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TILTING LATTICES OVER ORDERS ASSOCIATED

WITH SIMPLE MODULES

By

Hisaaki Fujita and Kenji Nishida

Let R be a complete discrete valuation ring with quotient field K and A

a basic R-order in a separable /f-algebra,and let e be a primitive idempotent

of A. In this paper we shall study tilting^-latticesin the form of T={l―e)A

(BTr/X/e) where / is the Jacobson radical of A and Trz,is the transpose functor

for yl-lattices.

Tilting theory was initiated by Brenner and Butler [5] and its general

theory over artin algebras was given in Happel and Ringel [6] and Bongartz

[4] and has been used and developed by many authors not only in the study

of representations of artin algebras but also in more general situations. Among

them tilting modules arising from suitable simple modules are concrete and

typical ones (see [2] and [5]). While almost all general results in [4] are

reconstructed in the case of orders by Roggenkamp [8], it seems also to be

desirable to provide an order version of such tilting modules and study its

fundamental properties, which is the aim of this paper.

In Section 1, we shall recall some definitions and notation which will be

used throughout the paper. In Section 2, we shall show that T=(l―e)A 0

TrL(/e) is a tilting.//-latticeif and only if Je is not J-reflexive and Ae is not

isomorphic to a direct summand of the projective cover of Je (Theorem 2.1).

We call such a tilting.//-latticeBrenner-Butler type (BB-type for short). We

shall also show that T is a tiltingJ-lattice of BB-type if and only if T is a

tiltingleft /"-latticeof BB-type and J=Endr(T) where T=End^(T) (Theorem

2.4). As an application of Theorem 2.1 we shall show that a non-hereditary,

basic tiled R-order of finite global dimension always has tiltinglattices of BB-

type (Proposition 2.5). As a special class of BB-type, in Section 3, we shall

introduce the notion of tiltinglattices of Auslander-Platzeck-Reiten type (APR-

type for short), which arise from almost splitsequences starting from certain

projective modules. It should be noted that in the case of orders we cannot

consider simple projective modules. We shall replace simplicity by injectivity

of its radical. (See Theorem 3.1.)In Section 4, we shall precisely describe the
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categories 2", 2",S and Q associated with a tilting A -lattice T (see §1 for

definition)when T is of BB-type. Let T be a tiltingJ-lattice of BB-type and

put F=EndA(T). In general, even if A is of finite representation type and if

T is of APR-type, F is not of finiterepresentation type (see [8] or Example

7.2). However, we shall show that whenever T is a tilting left F-lattice of

APR-type, if A is of finite representation type then so is F (Corollary 4.3).

So, in Section 5, we shall consider when pT is of APR-type and show that rT

is of APR-type if and only if the middle term of the almost splitsequence

starting from UomR(Je, R) is an injective vl-lattice which does not contain

HomR(Ae, R) as a direct summand (Proposition 5.2). In Section 6, global dimen-

sion of F is determined when A is of global dimension two and T is of APR-

type. Examples are gathered in Section 7.

1. Preliminaries

In this section we shall recall some definitions and notation which will be

used throughout this paper.

Rings are associative with identity. Modules are finitely generated and

unital over a ring, which are usually right modules unless otherwise stated.

For modules M and N, we denote by M＼ N if M is isomorphic to a direct

summand of N. For a module M over a ring S, pds(M)(resp. lds(M)) denotes

the projective (resp. injective) dimension of M.

Let A be an i?-order in a separable if-algebra A where R is a complete

discrete valuation ring with a unique maximal ideal ttR and the quotient field

K. J denotes the Jacobson radical of A and A=A/J. A J-module is called a

A-latticeif it is finitelygenerated free as an i?-module. An i?-order A is said

to be of finite representation type if the number of isomorphism classes of in-

decomposable J-lattices is finite. A J-lattice T is said to be a tilting A-lattice

provided;

(i) pd^mi.

(ii) ExtJKT, 7)=0.

(iii) There exists a short exact sequence of ^-lattices

0 ―>A―>T0 ―> 7＼―>0

where TQ, T!Gadd(T)={Z: X is a direct summand of a finite direct sum of

copies of T}.

We denote the ,4-dual Hom^ , A) by ( )* and i?-dual Hom*(, R) by ( )*.

