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A CHARACTERIZATION OF REAL HYPERSURFACES
OF QUATERNIONIC PROJECTIVE SPACE

By
J.D. P£RrEZ

Abstract. We study a condition that allows us to characterize all
real hypersurfaces of quaternionic projective space known until now.

1. Introduction.

Let M be a connected real hypersurface of the quaternionic projective space
QP™ m=2, endowed with the metric g of constant quaternionic sectional
curvature 4. Let N be a unit local normal vector field on M and U,=—].N,
k=1, 2,3, where {Jr}r-1...s is a local basis of the quaternionic structure of
QP™. Let us denote by D*=Span{U,, U,, U;} and by D its orthogonal com-
plement in TM.

Recently, [1], J. Berndt, generalizing previous results of A. Martinez and
the author, [6], has proved that any real hypersurface of QP™, m=2, such that
g(AD, DY)={0}, where A is the Weingarten endomorphism of M, is congruent
to an open subset of either a tube of radius », 0<»<If/2, over the canonically
(totally geodesic) embedded quaternionic projective space QP*, k{0, ---, m—1}
or a tube of radius », 0<r<II/4, over the canonically (totally geodesic) em-
bedded complex projective space CP™.

In [5], A. Martinez introduced ruled real hypersurfaces of QP™, obtaining
several examples, as real hypersurfaces for which the distribution D is in-
tegrable. This is equivalent to the fact that g(AD, D)={0}, [7].

Moreover, if M is a real hypersurface of QP™, TM is a subbundle of TQP™
over M and T°M={XeTM|X1U,;, i=1, 2, 3} is a subbundle of TM. Both TM
and T°M have metric connections induced from TQP™. The orthogonal com-
plement of 7°M in TQP™ is denoted by N°M, which is also a subbundle of
TQP™ with the induced metric connection.

Denote by ¥, ¥, V° and V* the connections of TQP™, TM, T°M and N°M,
respectively. Then we have

(1.1 VxY =V5Y +A(X)Y)
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(1.2) VY =95V +A(X)Y)

for any YeC=(T°M) and X&TM, where A, and A, are the second fundamental
forms of the subbundle T°M in TM and TQP™, respectively. Set A°=A,|ru,
which is a smooth section of Hom(7°M, Hom(7T°M, N°M)). The connection on
Hom(T°M, Hom(T°M, N°M)) is also denoted by V°. The covariant derivative
of A° is defined by

(L.3) (VA YY NZ)=Vz A Y XZ)—A (VY N 2Z)-A*(Y)VxZ)

for any XeTM and Y, Z<C=(T°M).

M is said to be 7-parallel if g(VxA)Y, Z)=0 for any X,Y,ZeD. It is
easy to see from the expressions of their Weingarten endomorphisms, [6], that
any tube of radius », 0<r<I1/2, over QP*, k={0, ---, m—1} or of radius », 0
<r<Il/4 over CP™ is n-parallel. Also any ruled real hypersurface of QP™
is p-parallel.

On the other hand, we say that A° is yp-parallel if V3 A°=0, for any X&
C(T°M).

The purpose of the present paper is to give a characterization of all the
real hypersurfaces of QP™, m=2, known until now by the following.

THEOREM. Let M be a real hypersurface of QP™, m=2. Then A° is 7-
parallel and A is n-parallel if and only if M is congruent to an open subset of

either
i) A tube of radius r, 0<r<II/2, over the canonically (totally geodesic)
embedded quaternionic projective space QP*, for some k{0, ---, m—1}, or

i) A tube of radius v, 0<r<Il/4, over the canonically (totally geodesic)
embedded complex projective space CP™, or
iii) A ruled real hypersurface.

REMARK. The conditions of 7-paralleiness of A and A° for real hyper-
surfaces of complex projective space have been studied by M. Kimura and S.
Maeda, [3], and S. Maeda and S. Udagawa, [4], respectively.

