HYPOELLIPTIC OPERATORS OF PRINCIPAL TYPE WITH INFINITE DEGENERACY

Dedicated to Professor Hiroki Tanabe on his sixtieth birthday in 1992

By
Yoshinori Morimoto*

Introduction.

Let P be a classical pseudodifferential operator of order m. We assume P is of principal type, that is, the Hamilton vector field H_{p} of the principal symbol p of P is not parallel to the radial direction where the principal symbol p vanishes. In this paper we study the microhypoellipticity for P, under the following $(\bar{\Psi})$ condition given by Nirenberg-Treves [15];

$$
\left\{\begin{array}{l}
\text { the imaginary part } p_{2} \text { of the principal symbol } p \\
\text { does not change sign from }+ \text { to }- \text { along any oriented } \tag{T}\\
\text { (null-) bicharacteristic of the real part } p_{1} \text { of } p .
\end{array}\right.
$$

Let us recall that $(\bar{\Psi})$ is necessary for adjoint operator P^{*} of P to be locally solvable (see Hörmander [6; Theorem 26.4.7], cf. Moyer [14]). Since it follows from the hypoellipticity of P that P^{*} is locally solvable, it is reasonable to assume the condition (\bar{Y}).

By supplying the missing arguments of Egorov [2], Hörmander [5] (see also [6; Chapter 27]) showed that a pseudodifferential operator P of principal type is subelliptic (and hence hypoelliptic) if and only if the principal symbol p of P satisfies $(\bar{\Psi})$ and a finite type assumption ((27.1.8) in [6]). Without the finite type assumption, the problem of hypoellipticity seems to be difficult. For example, consider a first-order pseudodifferential operator of Egorov type as follows:

$$
P_{0}=D_{t}+i\left(t^{s} D_{x_{1}}+t^{k} x_{1}^{m}|D|\right) \quad \text { in } \boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n},|D|^{2}=D_{t}^{2}+\left|D_{x}\right|^{2},
$$

where s, k, m are nonnegative integers. For P_{0}, condition $(\bar{\Psi})$ and the finite type assumption are expressed as

[^0]$$
s, m \text { even, } k \text { odd, } s<k .
$$

Then P_{0} is subelliptic with loss of $r /(r+1)$ derivatives $(r=k+m(s+1))$ and hence hypoelliptic. If t^{s}, t^{k}, x_{1}^{m} of P_{0} are replaced by functions infinitely vanishing then the hypoellipticity of P_{0} is unknown. The aim of the present paper is to solve this particular problem, but we shall reply only for special cases, unfortunately, because we do not know even whether L^{2} a priori-estimate holds for this modified P_{0}, in general. Actually, a remarkable counter-example given by Lerner [10] shows that we can not always expect L^{2} a priori-estimate for operators satisfying $(\bar{\Psi})$.

To end the introduction, we state a few historical remarks: As a perfection of the preceding results of Nirenberg-Treves [15] in the analytic case or the finite type case, Beals-Fefferman [1] proved L^{2} a priori-estimate (and hence local solvability) for pseudodifferential operators of principal type, under condition (P) (i.e. the imaginary part p_{2} of the principal symbol of P does not change sign along the bicharacterisitic of the real part p_{1}, which is equivalent to $(\bar{\Psi})$ for differential operators.) Furthẹrmore, Hörmander [6; Chapter 26] extented the local existence result of [1] to the semi-global one and fully studied the regularities of solutions for operators, of principal type, satisfying condition (P). Under condition $(\bar{\Psi}), L^{2}$ a priori-estimate for operators in 2-dimension space was proved by Lerner [8], whoes method also plays an important role in the present paper.

1. Main results

Let P be a classical pseudodifferential operator on \boldsymbol{R}^{n+1}, of order m, of principal type, which satisfies the condition $(\bar{\Psi})$. We are interested in the microhypoellipticity of P; that is, for $\rho_{0} \in T^{*}\left(\boldsymbol{R}^{n+1}\right) \backslash 0$, we shall see whether

$$
\begin{equation*}
\rho_{0} \notin \mathrm{WF}(P u) \text { implies } \rho_{0} \notin \mathrm{WF}(u) \quad \text { for } \forall u \in \mathscr{D}^{\prime}\left(\boldsymbol{R}^{n+1}\right) \text {. } \tag{1.1}
\end{equation*}
$$

We assume $\rho_{0} \in$ Char P because (1.1) is trivial, otherwise, where Char P denotes the set of characteristic points. Let $p=p_{1}+i p_{2}$ (p_{1}, p_{2} real-valued) be the principal symbol of P and let Γ be a subset of Char P where the Poisson bracket $\left\{p_{1}, p_{2}\right\}$ vanishes. It is known by Hömander's classical theorem [4] (and also Egorov-Hörmander Theorem [6; Theorem 27.1.11]) that (1.1) is true if $\rho_{0} \notin \Gamma$, because we have a subelliptic estimate with loss of $1 / 2$ derivatives. In what follows we consider the case where $\rho_{0} \in \Gamma$. We assume that in a conic neighborhood of ρ_{0}

$$
\left\{\begin{array}{l}
\Gamma \text { is contained in a } C^{\infty} \text {-hypersurface in } T^{*}\left(\boldsymbol{R}^{n+1}\right) \backslash 0 \tag{1.2}\\
\text { to which the Hamilton vector field } H_{1} \text { of } p_{1} \text { is transversal. }
\end{array}\right.
$$

