

C°°(T°M).Thus for any Ig C~{T°M),^1^Z+^1Z=≪1(Z)^71+≪2(Z)£/2+

a3(Z)^73. From (3.3)taking Z―Xx we have ^(^^X, F)=0 for any X, Fe

C°°(T°M).Thus eitherr=0 which is impossible or g^AX, Y)=0. But also

gifaAX, Ui)=0, i=l, 2,3. Thus frAX=0 for any X^CCO(T°M). This means

that for such an X, A$1X=a1(X)Ui+a2(X)Ui+aa(X)Us. From (2.1)it follows

that -AX=a1(01X)U1+az(<p1X)U2+as(01X)Us for any XgeCm(T°M). Thus

£(AD,I≫={0} and M is ruled.

Case 2-ii. Let us suppose that (/U78)D=0 and (Af/i)°,(^t/a)0 are linearly

independent. From (3.3) we have gdfaA+A^X, 5O=0, i=l, 2, for any X, Ft

C°°(T°M).

From (3.2) we also get g($tAX, Y)=Q, i=l, 2, for any X, Y<eC~(T°M).

Thus g(A<f>xX,Y)=0 for any X, Y<eC°°(T°M). Then ^iZ^^^^, Ul)Ul+

g(A01X,U2)U2 for any IeCIT^). From (2.1), for such an X, -AX=-

f1(AX)U1-f2(AX)U2 and then e(AD, D)={0}, thus M is ruled.

Case 2-iii. Let us suppose that (AU3)D=0, {AU,)0, (AU2)D^0 and linearly

dependent. Thus we can write AU1=plW+TiUx+TzU^+TbU3, AUr2=fi2Wr+7＼l)＼

+P2U2+p3U3, when W^D is a unit vector field. From (3.3) we get ptig^AX,

Y)+pi2g(02AX,Y)=O for any X^^C^T'M). Taking scalar products with

Ut, i=l, 2, 3, itis easy to show that ft1$1AX+tt2$iAX=Q for any X^CX(T°M).

Thus either ^^=^=0, which is impossible, or fixAX and $2AX are linearly de-

pendent for any X<=Co°(TaM). Therefore we can have the following situations:

a) AX=Q for any A'eC°°(T°Af).In this case M is ruled.

b) AX^O for some X^C°"(T°M), X±W. Then from (2.3), $,AX and

<j)2AX are orthogonal, wich is a contradiction with the fact that they are linearly

dependent.

c) AX=0 for any XtEC°°(T°M),Xl_W, AW-^0 and p.l(j>lAW+iJt2<}>2AW={).

Thus
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(3.4) AW=g(AW, W)W+filUl+pt2U2.

But then we have ^g^AW, ^1AW)+fitg(^tAW, ^>1AW)=0. From (2.3), this

implies that fiigiAW, AW)―p＼―fiiftl=O. Thus either /ii=0 which is impossible

or g(AW, AW)=p.＼+i£. But from (3.4)g(AW, AW)=g(AW, Wf+txl+ttl Then

g{AW, W)=0, which implies that g{AD, D)={0} and M is ruled.

Case 3. (AU^^O, i=l, 2, 3 and are linearly dependent. We distinguish

the following subcases.

Case 3-i. AU1 = ft1X1+a1U1+atUi+aJJ9, AU2 = ft2X1+a2Ul+r2U2 + rsU3,

AU3=pt3X1+a3Ui-iry3U2+b3U3, where X^D is a unit vector field.

From (3.2), taking Z=XX and X, Y(eC°°(T°M) orthogonal to Xx we have

(3.5) fiigifcAX, Y)+fitg(faAX, Y)+pizg{<f>sAX, Y)=0.

From (3.3) and (3.5) we obtain that p.1<f>1AX+fj.z<j)zAX+piz<f)zAX^D1-for any

X(=C (T0M), and taking scalar products with Uif i―l, 2, 3 we get

(3.6) [i^^X+n^AX+fi^tAX^O, XelCx(T°M).

Thus either fi1=ft2=[ts=Q which is impossible, or <piAX, i―l, 2, 3, are linearly

dependent for any X^C°°(T°M).

Then we have the following possibilities:

a) AX=0 for any X^D and M is ruled.

b) AX^O for some X^C°°(T°M), X±XU From (2.3),$tAX, i=l, 2, 3, are

mutually orthogonal, which is a contradiction because from (3.6) they are

linearly dependent.

c) AX=0 for any X^C"(ToM), XLX, and AX^Q. From (3.6) we get

frg^AXu faAXJ+piigifaAXu ^1AX1)+fisg^3AX1, ^AXX)=Q. Then from (2.3)

and (2.5), we obtain from this that filg{AXu AX^)―fi＼―fiiftl―fiiptl=O.Thus

either fix=0 and this case cannot occur or g(AXu AX1)=fil-＼-fil+fil. But on

the other hand, g(AXlf AX1)=ftl+ftl+[il+g(AXl, X1)＼ Therefore g(AXu Xt)=Q

and M is ruled. This finishes Case 3-i.

