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Introduction.

Let P be a classical pseudodifferential operator of order m. We assume P
is of principal type, that is, the Hamilton vector field H, of the principal symbol
» of P is not parallel to the radial direction where the principal symbol p
vanishes. In this paper we study the microhypoellipticity for P, under the fol-
lowing (7) condition given by Nirenberg-Treves [15];

the imaginary part p, of the principal symbol p
(T does not change sign from -+ to — along any oriented
(null-) bicharacteristic of the real part p, of p.

Let us recall that (¥) is necessary for adjoint operator P* of P to be locally
solvable (see Hormander [6; Theorem 26.4.7], cf. Moyer [14]). Since it follows
from the hypoellipticity of P that P* is locally solvable, it is reasonable to
assume the condition (7).

By supplying the missing arguments of Egorov [2], Hormander [5] (see
also [6: Chapter 27]) showed that a pseudodifferential operator P of principal
type is subelliptic (and hence hypoelliptic) if and only if the principal symbol p
of P satisfies (¥) and a finite type assumption ((27.1.8) in [6]). Without the
finite type assumption, the problem of hypoellipticity seems to be difficult. For
example, consider a first-order pseudodifferential operator of Egorov type as
follows :

Py=D;+i(t*D,, +t* x| D}) in RyxXR?, |D|*=D+1D.|?%

where s, k, m are nonnegative integers. For P, condition (T) and the finite

type assumption are expressed as
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s, m even, k odd, s<k.

Then P, is subelliptic with loss of r}(r+l) derivatives (»=/k+m(s+1)) and hence
hypoelliptic. If ¢, ¥, x of P, are replaced by functions infinitely vanishing
then the hypoellipticity of P, is unknown. The aim of the present paper is to
solve this particular problem, but we shall reply only for special cases, unfortu-
nately, because we do not know even whether L? a priori-estimate holds for this
modified F,, in general. Actually, a remarkable counter-example given by
Lerner [10] shows that we can not always expect L® a priori-estimate for
operators satisfying (7).

To end the introduction, we state a few historical remarks: As a perfec-
tion of the preceding results of Nirenberg-Treves [15] in the analytic case or
the finite type case, Beals-Fefferman [1] proved L? a priori-estimate (and hence
local solvability) for pseudodifferential operators of principal type, under condi-
tion (P) (i.e. the imaginary part p, of the principal symbol of P does not
change sign along the bicharacterisitic of the real part p,, which is equivalent
to (¥) for differential operators.) Furthermore, Hérmander [6; Chapter 26
extented the local existence result of [1] to the semi-global one and fully studied
the regularities of solutions for operators, of principal type, satisfying condition
(P). Under condition (¥), L? a priori-estimate for operators in 2-dimension space
was proved by Lerner [8], whoes method also plays an important role in the
present paper.

1. Main results

Let P be a classical pseudodifferential operator on R"*!, of order m, of
principal type, which satisfies the condition (¥). We are interested in the micro-
hypoellipticity of P; that is, for p,&T*R"*)\0, we shall see whether

(1.1) poEWF(Pu) implies p,& WF(u) for Yued'(R**),

We assume p,=Char P because (1.1) is trivial, otherwise, where Char P denotes
the set of characteristic points. Let p=p,+ip, (p., p. real-valued) be the prin-
cipal symbol of P and let /" be a subset of Char P where the Poisson bracket
{1, Do} vanishes. It is known by Homander’s classical theorem [4] (and also
Egorov-Hormander Theorem [6; Theorem 27.1.11]) that (1.1) is true if p,& 1,
because we have a subelliptic estimate with loss of 1/2 derivatives. In what
follows we consider the case where p,=/. We assume that in a conic neigh-
borhood of p,
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(1.2)

I" is contained in a C=-hypersurface in T*(R"*')\0
to which the Hamilton vector field H, of p, is transversal.