After the multiplication by an elliptic factor, we may assume P is of first order. Furthermore, by homogeneous canonical transformation and Malgrange preparation theorem we may assume that $\rho_{0}=\left(0,\left(0, \xi_{0}\right)\right) \in T^{*}\left(\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n}\right) \backslash 0,\left(\left|\xi_{0}\right|=1\right)$, and the principal symbol p of P is expressed as, in a small conic neighborhood V of ρ_{0},

$$
\begin{equation*}
p=p(t, x, \tau, \xi)=\tau+i q(t, x, \xi), \tag{1.3}
\end{equation*}
$$

where $q(t, x, \xi) \in C^{\infty}\left(\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n} \times \boldsymbol{R}_{\xi}^{n}\right)$ is real valued, positively homogeneous of degree one for $|\xi| \geqq 1 / 2$; in particular q satisfies:

$$
\begin{equation*}
q(t, x, \xi)=\lambda q(t, x, \xi / \lambda), \quad \text { if }|\xi| \geqq 1 / 2 \text { and } 0<\lambda \leqq 1, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(D_{i}^{k} D_{x}^{\alpha} D_{\xi 亏 \beta}^{\beta} q\right)(t, x, \xi)\right| \leqq C_{\alpha, \beta, k}(1+|\xi|)^{1-|\hat{f}|} . \tag{1.5}
\end{equation*}
$$

We may also assume that lower order terms p_{0}, p_{-1}, \cdots in the symbol of P are independent of τ in a conic neighborhood V of ρ_{0} (see the paragragh after [6; Theorem 26.4.7 ${ }^{\prime}$]). Hence we can write

$$
\begin{equation*}
P=D_{t}+i Q\left(t, x, D_{x}\right) \quad \text { in } V, \tag{1.3}
\end{equation*}
$$

where the principal symbol of Q is $q(t, x, \xi)$. In that frame work, condition $(\bar{\Psi})$ is expressed as

$$
\begin{equation*}
q(t, x, \xi)>0 \text { and } s>t \text { imply } q(s, x, \xi) \geqq 0 . \tag{1.6}
\end{equation*}
$$

Moreover, the set Γ is defined by

$$
\left\{(t, x, 0, \xi) \in T^{*}\left(\boldsymbol{R}^{n+1}\right) \backslash 0 ; \partial_{t} q(t, x, \xi)=q(t, x, \xi)=0\right\}
$$

and it follows from assumption (1.2) that

$$
\left\{\begin{array}{l}
\text { for any } \mu>0 \text { there exists a } \delta_{\mu}>0 \text { such that } \tag{1.7}\\
\left\{(t, x, 0, \xi) ; \mu \leqq|t| \leqq 2 \mu, \quad|x|+\left|\frac{\xi}{|\xi|}-\xi_{0}\right|<\delta_{\mu}\right\} \cap \Gamma=0 .
\end{array}\right.
$$

because $\rho_{0}=\left(0,\left(0, \xi_{0}\right)\right) \in \Gamma$.
In order to state a sufficient condition for (1.1), we define a microlocalized operator of P at ρ_{0} as follows: Let $h(x)$ be a $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ function such that $0 \leqq h$ $\leqq 1, h(x)=1$ for $|x| \leqq 1 / 5$ and $h(x)=0$ for $|x| \geqq 7 / 24$. For a $\delta>0$ we set $h_{\delta}(x)$ $=h(x / \delta)$ and $H_{\delta}(x, \xi ; \lambda)=h_{\hat{\delta}}(x) h_{\dot{\delta}}\left(\lambda \xi-\xi_{0}\right)$, where $0<\lambda \leqq 1$ is a parameter. Let δ_{1} be a small positive such that the projection of V into $\boldsymbol{R}_{t} \times \boldsymbol{R}_{x}^{n} \times \boldsymbol{R}_{\xi}^{n}$ contains $\left\{|t| \leqq 2 \delta_{1}\right\} \times \operatorname{supp} h_{2 \bar{\sigma}_{1}}(x) h_{2 \delta_{1}}\left(\lambda \xi-\xi_{0}\right)$. For a parameter $0<\lambda \leqq 1$, we set

$$
P_{\lambda}=D_{t}+i h_{\delta_{1}}(x) Q\left(t, x, D_{x}\right) h_{\delta_{1}}\left(\lambda D_{x}-\xi_{0}\right) \equiv D_{t}+i Q_{\lambda}\left(t, x, D_{x}\right)
$$