Case 3-ii. AU1 = ft1X1+a1U1+azU2+asUs, AU2 = /u2X2+a2U1+^U2+^3U3,

AU3=d1X1+d2X2+azU1Ji-{33U2JrY!iU3, where Xlt X2^D are orthonormal. From

(3.2) we have

(3.7) pl$1AX+d4iAX=a(X)Xi

for any X<=CCO(T°M) and X±X2 and

(3.8) a262AX+d26sAX=B(X)X1
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for any X<=C°°(T°M)and HI,. Thus if X±Xt, i-1, 2, <f>jAX,j-1, 2, 3, are

mutually orthogonal and from (3.7) and (3.8) we obtain 8i82g($3AX, 03AX)=O.

That is, we have the following possibilities:

a) AX=0 for any X^C~(T°M) orthogonal to Xx and X2. From (3.7) we

get frgifaAXu tM+digtysAXu ^X2)=0. This implies

(3.9) ptlg{AXu XJ-d^iAXu XJgiXu 02X2)=O.

But as $1AX1= g(AXlt X1)^1X1+g(AX1, X2)^1Xi-81Us and ^>3AX1^g(AX1)

Xl)^iX1+g(AX1, X^Xi+pJJt, from (3.7),filg(AXu X^X^ nlg{AXu X2)^X2

+di.g(AXu X1)<f>3Xl+big(AXu X2)$3X2 is proportional to X2, and taking the

scalar product with §3X2 we obtain

(3.10) frg{AXu XMXu faXt)+dl8(AXlt X2)=0

Thus, from (3.9)and (3.10),if g(AXu X2f+g(AXu X1)2g(X1, 02X2)2^O, ^=8^0,

thisis impossible. Therefore we suppose that g{AXu X2)2+g(AXu AXC)zg{Xu

<f>2X2)2=;0.On the other hand, as for (3.9) and (3.10) we can obtain

(3.11) -/j2g(AX2, X2)g{X2, ^1X1)+8ig(AXi> X2)=0,

(3.12) fitg{AXlt X2)+d2g(AX2, X2)g(X2, faXa)=0.

Then if g{AXu Xi)=g{AX1, X,)=Q, AX1=ft1U1+81Us, and AX2=g(AX2,

X2)X2+ft2U2+d2U3 and if g(AX2, Xt)=0, M is ruled. If g(AX2, Z2)^0, from

(3.11) and (3.12),if g{X2, faXJ^O, then ^2=a2=0 which cannot occur. Thus

we suppose that g(AX2, X2)^0 and g{X2, <p1X1)=0. Then A01X1=A01X2=O and

4>1AX1=81U2. Then gi^.A+A^X,, X)=0 for any XeC°°(TeM). From (3.3),

81g(($8A+A$a)X1, X)=0 for any Xe^C~(T°A4). Thus either 51=0 or g((<f)zA+

A(j}z)Xu X)-0 for any X{eC°°(T°M).

If 5!=0, ftigWiA+AfJXi, X)=0 for any X<=C°°(T°M). Bearing in mind

that ^0iZ2=O, [tigifiiAXz,(f>iX2)=0 which implies that ft1=0 and this case

cannot occur.

If g((^3A+A^3)X1, X)=0 for any X<=C~{T°M), as ^i^GD1, we get

giAfaXu X)=0 for any X(bC°°(T°M). Then we can write ^>3X1=g(^3X1> X2)X2

+W where W±Xit i=l, 2 is a unit vector field. Thus A<p3X1=g(^>3X1, X2)g(AX2>

X2)X2+U, U^D＼ Then g($sXlf X2)=Q which implies that AfcX^Afi.X^O.

From (3.3) fitg((foA+Afa)Xlt X)=Q for any X(eC°°(T°M). As pt2 must be

nonnull, g((faA+Afa)Xlt X)=0 for any XelC~{T°M). As ^2AX^D＼ g(A$2Xlt

X)=0 for any X^C°"{T°M). But faX^gifaXu X2)X2+[xX, where X is or-

thogonal to X, and X2. Then A^X1=g(^aX1, X2)g{AX2, X2)X2+W, where W

eeD±. Thus g($2Xu X2)=0 and this implies that A62X1=Ad>2X2=0. Then
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fixfcAXt + d^aAXr, = ft^AXi, Xi)$vX2 + SigiAXt, X2)<p3X2+ {ix[i2Uz―iiJ}2U%―

diftzUi and fi1A$1X2-＼-diA$3Xi=0. From (3.3) adding these expressions, the

result cannot have component in D, thus J≪I=5i=0 and we have a contradiction.