After the multiplication by an elliptic factor, we may assume P is of first order.
Furthermore, by homogeneous canonical transformation and Malgrange prepara-
tion theorem we may assume that p,=(0, (0, §))eTH* R, X R\0, (|&|=1), and
the principal symbol p of P is expressed as, in a small conic neighborhood V
of Do

(1.3) p=p@, x, v, §)=t+iglt, x, &),

where ¢(t, x, £)eC*(R, X R X R}) is real valued, positively homogeneous of de-
gree one for |&|=1/2; in particular ¢ satisfies:

1.4 q(t, x, &)=Aq(t, x, E/A), if 1£1=21/2 and 0<<AZ1,

and

(1.5) (DEDSDg), x, &)1 =Cp p x(1+1E]D151,

We may also assume that lower order terms p,, p_;, --- in the symbol of P are

independent of r in a conic neighborhood V of p, (see the paragragh after [6;
Theorem 26.4.7’]). Hence we can write

(1.3 P=D+iQ(t, x, D,) in V,

where the principal symbol of @ is ¢(¢, x, &). In that frame work, condition
(¥) is expressed as

(1.6) q(t, x, §)>0 and s>t imply ¢(s, x, £=0.
Moreover, the set [ is defined by

{t, x, 0, ETHR""\0; duq(t, x, E)=q(t, x, §)=0}
and it follows from assumption (1.2) that

for any p>0 there exists a d,>0 such that

(L.7) l {(t, %, 0, 8); p= <2y, !xH—]é—l —& <5,,}ﬂP:0-

because p,=(0, (0, &NeT.

In order to state a sufficient condition for (1.1), we define a microlocalized
operator of P at p, as follows: Let h(x) be a CH(R™) function such that 0<h
<1, h(x)=1 for |x|=<1/5 and h(x)=0 for |x|=7/24. For a >0 we set hz(x)
=h(x/0) and Hjs(x, &; D)=hs(x)h;(A6—&,), where 0<A<1 is a parameter. Let J,
be a small positive such that the projection of V into R, X R} X R contains
{111 =520,} Xsupp hos (x)hes (AE—E). For a parameter 0<A=1, we set
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Py=Di+ihs (x)Q(t, x, D2)hs(AD—E)=D.+iQ (¢, x, D).

THEOREM 1. Let I' be the above set in Char P and assume (1.2). Let p,=

©, ©, &Nel’ and let P be a pseudodifferential operator of the form (1.3Y in a

conic neighborhood V of p,. Let 8 be a small positive such that 1000< 8, for the

above 8,. Assume that for each & there exist non-negative symbols p(x, &; DESY,

and a(t, x, ) C=(R;; SY ) such that {p(x, &; 2); 0<A<1} is a bounded set of
$ 0 and we have

L.8) { o=1 outside of supp Hss(x, &; )
. =0 on supp Hy(x, §; 2),
(1.9) [(Hop)(t, x, &5 Di=alt, x,§) on {[t]|<0:} Xsupp Higs(x, &; )

and the following estimate: For any £>0 there exists a C.>0 independent of
0<AZ1 such that

luli?+(log ?[at, x, Doull®
sel| Paull*+C(Aull*+A72 (1 — Heos(x, D5 Dull?)

(1.10)

if ueCY([—0y, 0,1; S(R%)). Then we have (1.1).

COROLLARY. The same conclusion of Theorem 1 follows if we replace (1.9)
and (1.10), respectively, by
(L.9y [(Hop)2, x, &; DI*=a(t, x, &) on {|t| =0} Xsupp Hips(x, &; 2

and
full*+(log A)* Re (a(t, x, Du, u)

Se|Prul+ Co(Allul* 4272 (1—Haos(x, Dy ; Hull®).

(1.10)

REMARK 1. The function h{x) in Theorem 1 and Corollary is not necessary
to be homogeneous spatially. For example, we can replace it by h(x,/v)h(x’)
for any vy>0 and for A(x,), h(x’) similar as h(x).

REMARK 2. As criteria of hypoellipticity, logarithmic regularity up esti-
mates were used in Morimoto [11-13]. The simple proof of Theorem 1 in the
present paper is inspired by Kajitani-Wakabayashi [7; Theorem 1.2] (see also
[16]) and Hormander [6; Lemma 26.9.3].