The Morita duality functor for mod-i? is denoted by D=HomR(, Ix) where h
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is the minimal injective cogenerator for mod-i?. A yi-module X is called A-

reflexive if the canonical map X-+X** is an isomorphism. Tr^ denotes the

transpose functor between left and right ^-lattices. Namely, let Y be a left

or right ^-lattice and /: P->F a projective cover of Y. Then TrL(Y)=

Coker(/*). Besides, usual transpose functor is denoted by Tr. Namely, let X

g
be a left or right A -module and Px ―>Po -> X ―>0 a minimal projective presenta-

tion of X. Then Tr(X)=Coker(£*). The Auslander-Reiten translate for A-

latticesis denoted by r. Namely, for a ^-lattice X, rX=(TrL(X))* and r"1X=

TrL(Z*).

We now recall the basic results of tiltingtheory for orders from [8]. Let

T be a tiltingvtf-latticeand r=Endj(T). Then put

2"={Z: X is a ^-lattice and ExtVT, X)=0k

3 = {F: Y is a J-module and Hom^T, Y)=0＼

S={Z: Z is a /^-latticeand Z(g>rT is i?-torsionfree},

Q = {W: W is a T-module and WRrT=0}.

Theorem 1.1 ([8, Theorem 2.8]). i) The functor F=Hom^(T, -) induces

an equivalence between 3" and S with its inverse ―RrT.

ii) The functor Ext^(T, ―) induces an equivalence between £F and QJ with

its inverse TorC(―, T).

iii) For every A-lattice X, there exists an exact sequence

0―>X'―>X―>X"―>0. I'Gff and JT'eff.

iv) For every F-latticeY, there existsan exactsequence

0―>r―>y―>Y"―>0, Y'(=S and Y"^Q.

v) T is alsoa tiltingleft F-lattice.

vi) Endr(rT)=A.

2. Tiltinglatticesof BB-type

In thissectionwe shallconsideran analogue of a result of Brenner and

Butler [5, Theorem IX] for orders. A short expositionof [5, Theorem IX]

can be found in [9,§2].

Theorem 2.1. Let A be a basic R-order in A, J=rad(A), A―A/], e a

primitive idempotent of A and f: P-^-Je a projective cover ofje. Assume that

Je is not projective and put T―{l―e)ARTvL{Je). Then T is a tilting A-lattice
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if and only if Je is not A-reflexive and Ae is not isomorphic to a direct summand

of P.

In this case. Je and Tr r(fe) are indecombosable.

Definition. A tilting^-lattice T satisfying the conditions of Theorem

2.1 is called BB-type.

The proof of Theorem 2.1 follows from the next two lemmas.

Lemma 2.2. The following statements are equivalent.

(a) pcUT)=l.

(b) Je is not A-reflexive.

(c) HomX/e, A)=YiomA(Ae, A) = eA, canonically.

(d) ExtA(Ae, A)-0.

In this case, Je and TrL(Je) are indecomposable.

Proof, (a) is equivalent to pdyi(Trz,(/e))=l. By the exact sequence 0―>

f*
(Je)*-> P* -^ TrL(/e)-> 0, this is equivalent to (Je)* being projective. Since

Jed(Je)**c:Ae, if Je is not yl-reflexive then (Je)**=Ae, hence (Je)*―eA,

which is projective. If (/e)* is projective and if Je is A -reflexive then Je =

(Je)** is projective, which contradicts to the assumption. Thus (a),(b) and (c)

are equivalent. Apply ( )* to 0-+Je-+Ae-+Ae-^0. Then we obtain an exact

sequence

0=(Ae)* ―> (Ae)* ―> (/<?)*―> Ext^Ae, A) ―> 0.

Hence (c) is equivalent to (d). It follows from (d) and [1, Chapter I, Lemma

9.1] that Je and hence TrL(Je) are indecomposable.

Lemma 2.3. // the conditions of Lemma 2.2 hold then the following state-

ments are equivalent.

(a) Extjj(7＼T)=0.

(b) ExtJi(TrL(M TrL(/e))=0.

(c) Ae is not isomorphic to a direct summand of P.

(d) Ext＼(Ae, Ae)=Q.

Proof. First we show that Ext^TrzO), (l-e)A)=0. By Lemma 2.2(c),

we obtain the following exact sequence:

(e) 0―>(Ae)*―> P*―>TrLUe)―>0

Since P and Ae are finitely generated projective, applying HomX―, (l―e)A)

to (e), we obtain the following commutative diagram with exact rows:
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HomA(P＼ (l-e)A) -+ UomA((Ae)*, (l-e)A)-+Ext＼(TrLUe), (l-e)A) -* 0

(l-e)ARAP (l-e)A<SAAe (l-e)AQAAe *■0

Hence Ext^Tr^/e), (l―e)A)={l―e)ARAAe―Q, because A is basic. Thus (a)

and (b) are equivalent. Next apply Hom^(―, TrL(/e)) to (e). Then similarly

we obtain Ext^(TrL(/e), TriiJe))^TvLUe)RAAe. Hence (b) is equivalent to

that 2A is not isomorphic to a direct summand of P*. This is equivalent to

(c). The equivalence of (c) and (d) is well known. This completes the proof.

