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Introduction.

Let P be a classical pseudodifferential operator of order m. We assume P

is of principal type, that is, the Hamilton vector field Hv of the principal symbol

p of P is not parallel to the radial direction where the principal symbol p

vanishes. In this paper we study the microhypoellipticity for P, under the fol-

lowing (＼) condition given by Nirenberg-Treves [15] ;

the imaginary part p2 of the principal symbol p

{＼) does not change sign from + to ― along any oriented

(null-) bicharacteristic of the real part pi of p.

Let us recall that {＼) is necessary for adjoint operator P* of P to be locally

solvable (see Hormander [6; Theorem 26.4.7], cf. Moyer [14]). Since it follows

from the hypoellipticity of P that P* is locally solvable, it is reasonable to

assume the condition (＼).

By supplying the missing arguments of Egorov [2], Hormander [5] (see

also [6; Chapter 27]) showed that a pseudodifferential operator P of principal

type is subelliptic (and hence hypoelliptic) if and only if the principal symbol p

of P satisfies (＼) and a finite type assumption ((27.1.8) in [6]). Without the

finite type assumption, the problem of hypoellipticity seems to be difficult. For

example, consider a first-order pseudodifferential operator of Egorov type as

follows:

P0=Dt+i(t'DXl+tkx?＼D＼) in Rtxm, ＼D＼2=D＼+＼DX＼＼

where s, k, m are nonnegative integers. For Po> condition {＼) and the finite

type assumption are expressed as
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s, m even, k odd, s<,k .

Then Po is subellipticwith loss of r/(r+l) derivatives(r=k+m(s + l)) and hence

hypoelliptic. If f, tk, xf of Po are replaced by functions infinitely vanishing

then the hypoellipticity of Po is unknown. The aim of the present paper is to

solve this particular problem, but we shall reply only for special cases, unfortu-

nately, because we do not know even whether L2 a priori-estimateholds for this

modified Po, in general. Actually, a remarkable counter-example given by

Lerner [10] shows that we can not always expect L2 a priori-estimate for

operators satisfying (＼).

To end the introduction, we state a few historical remarks: As a perfec-

tion of the preceding results of Nirenberg-Treves [15] in the analytic case or

the finite type case, Beals-Fefferman [1] proved L2 a priori-estimate(and hence

local solvability)for pseudodifferential operators of principal type, under condi-

tion (P) (i.e. the imaginary part p2 of the principal symbol of P does not

change sign along the bicharacterisiticof the real part pu which is equivalent

to {＼) for differentialoperators.) Furthermore, Hormander [6; Chapter 26]

extented the local existence result of [1] to the semi-global one and fully studied

the regularities of solutions for operators, of principal type, satisfying condition

(P). Under condition (W), L2 a priori-estimatefor operators in 2-dimension space

was proved by Lerner [8], whoes method also plays an important role in the

present paper.

1. Main results

Let P be a classical pseudodifferential operator on Rn+1, of order m, of

principal type, which satisfiesthe condition (W). We are interested in the micro-

hypoellipticity of P; that is, for po(ET*{Rn+1)＼0, we shall see whether

(1.1) po£WF(Pu) implies po£WF(u) for Vu(E3)r(Rn+i).

We assume />0GChar P because (1.1)is trivial,otherwise, where Char P denotes

the set of characteristicpoints. Let p = pi+ip2 (pi, Pi real-valued) be the prin-

cipal symbol of P and let f be a subset of Char P where the Poisson bracket

{pu Pi) vanishes. It is known by Homander's classical theorem [4] (and also

Egorov-Hormander Theorem [6; Theorem 27.1.11]) that (1.1) is true if p^F,

because we have a subellipticestimate with loss of 1/2 derivatives. In what

follows we consider the case where po^F. We assume that in a conic neigh-

borhood of 0O



(1.2)
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[ F is contained in a C°°-hypersurfacein T*(Rn+l)＼0

1 to which the Hamilton vector fieldHi of pi is transversal.
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After the multiplication by an ellipticfactor, we may assume P is of firstorder.