As an application of Theorem 1, we consider a pseudodifferential operator
of principal type which has the following form:

(L.11) P=Di+iat, x, Do) Do)+ (DI D.]),
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in a conic neighborhood V of p,=(0, (0, &)), where a(t, x, ) C=(R,; Si.0), f()
=C* satisfy
(1.12) alt, x, =0, F®O>0 ¢+£0), f/(0)=0.
It follows from (1.12) that P satisfies (7).
THEOREM 2. Let o, be (0, (0, ENETHR™). Let P be of the form (1.11)

in a conic neigborhood of V of p, and satisfy (1.12). Then we have (1.1) if the
following conditions are fulfilled ;

(1.13) Ja(t), BHEC=; BE)>0 (t0), ta'(1)=0,
(1.14) B=alt, x, )=all) in 'V,

(1-15) ]Vra<t) x, E)l+ iVSG(t, X, 5)151 |§(l(t> Z7’l V’
(1.16) lrlrxg ta(t) log f'(t)=0 and

(L.17) ltlrﬁl ta(t) log B(t)=0.

It follows from (1.13) and (1.14) that a(?, x, §)>0 (t#0) and hence we see,
together with (1.12),

I'c {r=t=0}

Consequently we have (1.2) (and hence (1.7)). The operator of the form (1.11)
is infinitely degenerate model corresponding to the case of m=0 in the operator
P, of Egorov type stated in the introduction. We do not know the microhypo-
ellipticity for a simple operator with f(#) in (1.11) replaced by f(t)x}, because of
the difficulty in deriving L? a priori estimate.!

However, if a(t, x, £ in (1.12) does not vanish we can treat infinitely de-
generate model of P, a little more generally. This case is geometrically
stated as

(1.18) H,, H, and the radial direction are linearly independent in V' N\Char P,

which is invariant condition under the multiplication of elliptic factors. If (1.18)
is valid then it follows from condition (¥) that we have the maximal hypo-
elliptic estimate, in a sense of Helffer-Nourrigat [3], as follows;

I Do l*+[Qa(t, x, DJuP< CIPul®+{ull®) (cf., (4.9)).

By means of this estimate, the problem of hypoellipticity for D;+7Q can be
reduced to the similar one for second operator D}+Q? as in [13]. From now

t Some special cases will be studied in the forthcoming paper [17.
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on we shall consider the case corresponding to [13; Theorem 4]. Let [ be a
C> submanifold of codimension 2 in Char P and symplectic, that is,

(1.19) TI'NTT+=0 at every point of [ .

It follows from (1.19) that both H, and H, are transversal to [  because
H,, H,eT(Char P)*CTI*. Hence (1.2) holds and so (1.7). In order to state the
additional condition we have to fix a special coordinate. By a symplectic linear
transformation, it follows from (1.18) that ¢(¢, x, & of (1.3) satisfies 851q(t, x, &)
#0. It follows from the implicit function theorem that there exist a(f, x, §)&
C=(R;; S}, and b(t, x, &)= C(R,; S, such that

(1.20) ot, x, E=a(t, x, E)E b, x, &), alt, x, ©)#0, in V,

where & =(&, -+, ). Let y,(t) be the bicharacteristic of p,=7 through o=
0, x,0, &, &)YeVNChar P, that is, 7, ={ x,0, &, §)}. By setting & =
—b(t, x, &) we define a projection 7y,(f) into Char P of the bicharacteristic.
We assume that

there exist a 6,>0 and a 0+#e(t, x, §) e C(R;; S? )
such that for any p=(0, x, 0, )V NChar P, F,(t)=
(€0:9)| char p(m7,(2) has a unique extremum at t=s(p)
in (—0d,, 9,), and s(p) belongs to C* with respect to p.

(1.2

THEOREM 3. Let p, be (0, (0, &)1 and let P be the form (1.3) and satisfy
(1.18) in a conic neighborhood V of p,. Assume that I is a C>-symplectic sub-
manifold and of codimension 2 in Char P. Then we have (1.1) if the condition
(1.21) holds with ¢(t, x, &) expressed as (1.20).

As a typical example of Theorem 3 we have the following:

bt ¥ T E):r—{—z'{&-}— gtexp—(sz—{—x%)“’”dslél}, 5>0.

