ON CERTAIN MULTIVALENTLY STARLIKE FUNCTIONS

By

Mamoru Nunokawa

Let $A(p)$ denote the class of functions $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ which are analytic in the open unit disk $E=\{z:|z|<1\}$.

A function $f(z) \in A(p)$ is called p-valently starlike with respect to the origin iff

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad \text { in } \quad E
$$

Ozaki [2, Theorem 1] proved that if $f(z) \in A(1)$ and

$$
\begin{equation*}
1+\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<\frac{3}{2} \quad \text { in } \quad E \tag{1}
\end{equation*}
$$

then $f(z)$ is univalent in E.
Moreover, Umezawa [6] proved that if $f(z) \in A(1)$ satisfies the condition (1), then $f(z)$ is univalent and convex in one direction in E.

Recently, R. Singh and S. Singh [4, Theorem 6] proved that if $f(z) \in A(1)$ satisfies the condition (1), then $f(z)$ is starlike in E.

Ozaki [2, Theorem 3] proved that if $f(z) \in A(p)$ and

$$
\begin{equation*}
1+\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<p+\frac{1}{2} \quad \text { in } \quad E, \tag{2}
\end{equation*}
$$

then $f(z)$ is p-valent in E.
It is the purpose of the present paper to prove that if $f(z) \in A(p)$ satisfies the condition (2), then $f(z)$ is p-valently starlike in E.

This is an extended result of R. Singh and S. Singh [4, Theorem 6].
In this paper, we need the following lemma.
Lemma 1. Let $f(z) \in A(1)$ be starlike with respect to the origin in E.
Let $C(r, \theta)=\left\{f\left(t e^{i \theta}\right): 0 \leqq t \leqq r<1\right\}$ and $T(r, \theta)$ be the total variation of $\arg f\left(t e^{i \theta}\right)$ on $C(r, \theta)$, so that

$$
T(r, \theta)=\int_{0}^{r}\left|\frac{\partial}{\partial t} \arg f\left(t e^{i \theta}\right)\right| d t .
$$

Then we have

[^0]$$
T(r, \theta)<\pi .
$$

We owe this lemma to Sheil-Small [5, Theorem 1].
Main theorem. Let $f(z) \in A(p)$ and

$$
\begin{equation*}
1+\operatorname{Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<p+\frac{\alpha}{2} \quad \text { in } \quad E, \tag{3}
\end{equation*}
$$

where $0<\alpha \equiv 1$.
Then we have

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi}{2} \alpha \quad \text { in } E,
$$

or $f(z)$ is p-valently starlike in E.
Proof. Let us put

$$
\begin{equation*}
\frac{2}{\alpha}\left(p+\frac{\alpha}{2}-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\frac{z g^{\prime}(z)}{g(z)} \tag{4}
\end{equation*}
$$

where $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$.
From the assumption (3), we have

$$
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}>0 \quad \text { in } \quad E
$$

This shows that $g(z)$ is starlike and univalent in E.
From (4) and by an easy calculation (see e.g. [1]), we have

$$
f^{\prime}(z)=p z^{p-1}\left(\frac{g(z)}{z}\right)^{-\alpha / 2} .
$$

Since

$$
f^{\prime}(z) \neq 0 \quad \text { in } \quad 0<|z|<1,
$$

we easily have

$$
\begin{align*}
\frac{f(z)}{z f^{\prime}(z)} & =\int_{0}^{1} \frac{f^{\prime}(t z)}{f^{\prime}(z)} d t \tag{5}\\
& =\int_{0}^{1} t^{p-1+\alpha / 2}\left(\frac{g\left(t r e^{i \theta}\right)}{g\left(r e^{i \theta}\right)}\right)^{-\alpha / 2} d t
\end{align*}
$$

where $z=r e^{i \theta}$ and $0<r<1$.
Since $g(z)$ is starlike in E, from Lemma 1, we have

$$
\begin{equation*}
-\pi<\arg g\left(\operatorname{tre}^{i \theta}\right)-\arg g\left(r e^{i \theta}\right)<\pi \tag{6}
\end{equation*}
$$

for $0<t \leqq 1$.
Putting

$$
s=t^{p-1+\alpha / 2}\left(\frac{g\left(t r e^{i \theta}\right)}{g\left(r e^{i \theta}\right)}\right)^{-\alpha / 2}
$$

then we have

$$
\begin{equation*}
\arg s=-\frac{\alpha}{2} \arg \left(\frac{g\left(t r e^{i \theta}\right)}{g\left(r e^{i \theta}\right)}\right) . \tag{7}
\end{equation*}
$$

From (6) and (7), s lies in convex sector

$$
\left\{s:|\arg s| \leqq \frac{\pi}{2} \alpha\right\}
$$

and the same is true of its integral mean of (5), (see e.g. [3, Lemma 1]).
Therefore we have

$$
\left|\arg \frac{f(z)}{z f^{\prime}(z)}\right|<\frac{\pi}{2} \alpha \quad \text { in } \quad E
$$

or

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi}{2} \alpha \quad \text { in } \quad E
$$

This shows that

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad \text { in } E .
$$

This completes our proof and this is an extended result of [4, Theorem 6].
The author would like to acknowledge helpful comments made by the referee.

References

[1] Nunokawa, M. and Owa, S., On certain subclass of analytic functions, Indian J. Pure and Applied Math. 19 (1988), 51-54.
[2] Ozaki, S., On the theory of multivalent functions 11, Sci. Rep. Tokyo Bunrika Daikaku. 4 (1941), 45-86.
[3] Pommerenke, Ch., On close-to-convex analytic functions, Trans. Amer. Math. Soc. 114 (1965), 176-186.
[4] Singh, R. and Singh, S., Some sufficient conditions for univalence and starlikeness, Colloquium Mathematicum. 47 (1982), 309-314.
[5] Sheil-Small, T., Some conformal mapping inequalities for starlike and convex functions, J. London Math. Soc. 1 (1969), 577-587.
[6] Umezawa, T., Analytic functions convex in one direction, J. Math. Soc. Japan. 4 (1952), 194-202.

Department of Mathematics
Gunma University
Aramaki, Maebashi, 371
Japan

[^0]: Received April 12, 1989. Revised October 11, 1989.