Theorem 2.4. Suppose the same assumptions of Theorem 2.1 and put F=

End^(T). Then T is a tiltingA-lattice of BB-type if and only if T is a tilting

left F-lattice of BB-type and J=Endr(T).

Proof. Put /'=rad(.n and F-F/J', and let e'(=F be the map of the

composition of the projection T^>TrL(Je) and the injection TrL(/e)―>7＼ Assume

that T is a tilting ^-lattice of BB-type. We firstclaim that Te^TvL{e'J').

By Lemma 2.2, we have an exact sequence:

(e) 0―> eA―>P*―>TrL{Je)―>0

Applying the functor F to (e) we obtain an exact sequence:

(*) 0 ―> F{eA) ―> F(P*) ―-> F{TvL{Je)) ―> Ext^T, ^) ―> 0

Applying ―<g)rT to (*) we obtain a commutative diagram with exact rows

F(P*)RrT ―- F(TrL(/e))(8)rr - ExtUT, ^)R/T -* 0

TrLUe)RrT
0

so that ExtJj(T, eA)RrT=Q. Since TrT.(fe)=Tr(Ae＼ ExtXT, eA)=WomA(T,

TrL(J e))^Hom A(Ae, Ae) is a division ring, so that (*) is a minimal projective

resolution of a simple /^-module Extj(T, eA)=eT. Hence we have an exact

sequence:

(e,) 0―-></'―>eT―>Ext1yl(T, eA)―>0

Apply ―(g>rT to (d). Since Ext^(7＼ eA)(g)rT―Q, we obtain an exact sequence :

(e2) 0 ―> TorftExtJ,(T, eA), T) ―> e'J'RrT ―> eTRrT ―> 0

Since T is /?-torsionfree,by (e2) we get an isomorphism Y{omA{e'J'RrT, T)s

HornA(e'P(R)rT, T). Thus we obtain a commutative diagram with exact rows:
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0 ― HomrCe'/'. H ' Homr(F(P≪),I")― Trde'J') -* 0

0 ― HomA'1 J'RrT, T) ― Hom/F(P')<2>rT, T)

0 ―* UomA(TrLUe), T) ―* HomA(P*, T) -> HomA(eA, T) -* 0

Hence TrL(e'J')=Te. Since T(l-e)s Hom^((l-e)J, T) = Hom^((l-e')T, T) =

r(l-e'), Tsr(l-e')cTrL(e7') is a tiltingleft T-lattice of BB-type, because

e'J' is not projective. This completes the proof.

We end this section with an application of Theorem 2.1 to tiled i?-orders

of finite global dimension. For the definitionsand elementary properties of

tiledi?-orders and their quivers, we refer the reader to [7] and [10].

Proposition 2.5. Let A be a basic tiledR-order in (K)n of finiteglobal

dimension and not hereditary. Then there exists a primitive idempotent e of A

such that (1―e)A(&TrL(Je) is a tiltingA-lattice.

Proof. Let elt■■･,en be the primitive idempotents of A. Since A is of

finiteglobal dimension, the quiver of A has no loop, i.e., ExtA(Aeif Aet)=0 for

any et (l<,i<>n). Suppose that every Jet is ^-reflexive (l^i^n). Then

ExtA(Aeu A)^0. Hence, there exists a left ^-module Et such that AdEid

iz~lAand Ei/A=Aeu so that Aet is embedded in A/ttA. Since A is of finite

global dimension, A/tcA has finite yi/^vi-injectivedimension. Let

0 ―> AI%A ―> Eo ―> > Et ―> 0

be a minimal injective resolution of A/nA, and let S be a simple A/7rA-suh-

module of Et. Then Ext^XS, A/7rA)^Q. Since S is embedded in A/xA, we

obtain an exact sequence

ExtAfUA/nA, A/tcA)―>ExtA,US, A/izA)―> 0.

Hence ExtAlnA(A/7rA, A/7tA)^0, so that ?=0. This contradicts to A being not

hereditary. Thus Theorem 2.1 completes the proof.

3. Tilting lattices of APR-type

In this section we shall introduce the notion of a tilting ^-lattice of APR-

type, which arises from a property of an almost splitsequence. This is an

order version of the tiltingmodules first studied in Auslander, Platzeck and

Reiten [2].