2. Proof of Theorem 1

Let y(t) be a CF(R,) function such that 0SX(H<1, X()=1 for [{|<1, X@#)=0
for t|=2. Set O(z, &; w=X(|7!/pl&1X1—=X)X]&|) for a small p>0. For cutting
R? we define the following:

DEerFINITION 1. For >0 and &eR™ (1&]=1) we say that a function (&)
C=(R™) belongs to ¥, if 0<¢=<1 satisfies
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d(&=1 for [£/161—&,1=0/12 and [€|=2/3,
$(&=0 for [£/|61—&,1=0/10 or |£]<1/2,
PE=¢E/D)  for 0<A<1 and |&]=1.

In the proof of the theorem we may assume #<=&’ and hence u belongs to
H_y for an integer N>0. Suppose that p,&WF (Pu). Then for a sufficiently
small x>0 we have

Xt/2u)@ Dy, Dz ; 2p)p (D )b (x)Pu H,

for any real s, where ¢, ()W, . If we set v=X(t/)®(D,, D,; wu then it
follows from (1.7) that gbgﬂ(D,)h(;#(x)PvEHs for a (ﬁa#(E)eU’g#,eo because P is
microhypoelliptic on the intersection of supp h; F(x)gbaﬂ(S) and the support of
derivatives of X(t/p)@(r, &; p). Fix a positive 6 such that 1006< min(d,, 0.).
We shall show ¢s(D,)hs(x)ve H,, which will yield (1.1).

For the above d we take ¢(x, £; 4) in the assumption of the theorem. For
an integer />s+N+1 we denote a pseudodifferential operator with a symbol
Ae=5D by K(x, Dy A). If 2 varies 0<A<1 then K(x, D, ; AH,5(x, D, ; 2) be-
longs to a bounded set of Si . for any small ¢,>0. For any real a, [K(x, D, ; A),
Hys(x, Dy ; A)JA™® belongs to a bounded set of Sr¥-¢-°v because of (1.8).
Furthermore, hio5(x), his(AD.—&p) and K(x, D, ; ) are commutative, each other,
as a product of three factors, neglecting term in A X Sgemen,

Let wes satisfy

(2.1 supp wC {|t| =2p}

and substitute K(x, D,; DHs(x, D,; AHw into (1.10) in place of u. Then
I KHosw|*+(log e, x, D)KHgsw|?

(2.2) =2¢{|h105(AD 2z —&o)h10a()KPw|*+ | His[Q(t, x, D), Kw|?
+CeAI K H ]| *+ 2% w2, - )

because the same commutative argument as above follows for H,,; and KQ by
means of (1.8). Here for real a we have set |w| ¢, o,=|{(1+A)%w|, A*=1+|D,|?
and by this norm we define the space H .. Note that the principal symbol
of [Q, K] is equal to

—il(log A Hyp)A# &5

and symbols of lower orders are a sum of A'/2*!¢(=&2%) multiplied by symbols
in a bounded set of S}, uniformly with respect to 0<A<1. It follows from
(1.9) that
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| Hiool Q(t, x, D), K Jw|*<1*(log APlla(t, x, Do)KHw|*
+CiA KHioswl®+2wlt, -x») .

2.3)

Choose 2¢/2<1, then for a constant C; we have
(1—2eAC)| KHyosw ||
26l h1os(AD ;—Eo)haos(x)K Pw|*+ Ci2%* | w %, -5 -

It follows from (1.8) that Mh,;(le—Eo)h,;(x)wngHKHlogw]\Z—FGMZ“IHwll%o,_m-
Take a 2, satisfying 2,(2¢C,+C.)<1/4. Then for 0<A<4, we have

1 hs(AD &) ha(x)w]?
<de{||h10s(AD z —E)h1os(x)Pw]? 4+ C A= Hw %, - x) -
Multiplying A72(14£4"1)"20*D with a parameter x>0 by both sides, for 0<AZ 4,

we have
| ho(AD »—&)(L+£A)~ D ha(x) w3

<4e()| hros(AD =)L+ A)™ M hyg(x)Pw |34 C A wllto, - x))

because A~' is equivalent to |&] on supp A(A6—&,). Integrate A from 0 to 4,
after dividing both sides by 4. Then by means of [12; Proposition 1.7] we
have for suitable ¢5(&)E¥5.¢, and F5E)E 10s.¢,

[(14+£A)" 4P ds(D ) ha(x)w [, o
SCUIA+£A)DEHD ) h10s(X)Pw o, o H [T, - 3)-
It follows from ueH_y that one can find a sequence {u;} in S satisfying u;—
ucsH_y. If w=X¢/ @D, D.; u; then w,—v in He .y, and Pw;—Pv in

He _vs1y. Letting j—oo in the above estimate with w=w;, in view of PveEH,
we get for £>0

[(A4rA)~ DD ha(x W %o, 0= CUGs(D ) hioa(2)Plli+ [l 2x) .