2. Preliminaries.

Let M be a real hypersurface (any real hypersurface is considered to be
connected in the following) of QP™, m=2, and {J., J», Js} a local basis of the
quaternionic structure of QP™, see [2], N a local normal unit vector field on
M and U;=—J;N, i=1, 2, 3.

Let X be a tangent vector field on M. We write [, X=¢; X+ (XN, i=
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1, 2,3, where ¢;X is the tangent component of J, X, and f(X)=g(X, Uy), i=
1,2,3. As Ji=-—Id, i=1, 2,3, where Id denotes the identity endomorphism
on TQP™, we get

2.1 i X=—X+f(X)U;, =123,
and
2.2) fi@:X)=0, ¢U:=0, =123,

for any X tangent to M.
As [.J;=—];]«=]J., where (i, j, k) is a cyclic permutation of (1, 2, 3), we

obtain

2.3) 01 X=0,0: X—[(X)U;=— 0,0, X+ [ (XU,
and

24 FoX)=F($e X)=—F1(9;X)

for any X tangent to M, where (7, 7, k) is a cyclic permutation of (1, 2, 3). It
is also easy to see that for any X, Y tangent to M and /=1, 2, 3,

2.5) g X, Y)+g(X, ¢.Y)=0, g(¢:X, $:¥)=g(X, V)~ f(X)fu(Y)
and
(26) ¢1;Uj=Uk:—¢jUi,
(7, 7, k) being a cyclic permutation of (1, 2, 3).
The formulae of Gauss and Weingarten of M in QP™ are given, respec-
tively, by
2.7 VY =YY +g(AX, V)N
(2.8) VsN=—AX

for any X, Y tangent to M, A being the Weingarten endomorphism of the
immersion. From the expression of the curvature tensor of QP™, m=2, we
have that the equation of Codazzi is given by

(2.9) VxA)Y -y AH)X= iZi‘Jl {fu(X)9:Y — f1(V ) X+2¢(X, ¢:Y)U.}

for any X, Y tangent to M.

The covariant derivatives of J;,7=1,2,3,are givenby Vx J;=p,(X) ] —p:(X) ],
for any XeTQP™, where p;, i=1, 2, 3, are local 1-forms on QP™. Then from
(2.7) and (2.8) we obtain

(2.10) VxUi=—pA XU+ p(X)U;+ 0. AX
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and
(2.11) (Vx$)Y =p(X)ppY — p(X)@;Y + fu(Y)AX—g(AX, YU,

for any X, Y tangent to M, (i, j, k) being a cyclic permutation of (1, 2, 3).

3. Proof of the theorem.

We first obtain the following Propositions.

PROPOSITION 1.

a) AX)Y)=—3%g(0:4AX, YU,

b) ALX)Y)=g(AX, Y)N—3i.: g(¢: AX, YU,

¢) (Vd)X)=pu(X)p;Y —p(X)9:Y

d) ViN=—3.,8(AX, U)U;

e) VilU;=p(X)U;—p (XU, +g(AX, UNN—g(AX, U)U;+g(AX, UNU,
for any XeTM, Y C(T°M), (i, j, k) being a cyclic permutation of (1, 2, 3).

The proof is straightforward bearing in mind (1.1), (1.2) and (2.1) to (2.11).
From (1.3) and Proposition 1 we have

PROPOSITION 2. For any XeTM, Y, Z=C=(T° M),

(VRANYNZ)=¢(X, ¥, ZN+ 5 $(X, Y, $2)Us
where }
3.1 $X, Y, X)=g(Tx A, Z)— D{S(AD)g($:AX, Y)
+FAAY)GAX, 2)+f(AX)g(AY, 2)}.

From Proposition 2 A° is p-parallel if and only if ¢(X,Y, Z)=0 for any
X, Y, Z=C(T°M), that is,

3

3.2) s(VxAY, Z2)= 2 {f(AZ2)g($:AX, ¥)
+fAY)g($:AX, Z)+ f«(AX)g(9:AY, Z)}.