Furthermore, by homogeneous canonical transformation and Malgrange prepara-

tion theorem we may assume that po = (O,(0, %0))<=T*(RtxRZ)＼0, (|£O|=1), and

the principal symbol p of P is expressed as, in a small conic neighborhood V

of p0,

(1.3) P = P(t,x, r,£)=t+iq(t, x, |),

where q(t,x, |)eC°°(l2jXl2Sxi2f) is real valued, positively homogeneous of de-

gree one for |f|^l/2; in particular q satisfies:

(1.4)

and

(1.5)

n(t,x,£)=Mt, x, g/X), if |^| ^1/2 and 0<^^l,

＼(D＼DaMq){t, x, £)＼^Ca,B,k(l+＼£＼y-^

We may also assume that lower order terms p0, p_lt･･･in the symbol of P are

independent of r in a conic neighborhood V of pn (see the paragragh after [6;

Theorem 26.4.7']). Hence we can write

(1.3)' P=Dt+iQ(t, x, Dx) in V,

where the principal symbol of Q is q(t,x, £). In that frame work, condition

{＼) is expressed as

(1.6) q{t,x, ^)>0 and s>t imply q(s,x, |)^0 .

Moreover, the set F is defined by

{(t,x, 0, f)eT*(Rre+1)＼0; dtq(t,x,£)=q(t,x, $)=0]

and it follows from assumption (1.2) that

(1.7)

j

for any ≪>0 there exists a <L>0 such that

{(t,
x,0,£);ft^＼t＼^2ft, ＼x＼+

i
f
j-£o|<5,i}nr=0.

because po―(O,(0, fo))Gf.

In order to state a sufficientcondition for (1.1), we define a microlocalized

operator of P at p0 as follows: Let h{x) be a C (Rn) function such that 0^/z

^1, h(x)=l for |*|^l/5 and h(x)=Q for ＼x＼^7/24. For a 5>0 we set h5{x)

= h(x/d) and //^(x,f; X)=hd(x)hs(2.$―$0),where 0<^^l is a parameter. Let 5X

be a small positive such that the projection of V into RtXUxXRl? contains

{＼t＼£28,}Xsupp h2ll(x)h2zMl-―g0). For a parameter 0<^l, we set
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= Dt+ihSl(x)Q(t, x, Dx)hdl(XDx-$0)=Dt-hiQx(t, x, Dx)

Theorem 1. Let F be the above set in CfaarP and assume (1.2). Let po=

(0,(0, t-0))^r and let P be a pseudodifferentialoperator of the form (1.3)'in a

conic neighborhood V of p0. Let 8 be a small positivesuch that 1005<5x for the

above <5:. Assume that for each d there existnon-negative symbols <p(x,£;/()^Si,0

and a(t, x, g)GC°°(Rt;SiiQ) such that {<p(x,t-;A); 0<^l} is a bounded set of

Si,o and we have

( <p^l outside of suppH5S(x, $; X)
(1.8)

{ (p―0 on supp Hs(x, |; X),

(1.9) ＼(Hq<p)(t,x,$;X)＼^a(t, x, £) on {＼t＼£dl} Xsupp HlooS(x,?; X)

and the following estimate: For any s>0 there exists a CE>0 independent of

0<ri<l such that

(1.10)
!!u||2+(log/)2||≪ax, D,)u＼＼2

^£||F^||2+ C£U||M||2+r2||(l-//205(^,Dx;X)uV)

if u(EC~a-du 5X]; <S(R%)). Then we have (1.1).

Corollary. The same conclusion of Theorem 1 follows if we replace (1.9)

and (1.10),respectively, by

(1.9)'

and

(1.10)

(Hq<p)(t, x, £;X)＼2<a(t, x, £) on {＼t＼̂d,} Xsupp Hloo8(x, $; X)

l!w||2+(log^)2Re(≪a, x, Dx)u, u)

£s＼＼Piu＼＼2+ Cs(X＼＼u＼＼2+Z-z＼＼a-H208(x, Dx;X)u＼)

Remark 1. The function h(x)in Theorem 1 and Corollaryis not necessary

to be homogeneous spatially.For example, we can replace it by h(xl/v)h(x')

for any v>0 and for hix,),h(x')similaras h(x).