Making £—0 we see ¢s(D.)hs(x)veH; because v=Xt/ )P (D:, D ; p)u. Thus
we have proved that PueH; at p, implies v H; at p,.

The proof of Corollary is obvious if we replace the term Jla(t, x, D,)KH,zw|?
in (2.2) and (2.3) by Re (a@, x, D)KHypw, KHisw).

3. Proof of Theorem 2

If &Y =1{&+f(0)|&] =0} then the theorem is obvious because g(¢, x, &)=
a(g&,+f(t)|&]) is semi-definite in a small conic neighborhood of p,=(0, (0, &))
and we can apply the result about the propagation of regularities (Hormander
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[6; Proposition 26.6.1]). In what follows we assume &,&2 (though we will
not use this condition). We apply Theorem 1 by setting

o(x, &)=1—hss(x))+(1—hes(AE—E0)) .
Then we have (1.8) and it follows from (1.14) and (1.15) that (1.9) holds with
a(t, x, &)=Ca(t) for a suitable C>0 if ¢ is small enough. The proof of Theo-
rem 2 would be completed if we could show (1.10). Set
(l,{(t, X, E):h51(x>a(t) X, Dx>hg5l(/2Dx““€0).

Let A(t)=a%(t, x, D) denote a pseudodifferential operator with Weyl symbol
a;(@, x, §). Setting B(t) = (D, + (O D;)hs(AD.—E&;) moreover, we consider
A(t), B(t) as a real operator on Hilbert space &= L*R?%). Note that for a fixed
A>0 B(t) is bounded operator in #. If Q.()=1{&;&+F®)|€]>0} and if

S*“)“("):Zé‘lﬁge”**lm<»><$>ﬁ<s>ds, ves, S.(H=I1d—S.¢)

then we can define the sign M(t) of B(t), M(#)=S,(t)—S_(t) and it follows from
(1.12) that

3.1) (M(t)—M(t))t,—1,)=0 on 4.

From this condition we have the following lemma given by Lerner [8; §2]:

LEmMA (Lerner [8, 9]). There exists a 0'>0 independent of 0<AZ1 such
that for any u(@t)eCiR.; %) we have
(3.2 2| Paut] wdtzsup u(t)l if suppuc |t =¥},
where || a=Il"llz2rn).
PROOF. By means of [8; Lemma 2.3.1], it follows from (3.1) that
(3.3) Re {(a(o), MOu@®)wdt=0, u(t):%(t).

If H(¢) denotes Heaviside function then for any T we have

—Re ﬁ(u(z), (H(E—T)S.()— H(T —S_(0)} u(t))sdt
(3.4 =—Re S(d(t), H(t—TYM+Syu(t)+H(T —t)(M—S,)u®))xdt

> Re §<u<z>, {H(—T)S_()— H(T—8)S, (O} u(t)sedt,

where we have used (3.3) in the last inequality. Adding the left hand side of
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(3.4) to both sides of (3.4), we have in view of S,+S_.=Id

—2Re [(a(®), {HE—T)S.(0)—HT =S (O} u(t))xdl

(3.5) =—Re S(u(t), {Ht—T)—H(T =t} u(®))sdt
=21u(T)\%.