If A is n-parallel, g(VxA)Y, Z)=0. From this and (3.2), if g(AD, D)=
{0}, we obtain that M is locally congruent to 1) on 2) in Theorem, [1].
Let us now suppose that g(AD, D)= {0}. From (3.2) we see that

(3.3) 3 FAD)g(Apr+6:A)X, 1)=0

for any X, Y, Z=C=(T°M). We can have the following cases:
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CAsE 1. (AU, i=1, 2, 3, are linearly independent, where (AU,)? denotes
the D-component of AU;. From (3.3) we have that g((4¢;+¢:;A)X, Y)=0 for
any X, YeD,i=1, 2,3. But this is equivalent to D to be integrable and then
M must be ruled.

CasE 2. (AU, i=1, 2,3, are linearly dependent. We distinguish the
following subcases :

CASE 2-i. (AU?=(AU;)’=0 and (AU,)?+0. We suppose that AU,=7X,+
B:U+BUs+B:U,. From (3.3) we obtain g((¢, A+ A¢)X, Y)=0 for any X, V=
C(T°M). Thus for any X< C(T°M), ¢p;AX+A¢, X = a(X)U,+a,(X)U,+
ayX)U, From (3.3) taking Z=X, we have yg(¢,AX, Y)=0 for any X, Y &
C>(T°M). Thus either y=0 which is impossible or g(¢,AX, Y)=0. But also
g(¢.AX, U)=0, =1, 2,3. Thus ¢;AX=0 for any XeC=(T°M). This means
that for such an X, A¢, X=a,(X)U,+a,(X)Us+ay(X)U,. From (2.1) it follows
that —AX=0a,(¢. X)U,+as(¢: X) U4y, X)U; for any X=C=(T°M). Thus
g(AD, D)={0} and M is ruled.

CASE 2-ii. Let us suppose that (AU;)P=0 and (AU,)?, (AU,)? are linearly
independent. From (3.3) we have g((¢; A+ Ad.) X, Y)=0, i=1, 2, for any X, Y =
C(T°M).

From (3.2) we also get g(¢;AX,Y)=0,i=1,2, for any X, Y =C~(T°M).
Thus g(A¢, X, Y)=0 for any X,YeC(T°M). Then A¢,X=g(A¢,X, U)U,+
g(A¢. X, U)U, for any XeC=(T°M). From (2.1), for such an X, —AX=—
F(AX)U,— f(AX)U, and then g(AD, D)={0}, thus M is ruled.

CAsE 2-iii. Let us suppose that (AU;)P=0, (AU,)®, (AU,)®+0 and linearly
dependent. Thus we can write AU,=p W7 U +7:.Us+7U;s, AU=p WV +7.U,;
+B:Us+BUs, when WeD is a unit vector field. From (3.3) we get p,g(¢,AX,
Y)+p0(9.AX, Y)=0 for any X,Y=C*(T°M). Taking scalar products with
U, i=1, 2, 3, it is easy to show that p,¢, AX+p.0,AX=0 for any XeCXT°M).
Thus either p,=p,=0, which is impossible, or ¢, AX and ¢,AX are linearly de-
pendent for any Xe&C=(T°M). Therefore we can have the following situations :

a) AX=0 for any XeC=(T°M). In this case M is ruled.

b) AX#0 for some X=C=(T°M), X!W. Then from (2.3), 0, AX and
¢.AX are orthogonal, wich is a contradiction with the fact that they are linearly
dependent.

¢) AX=0 for any XeC(T°M), X1 W, AW+0 and ¢, AW + 1.6, AW =0.
Thus



320 J.D. PEREZ

(3.4) AW =g(AW, W)W + U+ pU.».