Remark 2. As criteria of hypoellipticity,logarithmic regularity up esti-

mates were used in Morimoto [11-13]. The simple proof of Theorem 1 in the

present paper is inspired by Kajitani-Wakabayashi [7; Theorem 1.2] (see also

[16]) and Hormander [6; Lemma 26.9.3].

As an application of Theorem 1, we consider a pseudodifferential operator

of principal type which has the following form:

(1.11) P=Dt+ia(t, x, Dx){Dx+f(t)＼Dx＼),
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in a conic neighborhood V of />0=(0, (0, £,)),where a(t, x, £)eC°°CR£;SJ>0), f(t)

eC°° satisfy

(1.12) a(t, x, £)^0, //(0>0 (^0), //(0)=0.

It follows from (1.12) that P satisfies (＼).

Theorem 2. Let p0 be (0, (0,£0))eT*ORn+1). Let P be of the form (1.11)

in a conic neigborhood of V of p0 and satisfy (1.12). Then we have (1.1)if the

following conditions are fulfilled;

(1.13) 3a(t), /3(0eC~; /3(0>0 (t±Q), ta＼t)^O,

(1.14) P(t)^a(t, x, &^a(t) in V,

(1.15) ＼7xa(t,x, 6)|+ |V5aa, x, ?)|^||^a(O in V,

(1.16) lim #a(0 log/'(0=0 rarf

(1.17) Urn ?a(f)log £(0=0 .
£-0

It follows from (1.13) and (1.14) that a(t,x, ^)>0 (^0) and hence we see,

together with (1.12),

Consequently we have (1.2)(and hence (1.7)). The operator of the form (1.11)

is infinitelydegenerate model corresponding to the case of ra=0 in the operator

PQ of Egorov type stated in the introduction. We do not know the microhypo-

ellipticityfor a simple operator with f(t)in (1.11) replaced by f{t)x＼,because of

the difficultyin deriving L2 a priori estimated

However, if ait,x,£)in (1.12) does not vanish we can treat infinitely de-

generate model of Po a little more generally. This case is geometrically

stated as

(1.18) Hu Hz and the radial direction are linearly independent in FnChar P,

which is invariant condition under the multiplicationof ellipticfactors. If(1.18)

is valid then it follows from condition (＼) that we have the maximal hypo-

ellipticestimate, in a sense of Helffer-Nourrigat [3], as follows;

＼＼Dtu＼＼*+＼＼Qx(t,x, DJuV^CqPxuW' + WuW*) (cf.,(4.9)).

By means of this estimate, the problem of hypoellipticityfor Dc+iQ can be

reduced to the similar one for second operator D2t+O2 as in [131. From now

t Some special cases will be studied in the forthcoming paper [17
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on we shall consider the case corresponding to [13; Theorem 4]. Let F be a

C°°submanifold of codimension 2 in Char P and symplectic, that is,

(1.19) TTr＼Tr±=0 at every point of F.

It follows from (1.19) that both Hx and H2 are transversal to F because

Hu //2eT(Char PYaTFL. Hence (1.2) holds and so (1.7). In order to state the

additional condition we have to fix a special coordinate. By a symplectic linear

transformation, it follows from (1.18) that q(t, x, £) of (1.3) satisfies dSlq(t,x, £)

^0. It follows from the implicit function theorem that there exist a(t, x, f)e

C°°(Rt;S?
0)
and bit, x, £')<=C{Rt; Si

0)
such that

(1.20) g(t,x, &=a(t, x, $)(^+b(t, x, £')),a(t,x, £)=£(),in V,

where £'=(£2,■■■,!-n). Let yp{t) be the bicharacteristicof pi = r through p =

(0, x, 0, &, $')e FnChar P, that is, Tt>(t)= {(t,x, 0, ^, f)} ･ By setting & =

―b{t,x, !･') we define a projection 7^(0 into Char P of the bicharacteristic.