Let us now suppose that g(AXu X2)=g(Xu $2X2)J=Q. Then we can write

g(AXu X1)X1+ftlU1-＼-81Us=AXl and AX2=g(AX2, X2)X2+fi2U2+8zUs. Also we

get A$tXi=AfaX1=Q. From (3.11) and (3.12) we have ft2g(AX2, X2)g(X2, faX,)

=0=82g(AX2, X2)g{X2, <j)iXi).The possible situations have been already studied

except if g(X2> ^X^)―0. This implies that ^^1Z1=A^1Z2=0. From (3.3)

frgifrAXu $1X1)+d1g($aAXu fcXJ+du g(AfaXlt ^1Z1)=0. This implies that

ftig(AXlt XJ=0. Thus g(AXu Xx)=0, and M is ruled.

b) S,=0. As jux must be nonnull, ^1AZ=a'(Z)Z2 for any X^C^T0M),

X±X2. We now can write JlAX=$lAX+f1(AX)N=a'(X)Xi+f1(AX)N. Thus

AX=-a'(X)$1Xt+f1(AX)U1 for any IgCm(T°M), X±Z2. From (3.3) we also

know that gdfaA+A^X, Y)=0 for any X, Y(eC~(T°M). In particular,A<pxX2

= -a'(<f>1X2)$1X2+fl(A$MU1.

If X±Sv&n{Xu X2, <j>yX2},g(X, A^1Xs)=g(AX, ^iZa)=0. This means that

AX=0 for any XgC"(T°M) and XXSpan^, Z2, ^2}.

As ^i^^j^+^i^x^.YaeD1 we obtain

^Z1=-a'(X1)^1X2+^1t/1,

(3.13) ^^^-^(^Z,, XJfaXi+ttxgfaXt, X1)Ui>

AX2=g(AX2, Xs)X2+fitUt+diUa.

We can write faX^gifaXu X2)Z2+^, where W±Spsm{Xlf X2, ^X2}. Thus

AfaX^gfaXx, Xt)AXt = g^lXl, X2)g(AX2, X2)X2+pt2g(^Xu X2)U2+d2g(^Xu

X2)US.

Then AfaXt+faAX^igifaX^ X2)g{AX2, X2)+af(Xl)}X2+dT> where T(=D＼

As this field cannot have component in D, we obtain

(3.14) a'(*O=-£(0i*i, ^,)5(i4Jf,,Z2).

Moreover, $2X2=g($2Xz, Xx)Xl+hT', T'lSpan{^!Z2, Xu X2}. Thus A$2X2=

g(fcX2, X1)AX1=-g(fcX2, XJa'mfaX^frgifaX,, X1)U1. Then from (3.13)

g(A4>2X2, faX*) = -g{^X2, X^a'iX,) = g{(f>2X2,AfrX2) = 0. Therefore, either

a'(X1)=0 or g{<j>2X2,X,)=0.

Analogously A^tX2 ―g{^X2, X1)AX1=-g(.^sXi, X1)ar(X1)<^1X2+fi.g^X^

XX)U,. Then, g{A<f>sX2,̂ X2)=-g{<j>,X2, X,)a＼Xl)=g^iXl, AfcX2)=Q.

Suppose that g(<p2X2, Xx)=g{<j)zX2, X0=0. Then A<j>2X2=A$tX2=§. In this

case, u262AX2+8z6sAX2 has not component in D. Thus pt2g{AX2, X2)=52g(AX2,
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X2)=0. Thus either [i2=52=0, which is impossible, or g(AX2, X2)=0. This

and (3.14) imply that a'(Xj)=0 and M is ruled.

Otherwise, a'{Xx)=Q implies that either g(AX2, X2)=0 and M is ruled or

g{X2, frXd^Q. In thiscase AX=0 for any X<=C~(T°M), Z±Span{Zx, X2, ^1Z2},

AX, = pJJu AfaXi = -g(AX2, X2)^X2f AX2 =g(AX2, X2)X2+pi2U2+52U3. Then

faAX^A^X^Q, AfaXt=ft1g(faX2, X1)U1, <f>2AX2=g(AX2, X2)(j)2X+82U,. From

(3.3) we obtain fi2g{AX2, X2)+82g(<psAX2, <p2X2)+82g(A03X2, 02X2)=fi2g(AX2> X2)

=0. Thus g(AX2, X2)=Q and M is ruled.

c) 52=0. This case is similar to Case b) and M must be ruled.

This finishes the proof, because the converse is trivial.
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