It follows from [8; Lemma 2.3.2] that

(3.6) Re (5. Re(AB))Z—%QIIAH”“H[A, BIAILB, [B, A11I,

where |A| denotes the operator norm of A(#) in 4. Note that the right hand
side of (3.6) has the bound independent of A. Since the difference between P;
and D.+: Re (A(t)B(t)) is bounded in 4 uniformly with respect to 0<A<1, in
view of (3.5) and (3.6) there exists a C>0 independent of A such that

Re S(Piu(t), H{HE—T)S.(O)—H(T —t)S_()} u(®))xdt

2 w5~ Cllu@lyat

If suppucC{[t]<d’} then the second term of the right hand side is estimated
above from 2Cd sup|u(t)|%, so that we have (3.2) for a small §’>0 satisfying
4Co' <1,

By means of the Schwartz inequality it follows from (3.2) that
3.7 1Pul=(26") lull  if suppuC {|t|=d"}.
It follows from (1.16) and (1.17) that for any ¢>0 there exists a d.>0 such that
3.8) tat){llog f'(O)|+log B} <e® if [t[=0..

For the sake of simplicity we assume a(t) is even function (the general case
would be clear once we could prove this case), It follows from the monotoness
of a(t) that for a small parameter 1>>0 there exists a unique ¢; >0 such that
tia(ty)|log 2| =2¢. Similarly we choose s;>0 such that s;a(s;)|log A|=e¢. For
a while we assume 1 is sufficently small such that s;<d.. If we set ¢’'=t¢; in
(3.7) then

3.9) del|Pyull = lla@:)log Au|
) >la()(log Dul]  if suppuC {1t|<t;}.

If s;=<|t| <0, then it follows from (3.8) that
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_E_ 4 | < g2
[og 7] {ilog f'()|+llog B} =&%,
so that if 0<A<2, for a sufficiently small A, then

(3.10) /0, =4 on s;<|t|=d,.

In fact, if 4. is small enough we have f'(¢), Bt)=(4.)° for 0.<|t|<d, in view
of (1.12) and (1.13). Note that

[ Paull*=|Deul*+las, x, Dy)Bul?
(3.11) +2 Re ((8:a:)Bu, u)
+2Re (a; 'O Dzl hs)(AD2—Eo)u, u)
Since it follows from (3.10) and (1.14) that
axt, x, £)=2°  on {s;=|t| <0} Xsupp H(x, §; )
the second term of the right hand side of (3.11) is estimated above from
C@sllaBulllul+lul)<laBull*+C a7 ful®.
By means of (3.10) again we have, if suppuC{s;<[t|=0,},
2Re (a: /'O Dyl hs (AD 2 —Eo)u, ) =A% | Hagsrt|*— C llu]|”.
Therefore, if suppuC {s;=|t|<d,} then
I Paul|? = 2% | Haogue P — CA™*l|u 1%,
provided that 0<<A<4A.. If ¢<1/16 and if 0<A< min (4., ¢2)=A4A., we have
el PullPz 27 Juf*— CA7*[(1— Heoa)u||®
(3.12)
if suppucC{s;<|t1<0,}.

Let Z,(t) be C=(R) such that X(£)=1 for t<0 and %()=0 for t=1. Set ¢.(t)=
Xo(E(tts2)/(si—t2) and Pt)=¢.(t)¢p_(t). The fact that 1;—s;=ce/|log 4| for a
suitable ¢>0 shows [¢P(@®)I<C.|log Y (=1, 2, -, ). It follows from (3.12)
that

ICPz, pJul*=[¢'ul?

(3.13)
sCAr{| [P, ¢ Jull*+|log 21*(1 Pane|*+A72)(1— Haos)u %)} -

Since similar estimates hold with ¢ replaced by ¢ |log 4|77, j=1, 2, ---, in view
of u=¢Mu+(1—d®)u, it follows from (3.9) and (3.12) that

(3.14) 16¢|| Prull* =z ||a@)(log Aull*—CA™3||(1— Has)u ll%.
if 0<A<4:.. From (3.14), (3.7) and (3.12) we have the desired estimate (1.10)
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because it is trivial for 1,<<A=<1 by taking a sufficiently large C, in the right
hand side.