THEOREM 1. Let Γ be the above set in Char P and assume (1.2). Let $\rho_{0}=$ $\left(0,\left(0, \xi_{0}\right)\right) \in \Gamma$ and let P be a pseudodifferential operator of the form (1.3)' in a conic neighborhood V of ρ_{0}. Let δ be a small positive such that $100 \delta<\delta_{1}$ for the above $\boldsymbol{\delta}_{1}$. Assume that for each δ there exist non-negative symbols $\varphi(x, \xi ; \lambda) \in S_{1,0}^{0}$ and $\alpha(t, x, \xi) \in C^{\infty}\left(\boldsymbol{R}_{t} ; S_{1,0}^{0}\right)$ such that $\{\varphi(x, \xi ; \lambda) ; 0<\lambda \leqq 1\}$ is a bounded set of $S_{1,0}^{0}$ and we have

$$
\begin{gather*}
\left\{\begin{array}{l}
\varphi \geqq 1 \text { outside of } \operatorname{supp} H_{5 \delta}(x, \xi ; \lambda) \\
\varphi=0 \text { on } \operatorname{supp} H_{\delta}(x, \xi ; \lambda)
\end{array}\right. \tag{1.8}\\
\left|\left(H_{q} \varphi\right)(t, x, \xi ; \lambda)\right| \leqq \alpha(t, x, \xi) \text { on }\left\{|t| \leqq \delta_{1}\right\} \times \operatorname{supp} H_{100 \delta}(x, \xi ; \lambda) \tag{1.9}
\end{gather*}
$$

and the following estimate: For any $\varepsilon>0$ there exists a $C_{\varepsilon}>0$ independent of $0<\lambda \leqq 1$ such that

$$
\begin{align*}
& \|u\|^{2}+(\log \lambda)^{2}\left\|\alpha\left(t, x, D_{x}\right) u\right\|^{2} \\
& \leqq \varepsilon\left\|P_{\lambda} u\right\|^{2}+C_{\varepsilon}\left(\lambda\|u\|^{2}+\lambda^{-2} \|\left(1-H_{20 \delta}\left(x, D_{x} ; \lambda\right) u \|^{2}\right)\right. \tag{1.10}
\end{align*}
$$

if $u \in C_{0}^{\infty}\left(\left[-\delta_{1}, \delta_{1}\right] ; \mathcal{S}\left(\boldsymbol{R}_{x}^{n}\right)\right)$. Then we have (1.1).
Corollary. The same conclusion of Theorem 1 follows if we replace (1.9) and (1.10), respectively, by
$(1.9)^{\prime} \quad\left|\left(H_{q} \varphi\right)(t, x, \xi ; \lambda)\right|^{2} \leqq \alpha(t, x, \xi) \quad$ on $\left\{|t| \leqq \delta_{1}\right\} \times \operatorname{supp} H_{100 \delta}(x, \xi ; \lambda)$
and
$(1.10)^{\prime}$

$$
\begin{aligned}
& \|u\|^{2}+(\log \lambda)^{2} \operatorname{Re}\left(\alpha\left(t, x, D_{x}\right) u, u\right) \\
& \leqq \varepsilon\left\|P_{\lambda} u\right\|^{2}+C_{\varepsilon}\left(\lambda\|u\|^{2}+\lambda^{-2} \|\left(1-H_{20 \hat{\delta}}\left(x, D_{x} ; \lambda\right) u \|^{2}\right)\right.
\end{aligned}
$$

Remark 1. The function $h(x)$ in Theorem 1 and Corollary is not necessary to be homogeneous spatially. For example, we can replace it by $h\left(x_{1} / \nu\right) h\left(x^{\prime}\right)$ for any $\nu>0$ and for $h\left(x_{1}\right), h\left(x^{\prime}\right)$ similar as $h(x)$.

REMARK 2. As criteria of hypoellipticity, logarithmic regularity up estimates were used in Morimoto [11-13]. The simple proof of Theorem 1 in the present paper is inspired by Kajitani-Wakabayashi [7; Theorem 1.2] (see also [16]) and Hörmander [6; Lemma 26.9.3].

As an application of Theorem 1, we consider a pseudodifferential operator of principal type which has the following form:

$$
\begin{equation*}
P=D_{t}+i a\left(t, x, D_{x}\right)\left(D_{x_{1}}+f(t)\left|D_{x}\right|\right) \tag{1.11}
\end{equation*}
$$

in a conic neighborhood V of $\rho_{0}=\left(0,\left(0, \xi_{0}\right)\right)$, where $a(t, x, \xi) \in C^{\infty}\left(\boldsymbol{R}_{t} ; S_{1,0}^{0}\right), f(t)$ $\in C^{\infty}$ satisfy

$$
\begin{equation*}
a(t, x, \xi) \geqq 0, \quad f^{\prime}(t)>0(t \neq 0), \quad f^{\prime}(0)=0 . \tag{1.12}
\end{equation*}
$$

It follows from (1.12) that P satisfies $(\bar{\Psi})$.
Theorem 2. Let ρ_{0} be $\left(0,\left(0, \xi_{0}\right)\right) \in T^{*}\left(\boldsymbol{R}^{n+1}\right)$. Let P be of the form (1.11) in a conic neigborhood of V of ρ_{0} and satisfy (1.12). Then we have (1.1) if the following conditions are fulfilled;

$$
\begin{gather*}
\exists \alpha(t), \beta(t) \in C^{\infty} ; \beta(t)>0(t \neq 0), t \alpha^{\prime}(t) \geqq 0, \tag{1.13}\\
\beta(t) \leqq a(t, x, \xi) \leqq \alpha(t) \quad \text { in } V, \tag{1.1.1}\\
\left|\nabla_{x} a(t, x, \xi)\right|+\left|\nabla_{\xi} a(t, x, \xi)\right| \xi| | \leqq a(t) \text { in } V, \tag{1.15}\\
\lim _{t \rightarrow 0} t \alpha(t) \log f^{\prime}(t)=0 \text { and } \tag{1.16}\\
\lim _{t \rightarrow 0} t \alpha(t) \log \beta(t)=0 . \tag{1.17}
\end{gather*}
$$