We nssume that

(1.21)

- there exist a da>0 and a O^e(t, x, £)eC°°(/2t;S?.o)

such that for any ^=(0, x, 0, f)eFnCharP, F/0 =

(edtq)＼char p(KYp(t)) has a unique extremum at t=s(p)

■in (―d0> d0), and s(jo) belongs to C°°with respect to p

Theorem 3. Let p0 be (0,(0, fo))er and let P be the form (1.3)' and satisfy

(1.18)in a conic neighborhood V of p0. Assume that F is a C^-symplectic sub-

manifold and of codimension 2 in Char P. Then we have (1.1)if the condition

(1.21) holds with q(t,x, f) expressed as (1.20).

As a typical example of Theorem 3 we have the following:

pit,x, t,£)=r+rf?i+r
I Jo
exp-(s2+x?r5/2ds|£|l <S>0.

2. Proof of Theorem 1

Let x(t)be a C°S(Rt)function such that O^X(t)£l, X(t)=l for |f|^l, Z(0=0

for ＼t＼^2. Set 0(r, |;^)=X(|r|/i≪|ei)(l-Z)(l6l) fora smalli≪>0. For cutting

/2| we define the following:

Definition 1. For <5>0 and £oel2n (|£0|=i) we say that a function 0(£)e

C~(Rn) belongs to W8.S(.if O^^l satisfies
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#0=1

#0=0

#0=#£AO

for |£/|£l-&I ^5/12 and |£i^2/3

for |£/|£|-£01^/10 or |£|^l/2,

for 0</^l and |£|^l.

193

In the proof of the theorem we may assume MGfi' and hence u belongs to

H-n for an integer N>0. Suppose that po£WF (Pu). Then for a sufficiently

small fjt>0 we have

W/2ft)0(Dt, Dx; 2fi)<prl(Dx)h,(x)Pu(EHs

for any real s, where ^cg^,^. If we set v=X(t/ft)0(Dt, Dx; fi)u then it

follows from (1.7) that <pd(i(Dx)h8fi(x)Pv^Hs for a 05//(£)eF^,fo because P is

microhypoelliptic on the intersection of supp h$ {x)(ps (£) and the support of

derivatives of X(t/fi)0(r, £; ft). Fix a positive 8 such that 1005<min(5AI, <5i).

We shall show <ps(Dx)hs(x)v^Hs, which will yield (1.1).

For the above 8 we take <p(x,£; ^) in the assumption of the theorem. For

an integer l>s+N+l we denote a pseudodifferential operator with a symbol

Xkp(x,Z;X) by K(x, Dx ; A). If A varies Q<;^1 then K(x, Dx ; %)HloS(x, Dx ; ^) be-

longs to a bounded set of S°iSlfor any small Si>0. For any real a, ＼_K(x,DX ;
>J),

Hloi(x, Dx; X)]A~a belongs to a bounded set of ST,lo~a~1^ because of (1.8).

Furthermore, hxo8{x), hloS{Wx―t-o) and K(x, Dx; X) are commutative, each other,

as a product of three factors, neglecting term in kaxSz,io~a~Sl'>.

Let w<=S satisfy

(2.1) suppu;d{U|^2^}

and substitute K(x, Dx; Z)H10$(x, Dx; X)w into (1.10) in place of u. Then

＼＼KHlo8w＼＼2+(logm＼a{t, x, Dx)KHlo8w＼＼2

(2.2) ^2e{＼＼hlod(ADx-$o)hlo8(x)KPw＼＼2+＼＼HloSlQ(t, x, Dx), K^wf)