4. Proof of Theorem 3

Since p,=(0, (0, &)l it follows from (1.20) that &,+6(0, 0, £&)=0. By
taking the canonical transformation such that & 450, 0, &) — &, and & —§ we
may assume that &=(0, &), |&i|=1. Because I" is of codimension 2 in Char P
it follows from (1.20) and (1.6) that a.b(t, x, &) has the definite sign. Note that

4.1 (@710 | char (77 o()) =002, %, &)

For each p=(0, x, (0, —b(t, x, &), &))eChar PNV, let t(x, §) denote the extremal
point in the condition (1.21). Since it follows from (4.1) that F,() in (1.21)
equals (¢9.b)(¢, x, &) for some &, x, &)eC*(R:XR,,; S},), we have in a conic
neighborhood of p,
|(20:b)(#(x, &), x, &)| <|(80:b)(s, x, &) < |(80:b)¢, x, &)
if 0<|s—t(x, &)< |t—tx, &)].

4.2)

Set b(t, x, 5/):S:(I.€,)atb(s, x, &)ds and take the canonical transformation in
T*(R?%), keeping x, variable, such that

&i+bt(x, &), x, &) —>&  (and (0, §0)—(0, &0)) .
Then &,+b(t, x, &) is transformed to & +by(t, x, &) of the form:
4.3) bo(t, x, £)V=b(t, x,, D(x, &), ¥(x, £&)) in a small conic neiborhood of p,,
where @(x, £)eS8), ¥(x, &)eSi,. It follows from (4.2) that
44 |Vabolt, x, €)1+ 1Verbo(t, x, §)11§1=ClAubo(t, x, €)1

In fact, for example, the direct calculation gives

102,b0(t, %, EN S C110:b(t(x1, %', &), %75 ) aren=0z.61. ¥ 260

(4.5)
+C,

t
gul sl)lazang(& Xy, x, 5')\(x'.e')=<di(x.5').Uf(x,e'))1d$ .

By means of (4,2), the first term of the right hand side is estimated above from
C|0:bo(t, %, &)|. Because 9,0 is semi-definite we have |0.0,,b|<C|d,b|"* and
the second term is estimated above from

C|f]. . .. 100bXs, x, &)1 ds | <C 10, x, €)1
t(z.§"

with (x/, &)=(D(x, &), ¥(x, &)). Here we have used (4.2) in the last inequality.
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As stated in the section 1, it follows from (1.19) that Hamilton vector fields
H,=d, and H,=H, are transversal to I'. In view of (4.4), the fact that
0:b,(0, 0, £5)=0 shows that

for any small £>0 there exists a d,>0 such that

(4.6) {(t, x, 0, &); p=max(|t|, |x:)=2p, WlH%—gu

<8,AI'=0.

In the new variable we shall apply Corollary of Theorem 1, together with Re-
mark 1. For the brevity we write b instead of b, in what follows. Set ¢(x, &)
=1—X(x:/ )+ (L—has(x")+(1—hss(AE—&)). Choosing y=2p/6 in Remark 1 of
Corollary we have (1.8). Since Hyp=a(0.,0+Hp)+(Hap)é:1+b), in view of
a#0 it follows from (4.4) and (1.20) that

| Hyp |2 C((X' (x1/ ) +a0:b/ 161 +(g/ 1§D
on {|¢]<8,} Xsupp Hies(%, §; A)

4.7

because the second term of the right hand side is non-negative by means of
(4.1) and (1.6). Putting a(t, x, &) equal to the right hand side of (4.7), we shall
check (1.10). It follows from (4.6) that

(4.8 7YX (/) Haosu P CUNPau 1P+ [lue]|®) -
Setting Q.(, x, £)=Q(, x, &)H; (x, §; 4) we have
|Pyu)*=| D P +[Qa(t, %, D)ull*4+2 Re (0p(@:Q.(t, X, E))u, 1),
where Op(r) denotes the pseudodifferential operator with symbol 7. Since the
principal symbol of 8.Q;(t. x, & equals (ad:b-+(d.a/a)g)H; (%, &; A) it follows
from the Schwartz inequality
[ Pyul?= | Dol *+1Qa(t, x, Do)uil®/2
4.9 +2 Re (O p(ad:bHs)u, u)—Cilu|®
Z[|DeulP+1Q @, x, D)ul®/2—C'llulf®.

Noting that (ad:b/|&|+(q/|€1))Hbw< a0.bH; /2+Q3/4*, by means of the sharp
Garding inequality we have (1.10) from (4.8) and (4.9), because it follows from
the Poincaré inequality that the term |u|? is absorbed by |D.ul?® if 4, is small
enough.
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