Theorem 3.1. Let e be a trimitive idemtotent of a basic R-order A and
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put J=rad(A). Then the following statements are equivalent.

(a) (Je)* = eA and Je is not projective as a left A-module

(b) There exists an almost splitsequence

0 ―> eA ―> E ―> T~＼eA)―> 0

such that E is projective.

In this case T={l―e)ARt~＼eA) is a tilting A-lattice of BB-type

535

Definition. A tiltingyf-latticeT satisfying the conditions of Theorem 3.1

is called APR-type.

The next lemma explains the conditin (a) of Theorem 3.1, which will play

a key role in the proof of the theorem.

Lemma 3.2. Let e be a primitive idempotent of an R-order A. Then the

following statements are equivalent.

(a) (eJ)*^Ae.

(b) ej is an indecomposable injective A-lattice.

(a') {Je)* = eA.

(b') Je is an indecomposable injectiveleft A-lattice.

Proof. By the exact sequence 0^>(eA)*―>(eJ)*->Ae―>0, we can show that

(a) and (b) are equivalent. Next, we show that (a) Implies (a'), which will

complete the proof. By (a), we have a commutative diagram with exact rows:

0 ―> (2AY ―> (e/)* ―> Ae ―> 0

Hence (a') holds.

I'

0―> Je ―> Ae Ae―>0

Proof of Theorem 3.1. Put P=eA and S=eA/eJ. Assume that (a) (/e)*

= eJ and that a]& is not projective. Then there exists an almost split sequence

(e) 0-^P

<p

E

<p

T~lP >0

Note that r-1P=TrL(P*)sTrz(/e)**sTrL(/e).

We first show that T=(l-e)J0TrL(/e) is a tilting J-lattice. By [1,

Chapter I, Lemmas 7.7 and 7.8], we have an exact sequence

0―>je―>(/≪)*#―>Ext2A(JrUe), A)―>0.
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Let Pj^Po^/e-^O be a minimal projective presentation of Aje. Then we have

an exact sequence 0-+TrL(/e)->Pf -+Tr(/e)->0. Thus Ext^,(Tr(/e), A)=z

Ext^(TrL(/e), A)^ExtlA(r~1P, A)=tO, so that Je is not ^f-reflexive. Consider an

exact sequence of ^-lattices

0―>r'lP ―>X ―^t-'P―*0.

If it does not splitthen we have a commutative diagram with exact rows:

0―>t~1P―>X―>r~lP―>Q

f＼ I II

0―> P ―-> E―>t-1P―^0

Since t'1P is not projective, we have lmfcej. By Lemma 3.2, ej is an in-

jective J-lattice. Thus / can be extended to X, which implies that the second

row splits, a contradiction. Therefore Ext^(r~x.P,r"1P)=0, so that it follows

from Theorem 2.1 and its proof that T is a tilting vl-latticeof BB-type.

Next, we show that E is projective. Let / : P'-^-t~1Pbe a projective cover

of t~lP and put F=Ker/. Then we have a commutative diagram with exact

rows:

(*)

0 > Y

0 *P -!-+ E

/

y

T-'P ≫ 0

t'lP ≫0

Then by Lemma 3.2, h is surjective, so that it splits,i.e., there is h': P-+Y

such that hh' = lp. Since T is a tiltingJ-lattice, P is not a direct summand

of P'. Hence gh' is not a splitting monomorphism. Hence there exists k'＼

E^P' with k'(p=gh', so that there is /: z~lP-*z~lP with l<p=fk'. Attach the

almost split sequence (e) just above to the diagram (*) by the maps /, k', h'.

Then, if / is not surjective then we have a map m: t~xP->E with l―(pm and

hence we have a map a: E^P with a<p=hh'=lP, a contradiction. Thus / is

surjective, so that it is an isomorphism. Hence <p=r1fk/ factors through P'.

Hence there is k": E―>P' such that <p=fk". Then we have <pkk"=<p. Since

<pis right minimal, kk" is an isomorphism, so that E is projective.

Conversely, assume the condition (b). Then E is projective. If P＼E, then

there exists an irreducible map P―>r'lP. Thus x~lP＼E, a contradiction, so

that P＼E. By the exact sequence

0 ―> (Ae)* ―^ (/e)* ^s―>o
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we have /: P-^(Je)* such that pf: P―>S is a projective cover of S. If / is

not a splitting monomorphism, then there is g: E->(Je)* with f=g<p. Thus

we have pg<p=pf^0, so that Q=tpg: E-+S and P＼E, a contrapiction. There-

fore / is a splitting monomorphism, so that P^(Je)*, because rankfl(Je)=

4. The categories 2",1, S and Q

In this section we shall give a precise description of the categories 2＼ 3, S

and 5 for a tiltinglattice of BB-type. Let e be a primitive idempotent of A

and T=(l―eM0TrL(/e) a tilting^-lattice of BB-type. Put S=eA/eJ a simple

J-module, r=End^(T), and S=Exti(T, eJ). It follows from the proof of

Theorem 2.4 that S is a simple T-module such that S=eT/e'J' where /'=

rad(D and e' is the mao T-^TrA le)-±T.