It follows from (1.13) and (1.14) that $a(t, x, \xi)>0(t \neq 0)$ and hence we see, together with (1.12),

$$
\Gamma \subset\{\tau=t=0\}
$$

Consequently we have (1.2) (and hence (1.7)). The operator of the form (1.11) is infinitely degenerate model corresponding to the case of $m=0$ in the operator P_{0} of Egorov type stated in the introduction. We do not know the microhypoellipticity for a simple operator with $f(t)$ in (1.11) replaced by $f(t) x_{1}^{2}$, because of the difficulty in deriving L^{2} a priori estimate. ${ }^{\dagger}$

However, if $a(t, x, \xi)$ in (1.12) does not vanish we can treat infinitely degenerate model of P_{0} a little more generally. This case is geometrically stated as
(1.18) $\quad H_{1}, H_{2}$ and the radial direction are linearly independent in $V \cap$ Char P, which is invariant condition under the multiplication of elliptic factors. If (1.18) is valid then it follows from condition $(\bar{\Psi})$ that we have the maximal hypoelliptic estimate, in a sense of Helffer-Nourrigat [3], as follows;

$$
\left\|D_{t} u\right\|^{2}+\left\|Q_{\lambda}\left(t, x, D_{x}\right) u\right\|^{2} \leqq C\left(\left\|P_{\lambda} u\right\|^{2}+\|u\|^{2}\right) \quad \text { (cf., (4.9)) } .
$$

By means of this estimate, the problem of hypoellipticity for $D_{t}+i Q$ can be reduced to the similar one for second operator $D_{t}^{2}+Q^{2}$ as in [13]. From now

[^1]on we shall consider the case corresponding to [13: Theorem 4]. Let I ' be a C^{∞} submanifold of codimension 2 in Char P and symplectic, that is,
\[

$$
\begin{equation*}
T \Gamma \cap T \Gamma^{\perp}=0 \text { at every point of } \Gamma . \tag{1.19}
\end{equation*}
$$

\]

It follows from (1.19) that both H_{1} and H_{2} are transversal to Γ because $H_{1}, H_{2} \in T(\text { Char } P)^{\perp} \subset T \Gamma^{\perp}$. Hence (1.2) holds and so (1.7). In order to state the additional condition we have to fix a special coordinate. By a symplectic linear transformation, it follows from (1.18) that $q(t, x, \xi)$ of (1.3) satisfies $\partial_{\xi_{1}} q(t, x, \xi)$ $\neq 0$. It follows from the implicit function theorem that there exist $a(t, x, \xi) \in$ $C^{\infty}\left(\boldsymbol{R}_{t} ; S_{1,0}^{0}\right)$ and $b\left(t, x, \xi^{\prime}\right) \in C\left(\boldsymbol{R}_{t} ; S_{1,0}^{1}\right)$ such that

$$
\begin{equation*}
q(t, x, \xi)=a(t, x, \xi)\left(\xi_{1}+b\left(t, x, \xi^{\prime}\right)\right), \quad a(t, x, \xi) \neq 0, \quad \text { in } V, \tag{1.20}
\end{equation*}
$$

where $\xi^{\prime}=\left(\xi_{2}, \cdots, \xi_{n}\right)$. Let $\gamma_{\rho}(t)$ be the bicharacteristic of $p_{1}=\tau$ through $\rho=$ $\left(0, x, 0, \xi_{1}, \xi^{\prime}\right) \in V \cap \operatorname{Char} P$, that is, $\gamma_{\rho}(t)=\left\{\left(t, x, 0, \xi_{1}, \xi^{\prime}\right)\right\}$. By setting $\xi_{1}=$ $-b\left(t, x, \xi^{\prime}\right)$ we define a projection $\pi \gamma_{\rho}(t)$ into Char P of the bicharacteristic. We assume that
$\left\{\begin{array}{l}\text { there exist a } \delta_{0}>0 \text { and a } 0 \neq e(t, x, \xi) \in C^{\infty}\left(\boldsymbol{R}_{t} ; S_{1,0}^{0}\right) \\ \text { such that for any } \rho=(0, x, 0, \xi) \in V \cap \operatorname{Char} P, F_{\rho}(t) \equiv \\ \left(e \partial_{t} q\right) \mid \text { Char } p\left(\pi \gamma_{0}(t)\right) \text { has a unique extremum at } t=s(\rho) \\ \text { in }\left(-\delta_{0}, \delta_{0}\right), \text { and } s(\rho) \text { belongs to } C^{\infty} \text { with respect to } \rho .\end{array}\right.$
Theorem 3. Let ρ_{0} be $\left(0,\left(0, \xi_{0}\right)\right) \in \Gamma$ and let P be the form (1.3) $)^{\prime}$ and satisfy (1.18) in a conic neighborhood V of ρ_{0}. Assume that Γ is a C^{∞}-symplectic submanifold and of codimension 2 in Char P. Then we have (1.1) if the condition (1.21) holds with $q(t, x, \xi)$ expressed as (1.20).