+ Cs(A＼＼KHl08w＼＼2+^s+1＼＼w＼＼%,-N,)

because the same commutative argument as above follows for HloS and KQ by

means of (1.8). Here for real a we have set ||w||(0.o)= ||(l+ ^)flw||, A2=1+＼DX＼2

and by this norm we define the space Hu>,ai- Note that the principal symbol

of [(?, K~] is equal to

and symbols of lower orders are a sum of xlli+l<p{x'^X) multiplied by symbols

in a bounded set of 5?>0 uniformly with respect to 0<^l. It follows from

d.91 that
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＼＼H1Q8lQ(t,x, Dx＼ K^w＼＼^l＼＼og kf＼＼a{t,x, Dx)KHloSw＼＼2

(2.3)
+ Cl(X＼＼KHloSw＼＼2+Xu+1＼＼w＼＼%^N)).

Choose 2s/2<l, then for a constant C[ we have

{l-2eXCl)＼＼KHmwf

^sWhUWx-^hxosixWPwr+Ci^WwW^^,.

It follows from (1.8) that ＼＼h8(XDx-^)h8(x)w＼＼tSi＼＼KH1osw＼＼2+£iXtt+1＼＼w＼＼＼o,.m.

Take a ^o satisfying X0(2eCi + Cs)<l/4. Then for 0<X^X0 we have

＼＼hs(XDx-%o)hd(x)w＼＼*

£4s{＼＼hUXDx-%o)hloS(x)Pwf+Cnu+1＼＼w＼＼＼o,_N)).

Multiplying ^""(l+jeiT1)"2"*1' with a parameter k>0 by both sides, for 0<X^Xo

we have

＼＼h8(XDx-$a)a+KA)-<l+1>h8(x)w＼＼l

^4£(＼＼hUXDx-$oXl+KA)-'l^hlo(x)Pw＼＼l+C'{X＼＼w＼＼%^m)

because X'1 is equivalent to |£| on supph(X$―1-0)- Integrate X from 0 to ^0

after dividing both sides by X. Then by means of [12; Proposition 1.7] we

have for suitable (ps($)^V8^0 and 05(£)eF7O5,fo,

＼＼{l-VKA)-^(ps{Dx)hs{x)w＼＼＼0,s)

^C{＼＼{l+KAY^^6{Dx)hUx)Pw＼＼＼,,s)M＼w＼＼%,_N)).

It follows from u^H^N that one can find a sequence {uj} in S satisfying Uj~>

ms#_jv. If Wj―l{t/n)0{Dt,Dx;n)Uj then w^v in Hia^N) and PiVj-^Pv in

i/(o,-(jv+i)). Letting ;-^oo in the above estimate with w = Wj, in view of Pv^Hs

we get for k>0

||(l+/cJ)-(i+1V3(£≫J^(^ll^S)^C(||^(i)x)/i105(x)Pi;||2+||M||^).

Making /c->0 we see (ps{Dx)hs(x)v<=Hs because v=l(t/pt)0(Dt, Dx; p)u. Thus

we have proved that Pu^Hs at p0 implies u^Hs at p0.

The proof of Corollary is obvious if we replace the term ＼＼a(t,x, Dx)KHlosw＼＼2

in (2.2) and (2.3) by Re (a(t, x, Dx)KHloSw, KHloSw).

3. Proof of Theorem 2

If fo^^={£i+/(O)|£!=O} then the theorem is obvious because q(t, x, $)=

a(fi+/(0l£ I) is semi-definite in a small conic neighborhood of (O0=(0, (0, £0))

and we can apply the result about the propagation of regularities (Hormander



Hypoelliptic operators of principal type 195

[6; Proposition 26.6.1]). In what follows we assume £0^Z (though we will

not use this condition). We apply Theorem 1 by setting

(p(x,£)=(i_/lBa(z))+(i_/lBa(;£_£0)).

Then we have (1.8) and it follows from (1.14) and (1.15) that (1.9) holds with

a{t, x, t-)=Ca(t) for a suitable C>0 if 8 is small enough. The proof of Theo-

rem 2 would be completed if we could show (1.10). Set

ax(t,x, £)=h8l(x)a(t,x, Dx)hih{Wx-^).