Proposition 4.1. Let T=(l―2)A(&TrL(Je) be a tiltingA-latticeof BB-type,

Then

(a) £T={Z: Z is a A-lattice with HomX^, S)=0},

(b) £F= {F: F^5(m) /or some integer m^O},

(c) <5={Z: Z is a F'-latticewith Homr{Z*, D(S))=Q}

= {Z; Z is a r-lattice with ExtftS, Z)=0},

(d) Q = {W: W^SW for some integer n^O}.

Furthermore, we have 5sExt^(T, S) = Exti(T, (Je)*).

Proof, (a) Since 5 does not appear in the top of TrL(Je), we have

HomA(T, S) = 0. Thus if Igj then Hom^(X, S) = 0. Conversely, suppose

UomA(X, S)=0. Then eA X P(X) where P(Z) is a projective cover of X.

Hence P(Z)e£T, so that iGff.

(b) Let reg, i.e., Hom^T, Y)=0 and F^O. Then the top of Y is a

finitedirect sum of copies of S. Note that YJ is also in 3. By Lemma 2.3,

we have Ext^(S, S)=ExtA(D(S), D(S))=Q. Hence the short exact sequence 0―^

YJ/YJ2->Y/YJ2->Y/YJ->0 splits. Hence YJ=O and FsSCB) for some positive

integer m.

(c) Let Z be a T-lattice. We firstclaim that Ext/<5, Z)^Eomr(Z*, D(S)).

Apply Homr( , Z) and HomrC-Z*, ) to the exact sequences

0_*e7'->eT->£->0 and 0 ->(e'D* ->(e7')* -*£>(S)-*0,

resoectivelv. Then we have a commutative diagram with exact rows:
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0 ―≫ HomrieT, Z) > Homr(e'J', Z) -≫ExtK^, Z) ≫0

0 ― HomKZ*, (eT)*) ―* Homr(Z*, (e'J')*)~* Homr(Z*, D(S)) ―≫･0

Hence ExtKS, Z)^Homr(Z*, £>(,?)).It follows from [8, (2.10)] that Ze<S if

and only if Extf(T, Z*)=0. So, since T is a tiltingleft /"-latticeof BB-type

by Theorem 2.4,(a) completes the proof of (c).

(d) Let W&3. By the category equivalence £F≪5and (a),W^Ext^T, Scm))

for some m^O. Since ExtJ,(S,S)=0, Hom^(e/, S)=0, so that e/eff by (a).

Hence from the short exact sequence 0―>e/-≫eJ-*S->0, we have S=Ext^(T, eA)

sExtJi(T, S).

Finally, note that ExtJi(T,(/e)*)sExtji(T, S) from the exact sequence 0->

(Je)*^(/e)*^S-^0. This completes the proof.

Corollary 4.2. Let T=(l―e)^0TrL(/e) be a tilting A-latticeof APR-

type. Then Z={X: X is a A-lattice with eA＼X＼.

Proof. There exists an almost splitsequence

0 ―> eA ―> E ―> t~＼eA)―> 0

such that E is projective. This induces an exact sequence of functors:

0 ―> H.omA(r-＼eA), -) ―> YiomA{E, -) ―> Hom^eA, -)

―*Ext%T-＼eA), -)―>0

Then by [1, Chapter II, Proposition 4.4], Extji(t~＼eA),―) is a simple functor

over the category of J-lattices such that for an indecomposable ^-lattice Y,

ExtKr'KeA), 7)^0 if and only if Y = eA. Hence Is? if and only if eA)(X.

Corollary 4.3. Let T=(l-e)JcTrL(≫ be a tiltingA-lattice of BB-type

and a tiltingleft F-lattice of APR-type. Then if A is of finite representation

type then so is F.

Proof. Put r%={L: L is a left /"-lattice with ExtffT, L)=0}. Since

＼zzS={L*: iGfff} by [8,(2.10)], r3* has only finitely many isomorphism

classes of indecomposable objects. By Corollary 4.2, TV is the only indecom-

posable left /"-latticeoutside r£T. This completes the proof.