As a typical example of Theorem 3 we have the following:

$$
p(t, x, \tau, \xi)=\tau+i\left\{\xi_{1}+\int_{0}^{t} \exp -\left(s^{2}+x_{1}^{2}\right)^{-\hat{o} / 2} d s|\xi|\right\}, \quad \delta>0 .
$$

2. Proof of Theorem 1

Let $\chi(t)$ be a $C_{0}^{\infty}\left(\boldsymbol{R}_{t}\right)$ function such that $0 \leqq \chi(t) \leqq 1, \chi(t)=1$ for $|t| \leqq 1, \chi(t)=0$ for $|t| \geqq 2$. Set $\Phi(\tau, \xi ; \mu)=\chi(|\tau| / \mu|\xi|)(1-\chi)(|\xi|)$ for a small $\mu>0$. For cutting \boldsymbol{R}_{ξ}^{n} we define the following:

Definition 1. For $\delta>0$ and $\xi_{0} \in \boldsymbol{R}^{n} \quad\left(\left|\xi_{0}\right|=1\right)$ we say that a function $\phi(\xi) \in$ $C^{\infty}\left(\boldsymbol{R}^{n}\right)$ belongs to $\Psi_{\grave{\partial}, \xi_{0}}$ if $0 \leqq \phi \leqq 1$ satisfies

$$
\begin{cases}\psi(\xi)=1 & \text { for }\left|\xi /|\xi|-\xi_{0}\right| \leqq \delta / 12 \text { and }|\xi| \geqq 2 / 3 \\ \psi(\xi)=0 & \text { for }\left|\xi /|\xi|-\xi_{0}\right| \geqq \delta / 10 \text { or }|\xi| \leqq 1 / 2 \\ \psi(\xi)=\psi(\xi / \lambda) & \text { for } 0<\lambda \leqq 1 \text { and }|\xi| \geqq 1\end{cases}
$$

In the proof of the theorem we may assume $u \in \mathcal{E}^{\prime}$ and hence u belongs to H_{-N} for an integer $N>0$. Suppose that $\rho_{0} \notin \mathrm{WF}(P u)$. Then for a sufficiently small $\mu>0$ we have

$$
\chi(t / 2 \mu) \Phi\left(D_{t}, D_{x} ; 2 \mu\right) \psi_{\mu}\left(D_{x}\right) h_{\mu}(x) P u \in H_{s}
$$

for any real s, where $\psi_{\mu}(\xi) \in \Psi_{\mu, \xi_{0}}$. If we set $v=\chi(t / \mu) \Phi\left(D_{t}, D_{x} ; \mu\right) u$ then it follows from (1.7) that $\psi_{\hat{o}_{\mu}}\left(D_{x}\right) h_{\delta_{\mu}}(x) P v \in H_{s}$ for a $\phi_{\hat{o}_{\mu}}(\xi) \in \Psi_{\delta_{\mu}, \xi_{0}}$ because P is microhypoelliptic on the intersection of supp $h_{\delta_{\mu}}(x) \psi_{\delta_{\mu}}(\xi)$ and the support of derivatives of $\chi(t / \mu) \Phi(\tau, \xi ; \mu)$. Fix a positive δ such that $100 \delta<\min \left(\delta_{\mu}, \delta_{1}\right)$. We shall show $\psi_{\delta}\left(D_{x}\right) h_{\hat{\delta}}(x) v \in H_{s}$, which will yield (1.1).

For the above δ we take $\varphi(x, \xi ; \lambda)$ in the assumption of the theorem. For an integer $l>s+N+1$ we denote a pseudodifferential operator with a symbol $\lambda^{l \varphi(x, \xi ; \lambda)}$ by $K\left(x, D_{x} ; \lambda\right)$. If λ varies $0<\lambda \leqq 1$ then $K\left(x, D_{x} ; \lambda\right) H_{10 \delta}\left(x, D_{x} ; \lambda\right)$ belongs to a bounded set of $S_{1, \varepsilon_{1}}^{0}$ for any small $\varepsilon_{1}>0$. For any real a, $\left[K\left(x, D_{x} ; \lambda\right)\right.$, $\left.H_{10 \delta}\left(x, D_{x} ; \lambda\right)\right] \lambda^{-a}$ belongs to a bounded set of $S_{1,0}^{-\left(t-a-\varepsilon_{1}\right)}$ because of (1.8). Furthermore, $h_{10 \delta}(x), h_{10 \delta}\left(\lambda D_{x}-\xi_{0}\right)$ and $K\left(x, D_{x} ; \lambda\right)$ are commutative, each other, as a product of three factors, neglecting term in $\lambda^{a} \times S_{1,0}^{-\left(t-a-s_{1}\right)}$.