Let A(t)=ay(t, x, Dx) denote a pseudodifferential operator with Weyl symbol

ax(t,x,^). Setting B(t) = (DXl+f(t)＼Dx＼)h8l(Wx―£0) moreover, we consider

A(t),B{t) as a real operator on Hilbert space M=L2(Rx). Note that for a fixed

;>0 B(t) is bounded operator in M. If £+(*)={£;£i+/(0l£l>0} and if

S+(fMx)=^yrJei*elfl+{t,(6)i>(≪df v^M, SM)=Id-S+(t)

then we can define the sign M(t) of B(t), M(t)=S+(t)―S_(t) and it follows from

(1.12) that

(3.1) {M(U)-M(U)){U-U)^ on Si.

From this condition we have the following lemma given by Lerner [8; §2] :

Lemma (Lerner [8, 9]). There exists a cT>0 independent of 0<^^l such

that for any u(t)^.C＼{Rt)SC) we have

(3.2) 2<＼＼PMt)＼j(dt^sup＼u(t)＼j[if suppwClIU!^'},

where |･ ＼jc=＼＼-Wlhr^.

Proof. By means of [8; Lemma 2.3.1],it follows from (3.1) that

(3.3) Re
[(≪(*),M(t)u(t))Mdt^0,

ii(t)=^(t).

If H(t) denotes Heaviside function then for any T we have

-Re
j(≪(0,
{H(t-T)S+(t)-H(T-t)S-(t)}u(t))xdt

(3.4) = -Re j(≪(0,H(t-T)(M+S_Mt)+H(T-t)(M-S+Mt)Udt

^-Re
J(m(O,
{H(t-T)S_(t)-H(T-t)S+(t)}u(t))jcdt,

where we have used (3.3) in the last inequality. Adding the left hand side of
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(3.4) to both sides of (3.4), we have in view of S+ + S_ = /rf

(3.5)

-2Re
J(≪(0,
{H(t-T)S+(t)-H(T-t)S.(t)}u(t))jcdt

>-Re
f(ii(O,
{H(t-T)-H(T-t)＼u(t))jcdt

=2|m(T)|≪

It follows from [8; Lemma 2.3.2] that

(3.6) Re(±S±Re(AB))^-~＼＼A＼＼^KA, fl]||l'l[fl,IB, AJW" ,

where ||i4||denotes the operator norm of A(t) in M. Note that the right hand

side of (3.6) has the bound independent of X. Since the difference between Px

and Dt+iRe(A(t)B(t)) is bounded in M uniformly with respect to 0<^l, in

view of (3.5) and (3.6) there exists a C>0 independent of X such that

Re
＼{Pxu{t),

i{H(t-T)S+(t)-H(T-t)S_(t)＼u(t)Udt

^＼u(T)＼2M-C^＼u(t)＼%dt

If suppMC{UI^5'} then the second term of the right hand side is estimated

above from 2Cd' sup|u(£)|^, so that we have (3.2) for a small <5'>0 satisfying

4C8f <1.

By means of the Schwartz inequality it follows from (3.2) that

(3.7) ＼＼Pxu＼＼^(2dT1＼＼u＼＼if supp uc{＼t＼<8'}.

It follows from (1.16) and (1.17) that for any s>0 there exists a 8s>0 such that

(3.8) ta(t){＼logf'(t)＼+ ＼logp(t)＼}^ if ＼t＼£5e.

For the sake of simplicity we assume a(t) is even function (the general case

would be clear once we could prove thiscase), It follows from the monotoness

of a(t) that for a small parameter ^>0 there exists a unique ^>0 such that

tz<x(tx)＼logA＼=2s. Similarly we choose s*>0 such that s,i≪(s^)|log /L＼=s. For

a while we assume X is sufficentlysmall such that sx<8,. If we set d'=tx in

(3.7) then

4s||P/,M||^l|afo)(log*)M|[
(3.9)

^||a(0(log^)Ml| if suppMCl{|f|^f;}.