But then we have p,g(¢; AW, ¢, AW)+ po0(¢. AW, ¢,AW)=0. From (2.3), this
implies that g, g(AW, AW)—pi—p,p3=0. Thus either g,=0 which is impossible
or g(AW, AW)=pi+pi But from (3.4) g(AW, AW)=g(AW, W)+ pi+pi. Then
g(AW, W)=0, which implies that g(AD, D)={0} and M is ruled.

CASE 3. (AU;?#0, i=1, 2, 3 and are linearly dependent. We distinguish
the following subcases.

CASE 3-i. AU,=pmXi+aUi+aUs+aUs, AU, = poXi+asUs+7.Us + 715U,
AUs=po Xs+ U +73U,+0,U,, where X,€D is a unit vector field.
From (3.2), taking Z=2X; and X, Y =C=(T°M) orthogonal to X, we have

(3.5 118($1 AX, V)4 p:8(9. AX, Y+ pag(9,AX, Y)=0.

From (3.3) and (3.5) we obtain that p.¢,AX+p. AX+p:0sAXc D+ for any
X=C=(T°M), and taking scalar products with U, i=1, 2, 3 we get

(3.6) 10 AXA+ b AX+ B AX=0,  XeC(T°M).

Thus either p,=p,=p,=0 which is impossible, or ¢.AX, i=1, 2, 3, are linearly
dependent for any XeC=(T°M).

Then we have the following possibilities :

a) AX=0 for any XD and M is ruled.

b) AX=+0 for some XeC~(T°M), X1 X,. From (2.3), ¢:AX, i=1, 2, 3, are
mutually orthogonal, which is a contradiction because from (3.6) they are
linearly dependent.

¢) AX=0 for any XeC=(T°M), X1 X, and AX,#0. From (3.6) we get
1:8($1 AX, §LAX)+pg(9 AKX, $1AX)+ pag($sAX,, $:1AX,)=0. Then from (2.3)
and (2.5), we obtain from this that g, g(AX,, AX)—pi—pmpd—ppi=0. Thus
either g#,=0 and this case cannot occur or g(AXj, AX)=pi+pi+p:i But on
the other hand, g(AX,, AX))=p2+pi+pi+g(AX:, X,)*. Therefore g(AX;, X,)=0
and M is ruled. This finishes Case 3-i.

CASE 3"ii. AU1 = #1X1+a1U1+a2U2+asU3, .AUZZ ﬂ2X2+a2U1+‘BgU2+‘B3U3,
AU =8, X408, X, +a,U +BsUs+7,U, where X, X,=D are orthonormal. From
(3.2) we have

3.7 191 AXH+0,9, AX=a(X)X,
for any XeC(T°M) and X1 X, and
3.8) ﬂ2¢2‘4X+52¢3AXZ[8(X)X1
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for any XeC=(T°M) and X L X,. Thus if X1 X,, i=1, 2, $,AX, j=1, 2, 3, are
mutually orthogonal and from (3.7) and (3.8) we obtain 0,0,8(¢sAX, ¢, AX)=0.
That is, we have the following possibilities

a) AX=0 for any XeC~(T°M) orthogonal to X; and X,. From (3.7) we
get 1 g2(6,AX,, ¢, X,)+0.:g(h;AX,, ¢,.X,)=0. This implies

(3.9) n8(AX:, Xp)—0,8(AX,, X)g(X,, $2X,)=0.