Let $w \in \mathcal{S}$ satisfy

$$
\begin{equation*}
\text { supp } w \subset\{|t| \leqq 2 \mu\} \tag{2.1}
\end{equation*}
$$

and substitute $K\left(x, D_{x} ; \lambda\right) H_{100}\left(x, D_{x} ; \lambda\right) w$ into (1.10) in place of u. Then

$$
\begin{align*}
& \left\|K H_{10 \delta} w\right\|^{2}+(\log \lambda)^{2}\left\|\alpha\left(t, x, D_{x}\right) K H_{10 \delta} w\right\|^{2} \\
& \leqq 2 \varepsilon\left\{\left\|h_{100}\left(\lambda D_{x}-\xi_{0}\right) h_{10 \delta}(x) K P w\right\|^{2}+\left\|H_{10 \delta}\left[Q\left(t, x, D_{x}\right), K\right] w\right\|^{2}\right\} \tag{2.2}\\
& +C_{s}\left(\lambda\left\|K H_{10 \delta} w\right\|^{2}+\lambda^{2 s+1}\|w\|_{(0,-N)}^{2}\right)
\end{align*}
$$

because the same commutative argument as above follows for $H_{10 \delta}$ and $K Q$ by means of (1.8). Here for real a we have set $\|w\|_{(0, a)}=\left\|(1+\Lambda)^{a} w\right\|, \Lambda^{2}=1+\left|D_{x}\right|^{2}$ and by this norm we define the space $H_{(0, a)}$. Note that the principal symbol of $[Q, K]$ is equal to

$$
-i l(\log \lambda)\left(H_{q} \varphi\right) \lambda^{l \varphi(x, \xi ; \lambda)}
$$

and symbols of lower orders are a sum of $\lambda^{1 / 2+l \varphi(x, \xi ; \lambda)}$ multiplied by symbols in a bounded set of $S_{1,0}^{0}$ uniformly with respect to $0<\lambda \leqq 1$. It follows from (1.9) that

$$
\begin{align*}
\left\|H_{10 \delta}\left[Q\left(t, x, D_{x}\right), K\right] w\right\|^{2} & \leqq l^{2}(\log \lambda)^{2}\left\|\alpha\left(t, x, D_{x}\right) K H_{10 \delta} w\right\|^{2} \\
& +C_{l}\left(\lambda\left\|K H_{10 \delta} w\right\|^{2}+\lambda^{2 s+1}\|w\|_{(0,-N)}^{2}\right) \tag{2.3}
\end{align*}
$$

Choose $2 \varepsilon l^{2}<1$, then for a constant C_{l}^{\prime} we have

$$
\begin{aligned}
& \left(1-2 \varepsilon \lambda C_{l}\right)\left\|K H_{10 \delta} w\right\|^{2} \\
& \leqq 2 \varepsilon\left\|h_{100}\left(\lambda D_{x}-\xi_{0}\right) h_{10 \delta}(x) K P w\right\|^{2}+C_{l}^{\prime} \lambda^{2 s+1}\|w\|_{(0,-N)}^{2} .
\end{aligned}
$$

It follows from (1.8) that $\left\|h_{\hat{\delta}}\left(\lambda D_{x}-\xi_{0}\right) h_{\delta}(x) w\right\|^{2} \leqq\left\|K H_{100} w\right\|^{2}+\tilde{C}_{l} \lambda^{2 s+1}\|w\|_{(0,-N)}^{2}$. Take a λ_{0} satisfying $\lambda_{0}\left(2 \varepsilon C_{l}+C_{\varepsilon}\right)<1 / 4$. Then for $0<\lambda \leqq \lambda_{0}$ we have

$$
\begin{aligned}
& \left\|h_{\delta}\left(\lambda D_{x}-\xi_{0}\right) h_{\delta}(x) w\right\|^{2} \\
& \leqq 4 \varepsilon\left\{\left\|h_{10 \delta}\left(\lambda D_{x}-\xi_{0}\right) h_{10 \delta}(x) P w\right\|^{2}+C_{l}^{\prime \prime} \lambda^{2 s+1}\|w\|_{(0,-N)}^{2}\right) .
\end{aligned}
$$

Multiplying $\lambda^{-2 s}\left(1+\kappa \lambda^{-1}\right)^{-2(l+1)}$ with a parameter $\kappa>0$ by both sides, for $0<\lambda \leqq \lambda_{0}$ we have

$$
\begin{aligned}
& \left\|h_{\delta}\left(\lambda D_{x}-\xi_{0}\right)(1+\kappa \Lambda)^{-(l+1)} h_{\delta}(x) w\right\|_{s}^{2} \\
& \leqq 4 \varepsilon\left(\left\|h_{100}\left(\lambda D_{x}-\xi_{0}\right)(1+\kappa \Lambda)^{-(l+1)} h_{10}(x) P w\right\|_{s}^{2}+C_{l}^{\prime \prime} \lambda\|w\|_{(0,-N)}^{2}\right)
\end{aligned}
$$

because λ^{-1} is equivalent to $|\xi|$ on $\operatorname{supp} h\left(\lambda \xi-\xi_{0}\right)$. Integrate λ from 0 to λ_{0} after dividing both sides by λ. Then by means of [12; Proposition 1.7] we have for suitable $\psi_{\partial}(\xi) \in \Psi_{\hat{\delta}, \xi_{0}}$ and $\tilde{\psi}_{\delta}(\xi) \in \Psi_{700, \xi_{0}}$,

$$
\begin{aligned}
& \left\|(1+\kappa \Lambda)^{-(l+1)} \psi_{\delta}\left(D_{x}\right) h_{\delta}(x) w\right\|_{(0, s)}^{2} \\
& \leqq C\left(\left\|(1+\kappa \Lambda)^{-(l+1)} \tilde{\psi}_{\delta}\left(D_{x}\right) h_{10 \delta}(x) P w\right\|_{(0, s)}^{2}+\|w\|_{(0,-N)}^{2}\right) .
\end{aligned}
$$