If s,.<＼t＼^8sthen it follows from (3.8) that
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so that if Q<.X^Xe for a sufficiently small Ae then

(3.10) f'(t), p(t)^X< ons^Ul^.

In fact, if Xe is small enough we have f'(t), /3(O^0U£ for <5s<|£|^;di in view

of (1.12) and (1.13). Note that

＼＼Pxu＼＼z=＼＼Dtu＼＼>+ ＼＼ax(t,x, Dx)Buf

(3.11) +2Re((dtax)Bu, u)

+2Re(axf'(t)＼Dx＼hSl(Wx-$0)u, u)

Since it follows from (3.10) and (1.14) that

ax(t, x,$)^X' on {s^UI^Xsuppi^x, £;,Q

the second term of the right hand side of (3.11) is estimated above from

c^-iifl^Miiiiuii+iiMD^iifl^Mr+c^-'iur.

By means of (3.10) again we have, if suppwc{s^^ Ul^di},

2te(aifV)＼Dx＼hsl(XDx-&)u,u)>Xu~1＼＼HMdu＼＼*-C＼＼u＼＼'.

Therefore, if suppwdis^ Ul^^} then

||P;U||2^^-1||^M≪MJ|8-Cr8'!|M||2,

provided that 0<X^Xe. If e<l/16 and if 0<^minUt, £2)=X'e we have

£!|F,U||2^^-1/2||M||2-Cr2||(l-//205)M||2

(3.12)

if suppMC{s^U|^5x}.

Let X0(t) be C°°(R)such that Z0(0=l for t^O and Xo(t)=Q for ^1. Set <j>±(t)=

X0(±(t±Si)/(sx-tx)) and <p(t)=<p+(t)<f>-(t).The fact that tx-sx^cs/ ＼log X＼ fora

suitable c>0 shows ＼<pu＼t)＼^Cs＼log X＼j O'=l, 2, ･･■, ). It follows from (3.12)

that

IIDP^]≪II2=I1^II2

(3.13)

^CX^-*'{＼＼[_PX, <pfW+＼＼ogX＼＼＼＼Pxuf+X->＼＼{l-H208)ur)}.

Since similar estimates hold with (p replaced by <pU)＼logX＼~j,j=l, 2, ･･･, in view

of u=<p(t)u+(l-(p(t))u, it follows from (3.9) and (3.12) that

(3.14) 16e＼＼Pxu＼＼^＼＼a(t)(logX)u＼＼*-CX-*＼＼a-H20d)u＼＼2.

if 0<^^^. From (3.14), (3.7) and (3.12) we have the desired estimate (1.10)
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because it is trivialfor k'e<X^l by taking a sufficientlylarge Cs in the right

hand side.

4. Proof of Theorem 3

Since
io0=(0,

(0, £0))er it follows from (1.20) that £0i+&(0, 0, &)=0. By

taking the canonical transformation such that £i+6(0, 0, £')-> £t and £'―£' we

may assume that f0―(0, £J),|£J|=1. Because F is of codimension 2 in Char P

it follows from (1.20) and (1.6) that dtb(t, x, £')has the definite sign. Note that

(4.1) (a-ldtq)＼ChaiP{7CTp{t))=dtb{t, x, £').

For each p=(Q, x, (0, ―6(f, Jc,£'),?0)eChar PnF, let f(x, <?')denote the extremal

point in the condition (1.21). Since it follows from (4.1) that Fp(t) in (1.21)

equals (edtb)(t, x, £')for some e(t, x, $')^Cco(RtXRXl; S?,o), we have in a conic

neighborhood of p0

＼(edtb)(t(x,?), x, $')＼<＼(edtb)(s, x, ?)＼^＼(8dtbXt, x, ?)＼

(4.2)

if 0<＼s-t(x, ?)＼<＼t-t(x, ?)＼.