But as ¢, AX,= g(AX,, X))¢: X, +g(AX:, Xo)$,X,—6,U, and 0. AX,=g(AX,,
X1)¢3X1+3(AX1; Xz)¢3X2+l!1Uz, from (3.7), ig(AX, X1)¢1X1+,U1g(AX1; X2)¢1X2
+0:g(AX,, X))¢s X, +0,8(AX,, X,)$;X, is proportional to X,, and taking the
scalar product with ¢,X, we obtain

3.10) 1 8(AX,, X)g(Xy, ¢:X,)+0:8(AX,, Xp)=0

Thus, from (3.9) and (3.10), if g(AX,, X;)*+g(AX,, X,)’g(X,, 0. X,)2 0, p,=08,=0,
this is impossible. Therefore we suppose that g(AX,, X,)*+g(AX,, AX,)g(X,,
©.X,)’=0. On the other hand, as for (3.9) and (3.10) we can obtain

3.11) —1:8(AX;, X5)g( X, ¢:X)+0:8(AX;, X,)=0,
(3.12) 1:8(AX,, Xo)+0,8(AX,, X2)g(Xs, .X,)=0.

Then if g(AX,, Xo)=g(AX,, X,)=0, AX,=pU,+8,U,, and AX,=g(AX,,
Xo)Xo+psUs+0,Us and if g(AX,, X;)=0, M is ruled. If g(AX,, X,)#0, from
(3.11) and (3.12), if g(X,, ¢, X,)=#0, then g,=d,=0 which cannot occur. Thus
we suppose that g(AX,, X;)#0 and g(X,, ¢,X,)=0. Then A¢,X,=A¢ X,=0 and
01 AX,=0,U,. Then g((¢,A+ Ag:)X,, X)=0 for any XeC=(T°M). From (3.3),
0,:8((¢s A+ Ag:) X, X)=0 for any XeC=(T°M). Thus either §,=0 or g((@s A+
Ag) X, X)=0 for any XeC(T°M).

If 0,=0, 1:8((¢:A4+ A¢,)Xs, X)=0 for any X=C~(T°M). Bearing in mind
that A¢,X,=0, p,g(¢:4X,, ¢, X:)=0 which implies that t:=0 and this case
cannot occur.

If gl(@;A+A¢) X, X)=0 for any X=C=(T°M), as 0;AX, D', we get
g(Ag:X:, X)=0 for any XeC=(T°M). Then we can write 0: X1 =g(h: X1, Xo) X,
+W where W1 X;, i=1, 2 is a unit vector field. Thus A Xi=g(¢: X, X2)g(AX,,
X)Xo+U, U=sD*. Then g(¢:X:, X,)=0 which implies that Aps X, = A, X,=0.
From (3.3) p.g((¢.A+A¢:)X:, X)=0 for any X=C=(T°M). As /. must be
nonnull, g((¢.A+ A¢g.)X,, X)=0 for any XeC~(T°M). As $. AX,eD*, g(Ad. X,
X)=0 for any XeC~(T°M). But 6. Xi1=g(¢:. X\, X;)Xo+pX, where X is or-
thogonal to X; and X,. Then A¢.X:=g(¢,X,, X,)g(AX,, Xo)X,+W’, where W’
€D* Thus g(¢.X:, X;)=0 and this implies that A@. X, =A@, X,=0. Then
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#1¢1AX2+ 51¢3AX2 = ng(AXzy X2)¢1X2+ 0:8(AX,, X2)¢3Xz+ fllﬂzUa‘ ,LllazUz-‘
d,pU, and A Xo40,A¢; X, =0. From (3.3) adding these expressions, the
result cannot have component in D, thus g,=8,=0 and we have a contradiction.

Let us now suppose that g(AX;, X»)=g(Xi, ¢.X;)+0. Then we can write
g(AX,, X)X+ pU,+8,U;=AX, and AX,=g(AXy, X5) Xo+ Uz +6:Us.  Also we
get Ag,X,=A¢.X,=0. From (3.11) and (3.12) we have 1o8(AXs, Xo)g(Xs, ¢:X1)
=0=0,8(AX,, X»)g(Xs, ¢:.X:). The possible situations have been already studied
except if g(X,, ¢:.X,)=0. This implies that A¢ X, = A, X,=0. From (3.3)
g AXy, $:.X)+0:8($sAX,, ¢:.X)+01, 8(Ag: Xy, ¢:.X)=0. This implies that
tg(AX,, X,)=0. Thus g(AX;, X)=0, and M is ruled.