It follows from $u \in H_{-N}$ that one can find a sequence $\left\{u_{j}\right\}$ in \mathcal{S} satisfying $u_{j} \rightarrow$ $u \in H_{-N}$. If $w_{j}=\chi(t / \mu) \Phi\left(D_{t}, D_{x} ; \mu\right) u_{j}$ then $w_{j} \rightarrow v$ in $H_{(0,-N)}$ and $P w_{j} \rightarrow P v$ in $H_{(0,-(N+1))}$. Letting $j \rightarrow \infty$ in the above estimate with $w=w_{j}$, in view of $P v \in H_{s}$ we get for $\kappa>0$

$$
\left\|(1+\kappa \Lambda)^{-(l+1)} \psi_{\hat{\delta}}\left(D_{x}\right) h_{\hat{\delta}}(x) v\right\|_{(i, s)}^{2} \leqq C\left(\left\|\tilde{\psi}_{\hat{\delta}}\left(D_{x}\right) h_{10 \delta}(x) P v\right\|_{s}^{2}+\|u\|_{-N}^{2}\right) .
$$

Making $\kappa \rightarrow 0$ we see $\psi_{\hat{\delta}}\left(D_{x}\right) h_{\hat{\delta}}(x) v \in H_{s}$ because $v=\chi(t / \mu) \Phi\left(D_{t}, D_{x} ; \mu\right) u$. Thus we have proved that $P u \in H_{s}$ at ρ_{0} implies $u \in H_{s}$ at ρ_{0}.

The proof of Corollary is obvious if we replace the term $\left\|\alpha\left(t, x, D_{x}\right) K H_{10 \delta} w\right\|^{2}$ in (2.2) and (2.3) by $\operatorname{Re}\left(\alpha\left(t, x, D_{x}\right) K H_{10 \hat{o}} w, K H_{10 \hat{0}} w\right)$.

3. Proof of Theorem 2

If $\xi_{0} \notin \Sigma=\left\{\xi_{1}+f(0)|\xi|=0\right\}$ then the theorem is obvious because $q(t, x, \xi)=$ $a\left(\xi_{1}+f(t)|\xi|\right)$ is semi-definite in a small conic neighborhood of $\rho_{0}=\left(0,\left(0, \xi_{0}\right)\right)$ and we can apply the result about the propagation of regularities (Hörmander
[6; Proposition 26.6.1]). In what follows we assume $\xi_{0} \in \Sigma$ (though we will not use this condition). We apply Theorem 1 by setting

$$
\varphi(x, \xi)=\left(1-h_{5 \delta}(x)\right)+\left(1-h_{5 \delta}\left(\lambda \xi-\xi_{0}\right)\right) .
$$

Then we have (1.8) and it follows from (1.14) and (1.15) that (1.9) holds with $\alpha(t, x, \xi)=C \alpha(t)$ for a suitable $C>0$ if δ is small enough. The proof of Theorem 2 would be completed if we could show (1.10). Set

$$
a_{\lambda}(t, x, \xi)=h_{\delta_{1}}(x) a\left(t, x, D_{x}\right) h_{2 \bar{o}_{1}}\left(\lambda D_{x}-\xi_{0}\right)
$$

Let $A(t)=a_{\lambda}^{w}\left(t, x, D_{x}\right)$ denote a pseudodifferential operator with Weyl symbol $a_{\lambda}(t, x, \xi)$. Setting $B(t)=\left(D_{x_{1}}+f(t)\left|D_{x}\right|\right) h_{\delta_{1}}\left(\lambda D_{x}-\xi_{0}\right)$ moreover, we consider $A(t), B(t)$ as a real operator on Hilbert space $\mathscr{H}=L^{2}\left(\boldsymbol{R}_{x}^{n}\right)$. Note that for a fixed $\lambda>0 B(t)$ is bounded operator in \mathcal{H}. If $\Omega_{+}(t)=\left\{\xi ; \xi_{1}+f(t)|\xi|>0\right\}$ and if

$$
S_{+}(t) v(x)=\frac{1}{(2 \pi)^{n}} \int e^{i x \xi} 1_{\Omega_{+}(t)}(\xi) \hat{v}(\xi) d \xi, \quad v \in \mathscr{H}, \quad S_{-}(t)=I d-S_{+}(t)
$$

then we can define the sign $M(t)$ of $B(t), M(t)=S_{+}(t)-S_{-}(t)$ and it follows from (1.12) that

$$
\begin{equation*}
\left(M\left(t_{1}\right)-M\left(t_{2}\right)\right)\left(t_{1}-t_{2}\right) \geqq 0 \quad \text { on } \mathscr{H} . \tag{3.1}
\end{equation*}
$$