Remark. When T is a tilting J-lattice of APR-type and A is of finite

representation type, F is not necessarily of finite representation type. (See

Example 7.2.)
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5. When is rT of APR-type?

Let T=(l―e)J0TrL(/e) be a tilting ^-lattice of BB-type. In this section

we shall study when T is a tiltingleft /"-latticeof APR-type. To this end,

we need a connecting sequence for F ((A e)*)=Hom a(T ,(Ae)*). Namely, we shall

prove the following.

Proposition 5.1. Let
i

(*) 0 ―* (Je)* ―>E―> TrL(/e) ―^ 0

be an almost splitsequence starting from (Je)*. Then there is an almost split

sequence of F-lattices

(**) 0―>F{{Ae)*)―>F{E)―>e'J'―>0.

Proof. By the exact sequence 0-≫(v4e)*-K./e)*->S->0,we have F((Ae)*)=

F((Je)*). Applying F to (*), we have an exact sequcence

8

0 -> F((Je)*) -+ F(E) -> F(TrL(Je)) ―> Ext^T, (/g)*) - ExtfflT, E) -> 0.

It follows from Proposition 4.1 that Extj,(T,(/e)*)sS. Hence Ker 5=e'/' and

we obtain the exact sequence (**). Since d is surjective,ExtJ}(T,£)=0, i.e.,

iseff. It follows from Proposition 4.1(c) that e'J'^S. Hence (**) does not

split. It follows from the proof of Theorem 2.4 that e'J'=TrL(Te). Hence

T-1F((Ae)*)=TrL(F((Ae)*)*)=TrL(Te)^e'J'. Finally we claim that the exact

sequence (**) belongs to the socle of the left Endr(i?((^e)*))-module Extf (e'/'≫

F{(Ae)*)). Take aerad(Endr(i?((^e):i:))) and consider the following pushout

diagram

0 ―≫ F((Ae)*)

･I

0 ―≫ F((Ae)*)

j9

^ F(£) > e'J' > 0

I II

X ≫e'J'―- 0

where the firstrow is (**). Then there exists /eEnd^((Je)*) such that a―

F(f) and that f=fif2 for some /x: (Je)*->(Ae)*where /2: (Je)*->(/e)*is the

map induced from the inclusion map Je->Ae. Since(Ae)* is an injectiveA-

lattice,thereexists g: E-*(Ae)* such that fi=gi where i: (Je)*^-E. Thus

a=F(f1fs)=F(gift)=F(g)F(ifi)=F(g)p, so that the second row splits. This

completes the proof.
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Proposition 5.2. Let T=(l―e)A(BTrL(Je) be a tilting A-lattice of BB-

type, and let

0 ―* Ue)* ―>E―> TrL(Je) ―> 0

be an almost splitsequence. Then the following statements are equivalent.

(a) E is an injective A-latticeand (Ae)* I E.

(b) F(E) is an injective F-lattice.

(c) e'J' is an injective F-lattice.

(d) T is a tiltingleft F-lattice of APR-type.

Proof. Let f^A be a primitive idempotent with f^e and let /'e/1 be

the map T^fA^T. Then F((Af )*)=(?f)*sz(rf')*. Hence (a) implies (b).

Conversely assume (b). It is shown in the proof of Proposition 5.1 that ise2".

Hence F(£)e<S. Since (/V)*£<S by Proposition 4.1(c),(TV)* X F(E). Hence

by Theorem 1.1(i), (a) holds.

It follows from Theorem 2.4 and Lemma 2.2 that e'J' is an indecoposable

/"-lattice.Hence by Theorem 3.1,(c) and (d) are equivalent.

Let Ibea /"-lattice.By Theorem 1.1 and Proposition 4.1(d) we have an

exact sequence

(d) 0 ―≫ X ―> F(Y) ―> Scn) ―> 0

where FgJ. From Proposition 5.1, we have an almost split sequence

(e2) 0 ―≫ F{{Ae)*) ―> F(£) ―> ≪7' ―■>0.

Note that by [8,(2.3) (iv)], for any Zeff, ExVr(F(Z), F((Ae)*))=ExtlA(Z, (Ae)*)

=0 (i=l, 2, ･･･). Now assume that F{E) is an injective /"-lattice.Then by

(e2), ExtK^, e'/')=ExtK^, F((Ae)*)). By (ej, we have an exact sequence

0=ExtKF(Y), F((Ae)*))-*ExtKX, F((Ae)*))^Ext}{S, F((Ae)*))w.