Set B(t,x,?)=＼

t

dtb(s, x, $')ds and take the canonical transformation in

T*(R%), keeping xx variable, such that

$i+b(t(x, I'),x, £0 -+ & (and (0, &)-≫(0,&)) ■

Then £i+fr(f,x, £')is transformed to ^i+60(^, ^, 10 of the form:

(4.3) bo(t,x, %')=5(t, xu 0(x, |0, ^(^, 10) m a small conic neiborhood of p0,

where ^(x, ^)eSJ0, F(x, £')eS1,0. It follows from (4.2) that

(4.4) 17x&0(^ x, $01 + 1Vrfc0(f,̂ , 601 III^C|a^0(f, x, $01･

In fact, for example, the direct calculation gives

＼dXzb0(t,x, %)＼^Cx＼dtb{t{xu x', ?), x', $0l(*'.f)-<*<*.e').y(*.e'))l

(4.5)

+ C≫＼＼ ＼dtdxb(s, xx, x', ^')＼<.X'^')=^u.r->.Wix,^))＼ds

By means of (4,2), the firstterm of the right hand side is estimated above from

C＼dtb0(t,x, $')＼. Because dtb is semi-definite we have ＼dtdX2b＼^C＼dtb＼1/2and

the second term is estimated above from

C|f ＼(edth)(s, x, $')＼ll2ds £C'＼dtb(t, x, £')l1/z

with {%', %')=(0{x, £'),W(x, I'))- Here we have used (4.2) in the last inequality
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As stated in the section 1, it follows from (1.19) that Hamilton vector fields

#!=& and Ha=Hq are transversal to F. In view of (4.4), the fact that

dtbo(0,0,£i)=0 shows that

for any small ≪>0 there exists a d≪>0 such that

i(t,
x,O,$);fi£TDZX.(＼t＼, ＼xl＼)^2Pt, ＼x'＼+

■
§p&|<≪,}nr=0.

In the new variable we shall apply Corollary of Theorem 1, together with Re-

mark 1. For the brevity we write b instead of b0 in what follows. Set <p(x,t-)

=(l-Z(x1/i≪))+(l-/i25(x/))+(l-/i55(^-|o)). Choosing v=2pt/d in Remark 1 of

Corollary we have (1.8). Since Hq(p=a(dXl(p-＼-Hb<p)-＼-(Ha<pX£1+b), in view of

a^O it follows from (4.4) and (1.20) that

IHw^CWixJ^y + adtb/^l+iq/im

on {Ul^^i} xsupp//loog(*, £; X)

because the second term of the right hand side is non-negative by means of

(4.1) and (1.6). Putting a(t, x, £) equal to the right hand side of (4.7), we shall

check (1.10)'. It follows from (4.6) that

(4.8) X-1＼＼Xf(x1/fi)Ht08u＼＼t^CQ＼Piu＼＼t+＼＼u＼＼i).

Setting Qx(t, x, £)=Q(t, x, %)HSl(x, £; X) we have

＼＼Pxu＼＼*=＼＼Dtu＼＼2+＼＼Qx(t,x, Dx)u＼＼*+2Re(Op(dtQx(t, x, £))u,u),

where Op(r) denotes the pseudodifferential operator with symbol r. Since the

principal symbol of dtQx(t. x, £) equals (adtb-＼-(dta/a)q)HSl(x, £; X) it follows

from the Schwartz inequality

＼＼Pxu＼＼^＼＼Dtu＼＼>+＼＼Qi(t,x,Dx)u＼＼V2

(4.9) +2Re(Op(adtbHdl)u> u)-C||uj|2

^＼＼Dtu＼＼*+＼＼Qx(t,x, Dx)u＼＼*/2-C'＼＼u＼＼*.

Noting that (adtb/＼£＼+(q/＼Z＼Y)H＼oS^adtbHdJX+QVX2, by means of the sharp

Garding inequality we have (1.10)' from (4.8) and (4.9), because it follows from

the Poincare inequality that the term ||k||2is absorbed by l|D£ul|2if <5Xis small

enough.
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