b) 5,=0. As g, must be nonnull, ¢;AX=a'(X)X, for any XeC(T M),
X1 X,. We now can write [,AX=¢,AX+ [ (AX)N=a'(X)Xo+ f(AX)N. Thus
AX=—a'(X)$ Xo+ f1(AX)U, for any XeC=(T°M), X1 X, From (3.3) we also
know that g((¢,A+ Ad)X, Y)=0 for any X, YeCT°M). In particular, Ag, X,
:_“a/(¢1X2)¢1X2+fl(A¢1X2)U1-

If X1Span{X;, X,, ¢, Xz}, g(X, A¢g: Xy)=g(AX, ¢:X,)=0. This means that
AX=0 for any XeC=(T°M) and X1Span{X,, X,, ¢:X,}.

As p,Ad X+ pi$ AX, € D' we obtain

AXI:—'a,<X1)¢1X2+ﬂ1U1,
(3.13) Ap X,=—g(AX,, X)$: Xo+11:8(6:.X2, XU,
AXz:g(AX27 ‘¥2);(2+[12U2+52U3.

We can write ¢1X1=g(¢1X1, X)X,+W, where W 1 Span{X;, X, ¢1X2}. Thus
A¢1X1 = g(¢:. X1, Xz)AXzzz‘g(Gleu X3)g(AX,, X2>X2+‘leg(¢1X1, XZ)U2+52g(¢1X1,
X)Us.

Then A¢, X, +¢: AXi={g($: X1, Xo)g(AX,, Xo)+a' (X))} Xo+67T, where T D,
As this field cannot have component in ), we obtain

(3.14) a/(X)=—g($: Xi, X)g(AXy, Xo).

Moreover, ¢:Xo=g(¢:Xs, X)X:-+hT’, T' LSpan{¢,Xs, X;, Xo}.  Thus Ag,Xo=
(6. X5, X)AX,=—g(¢:Xs, XD)a'(X1) $1 Xa+ 118 ($2 X, X)U,. Then from (3.13)
g(AG X, $:X5) = — (2 X, XDa'(X,) = g(¢:Xs, Ag:X,) = 0. Therefore, either
a'(X)=0 or g(¢:Xz X))=0.

Analogously A¢, X, = g(:Xs, X)AX,= —g(:Xs, X))a'(X1)$:Xo+ 1:8($sXo,
X)U,. Then, g(Ad:Xs, 6, Xz)=—g(@:sXs, X' (X1)=g($:Xo, A¢ X,)=0.

Suppose that g(¢.Xs, X,)=g(#sXs, X)=0. Then A¢,X;=Ap;X,=0. In this
case, P, AX,+0:¢;AX, has not component in D. Thus p,g(AXe, X5)=0,8(AX,,
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X»)=0. Thus either p,=0,=0, which is impossible, or g(AX,, X,)=0. This
and (3.14) imply that a’(X;)=0 and M is ruled.

Otherwise, &’(X;)=0 implies that either g(AX,, X;)=0 and M is ruled or
g(X,, 6, X)=0. In this case AX=0 for any XeC(T°M), X1 Span{X;, X, . X,},
AXy=pU,, A X, = —g(AX,, X)X, AX,=g(AX,, Xo)Xo+ U, +8,U;. Then
01 AX,=A¢: X,=0, Ao Xo=p:18($: Xz, X YU, ¢ AXo=g(AX,, Xo)$. X+0:,U,. From
(3.3) we obtain ﬂzg(AXm X2)+52g(¢3AX2, ¢2X2)+52£'(A¢3 (2 ¢2Xz):#2g(AX2, X»)
=0. Thus g(AX,, X;)=0 and M is ruled.

¢) 0,=0. This case is similar to Case b) and M must be ruled.

This finishes the proof, because the converse is trivial.
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