On the other hand, by (e2) we have an exact sequence

ExtRF((Ae)*l F((Ae)*))^ExtKe'J', F((Ae)*))->ExtKF(E＼ F((Ae)*))

Since both ends are zero, Extf (S, F((Ae)*))=Ext2r(e'J', F((Ae)*))=0. Hence

ExtK^, e'J')=0. Thus e'J' is an injective /"-lattice.

Conversely assume that e'J' is an injective /"-lattice.Then using (e2),we

can show that for any Zeff, ExtRF(Z), F(E))=0. By (ex), we have an exact

sequence

0=ExtXF(Y), F(E))―> ExtKX, F(E))―> ExtK5, F(E)Yn＼

Since (a2) is an almost splitsequence, applying Homy( , F(E)) to(e2),we obtain
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that ExtKeV, F(E))=0. Hence ExtKS, F(E))=0 and hence ExtKX F(E))=0.

This completes the proof.

Remark. If T is a tilting,/f-latticeof APR-type then in (a) of Proposition

5.2, we can delete the condition (Ae)*＼E. In fact, assume (Ae)*＼E. Then

there is an irreducible map (TrL(Je))*^Ae. Thus (TrL(Je))*＼Je. Since Je is

indecomposable, TrL(Je)=(Je)* = eA, a contradiction.

Lemma 5.3

irreducible map

Let L be an indecomposable F-latticeand let f: e'J'―>L be an

Then L = eT or else L£S.

Proof. Let L^S. Then it follows from Proposition 4.1(c) that by the

exact sequence Q^-e'J' -^eT-*■ S->0, Uomr(eT, L)^Homr(efJ', L). Hence

there exists gGHomr(eT, L) such that f―gi. Since / is irreducible, g is a

splittingepimorphism, so that L = eT.

m
Decompose E=@Et where Et are indecomposable. It follows from [3,

i=l

6.1 Corollary] that if A is of finiterepresentation type then ra^4 and when

ra=4 one of the Ei is a projective and injective ^-lattice.

Corollary 5.4. Let T be a tilting A-lattice of APR-type and let A be of

finiterepresentation type and m=3 or 4. Then if Ei (l^z'^3) and TrL(Je) are

not injective A-latticesthen F is of infiniterepresentation type.

Proof. It follows from Proposition 5.2 that e'J' is not an injective F-

lattice. Hence there is an almost split sequence

0 _^ e'j' _> 0 LtceT ―* T~＼e'J')―> 0.
i=l

Since F(Ei) are not injective /^-lattices,we obtain that n^3. By Lemma 5.3,

LjGcS (lSi<Ln). Thus none of Lt (i=l, 2, 3) and e'F are projective and in-

jective /^-lattices. Hence by [3, 6.1 Corollary], F is of infinite representation

type.

6. A remark on global dimension of F

Let T be a tilting^-lattice and r=End^(T). Then we have gl. dim F^

gl. dim A + l by [8, (2.13)]. In this section we shall study global dimension of

F in our cases.

For a ^-lattice X, X'＼Aa{X) denotes the yl-latticeinjective dimension.

Namely, £＼&AX)=n< if Ext3+1(F, ^)=0 for all^-lattices Y and ExtnA(Z, X)
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^0 for some ^-lattice Z. It is known that XldA(X)=pdA(X*)=idA(X)―l if

one of them is finite.

Proposition 6.1. Let T=(l-e)A^TrL(Je) he a tiltingA-latticeof BB-type

and put r=EndA(T). If F((Ae)*) is a projectiveF-lattice,thatis,(Ae)*^

TrL(Je) or (Ae)*＼(l-e)A, then gl.dim r^gl.dim A.

Proof. We firstshow that for iGff if XidA(X)=t then Xidr(F(X))^t.

By the duality( )*,we have a minimal injectivet4-latticeresolution

(*) 0 ―> X ―> h ―> ■･･―> It ―^ 0.

Suppose that (Ae)*＼It and let p : 7£―KJe)* be a projection. Then the map

F{p)F{ft): F(lt-i)-*F((Ae)*) splitsby assumption. It follows from the category

equivalence 3"~<Sthat />/talso splits. This contradicts to the minimality of

(*). Thus (Ae)* tlt, so that F(It) is an injective /""-latticeby the proof of

Proposition 5.2. On the other hand, for an injective yf-lattice/, Xidr(F(l))^l,

because F(A*)=T* and pdr(T)^l. Since X, ifSff, we obtain an exact sequence

of /"-lattices

0―+F(X)―*FUo)―> >F(It)―>0.

Therefore, JTidr(F(Z))^f. Now suppose that gl.dim A=n<°o. Then J7id^(T)

^n-1, so that Xidr(n=Xldr(F(T))£n-h Hence idrC/1)^?!. Since gl.dim F

is finite,we have gl.dimr1―idrC/1)^^. This completes the proof.

When A has global dimension two, gl.dim/1 is completely determined as

follows, provided that T is of APR-type.

Corollary 6.2. Assume thatgl.dimJ=2 and thatT is of APR-type. Then

(a) if (Ae)**kTrL(Je) or (Ae)*＼(l―e)A,then gl.dimr=2, and (b) otherwise,

gl.dimr=3.

Proof, (a) follows from Proposition 6.1. (b) It follows from Proposition

5.1 that there exists an almost split sequence

0 ―> F((Ae)*) ―> F(E) ―> e'J' ―> 0.

Since T is a tilting^-lattice of APR-type, £eadd((l-e)^), so that F(E) is

projective. Hence, since F((Ae)*) is not projective, pdr(S)^3. Therefore

gl.dimr=3 by [8, (2.13)].
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7. Examples

All examples here are tiledi?-orders in the full matrix ring (K)n for some

n^4. For l<Li<^n, let et be the matrix in (K)n such that the (i, 0-entry is 1

and the others are 0. For an integer m^l, an ideal TtmR of R is denoted by nm.

It is often said that i?-orders of global dimension two have a lot of similar

properties as hereditary artin algebras. While such algebras always have APR-

tilts,there is a tiled i?-order of global dimension two which does not have

tiltinglattices of APR-type. Note also that we have shown in §2 that every

tiled R-order of finiteglobal dimension has tiltinglattices of BB-type.

Example 7.1. Let A be the tiled i?-order

R R

R

7C

X2

R

R

R

K

R

R

R

R

in (K＼. Then gl.6.miA―2. By Theorem 3.1, we can verify that A does not

have tilting^-lattices of APR-type.

Next we give an i?-order A with a tilting vl-latticeT of APR-type such

that gl.dim^=gl. dimr=2 where r=En&A(T) and that while A is of finite

representation tyoe. F is not.

Example 7.2. Let A be the tiledi?-order

R

K

7C

R

R

7C

R

R

R

7C

R

R

R

It

7C

TV

R

R

71

7t

K

R

in (KX. Then gI.dimJ=2. The Auslander-Reiten quiver of A is given by

V

PRfSK7Sfc' _, _ -fcRRfCfti

^TsRRfSfs-^ <*PfSKRKX^ ^RRftKTSi

RRRRR^izRnnn-* n -≫Rk Ran <^RR Risk t^p RRRRfst^p RRRRR

where
R u
|| stands for the set ＼(
R lV

identify

J: x,y(ER and x = y mod ny and "p" ("i") means
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R7cRtC7C
that it is a projective (injective)^-lattice. Put T=(l―eb)AR || and F=

It]＼R,7C7Z

End^T). Since (Je5)* = e5A, T is a tilting ^-lattice of APR-type. Hence, it

follows from Corollary 6.2 that gl.dim/1=2. Further, it follows from Corollary

5.4 that F is of infiniterepresentation type.

We remark that the example in [8] is similar to ours, but in that example

F has global dimension three by Corollary 6.2.

The last example provides an i?-order A having no tilting .//-latticesof

APR-type, but it has a tilting J-lattice T of BB-type such that rT is of APR-

type where F=Enda(T).

Example 7.3. Let A be the tiledi?-order

R

R

R

R

R

7C

R

TV

R

7T2

7t

R

R

R

7T2

7t

It

R

R

K2

7C

7C

1Z

R

in (K)5. Then gl.dim^=3 and A has no tilting./1-latticeof APR-type by-

Theorem 3.1. Let T=(l―es)AR(Ricic7C7c). Then T is a tilting^-latticeof

BB-type. The Auslander-Reiten quiver of A is given by

S>pRnRR7d -≫ no no ^PRRRRRi^
- RRRRie

^

^vRwRnn

> RRRxk d_
2 2^i?^^2,

^ ^'RRkkk

, vRwKiKi7Vi

identify

Put r=EndA(T). It follows from Proposition 5.2 that T is a tiltingleft F

lattice of APR-type. Further,

r=

R

R

R

R

R

■K

R

R

R

R

TV2

7C

R

R

R

*r2

7t

R

R

TV2

It

1C

7C

R

and the Auslander-Reiten quiver of F is given by
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y
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^PRRRRRt^

^pRRRRx ^ 2 ^RnKnXi-^fRRTCfcic
vRRRnn CT

^≫
Rickkk1

i ^
.

^ RKKKl7Cli
Npte!ffVi^

identify
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