From this condition we have the following lemma given by Lerner $[8 ; \S 2]$:

LEMMA (Lerner [8, 9]). There exists a $\delta^{\prime}>0$ independent of $0<\lambda \leqq 1$ such that for any $u(t) \in C_{0}^{1}\left(\boldsymbol{R}_{t} ; \mathscr{H}\right)$ we have

$$
\begin{equation*}
2 \int\left|P_{\lambda} u(t)\right|_{\mathscr{r}} d t \geqq \sup |u(t)|_{\mathscr{H}} \quad \text { if } \operatorname{supp} u \subset\left\{|t| \leqq \delta^{\prime}\right\} \tag{3.2}
\end{equation*}
$$

where $|\cdot|_{\mathscr{H}}=\|\cdot\|_{L^{2}\left(R_{x}^{n}\right)}$.
Proof. By means of [8; Lemma 2.3.1], it follows from (3.1) that

$$
\begin{equation*}
\operatorname{Re} \int(\dot{u}(t), M(t) u(t))_{\mathscr{r}} d t \leqq 0, \quad \dot{u}(t)=\frac{d u}{d t}(t) \tag{3.3}
\end{equation*}
$$

If $H(t)$ denotes Heaviside function then for any T we have

$$
\begin{align*}
& -\operatorname{Re} \int\left(\dot{u}(t),\left\{H(t-T) S_{+}(t)-H(T-t) S_{-}(t)\right\} u(t)\right)_{\mathscr{t}} d t \\
= & -\operatorname{Re} \int\left(\dot{u}(t), H(t-T)\left(M+S_{-}\right) u(t)+H(T-t)\left(M-S_{+}\right) u(t)\right)_{\mathscr{t}} d t \tag{3.4}\\
\geqq & -\operatorname{Re} \int\left(\dot{u}(t),\left\{H(t-T) S_{-}(t)-H(T-t) S_{+}(t)\right\} u(t)\right)_{\mathscr{t}} d t,
\end{align*}
$$

where we have used (3.3) in the last inequality. Adding the left hand side of
(3.4) to both sides of (3.4), we have in view of $S_{+}+S_{-}=I d$

$$
\begin{align*}
& -2 \operatorname{Re} \int\left(\dot{u}(t),\left\{H(t-T) S_{+}(t)-H(T-t) S_{-}(t)\right\} u(t)\right)_{\mathscr{H}} d t \\
& \quad \geqq-\operatorname{Re} \int(\dot{u}(t),\{H(t-T)-H(T-t)\} u(t))_{\mathscr{H}} d t \tag{3.5}\\
& \quad=2|u(T)|_{\mathscr{H}}^{2} .
\end{align*}
$$

It follows from [8; Lemma 2.3.2] that

$$
\begin{equation*}
\operatorname{Re}\left(\pm S_{ \pm} \operatorname{Re}(A B)\right) \geqq-\frac{10}{3}\|A\|^{1 / 4}\|[A, B]\|^{1 / 2}\|[B,[B, A]]\|^{1 / 4} \tag{3.6}
\end{equation*}
$$

where $\|A\|$ denotes the operator norm of $A(t)$ in \mathscr{H}. Note that the right hand side of (3.6) has the bound independent of λ. Since the difference between P_{λ} and $D_{t}+i \operatorname{Re}(A(t) B(t))$ is bounded in \mathscr{H} uniformly with respect to $0<\lambda \leqq 1$, in view of (3.5) and (3.6) there exists a $C>0$ independent of λ such that

$$
\begin{gathered}
\operatorname{Re} \int\left(P_{\lambda} u(t), i\left\{H(t-T) S_{+}(t)-H(T-t) S_{-}(t)\right\} u(t)\right)_{\mathscr{H}} d t \\
\geqq \\
\geqq|u(T)|_{\mathscr{H}}^{2}-C \int|u(t)|_{\mathscr{H}}^{2} d t .
\end{gathered}
$$

If supp $u \subset\left\{|t| \leqq \boldsymbol{\delta}^{\prime}\right\}$ then the second term of the right hand side is estimated above from $2 C \delta^{\prime} \sup |u(t)|_{\mathscr{y}}^{2}$, so that we have (3.2) for a small $\delta^{\prime}>0$ satisfying $4 C \delta^{\prime} \leqq 1$.

By means of the Schwartz inequality it follows from (3.2) that

$$
\begin{equation*}
\left\|P_{\lambda} u\right\| \geqq\left(2 \delta^{\prime}\right)^{-1}\|u\| \quad \text { if } \operatorname{supp} u \subset\left\{|t| \leqq \delta^{\prime}\right\} \tag{3.7}
\end{equation*}
$$

It follows from (1.16) and (1.17) that for any $\varepsilon>0$ there exists a $\delta_{\varepsilon}>0$ such that

$$
\begin{equation*}
t \alpha(t)\left\{\left|\log f^{\prime}(t)\right|+|\log \beta(t)|\right\} \leqq \varepsilon^{2} \quad \text { if }|t| \leqq \delta_{\varepsilon} . \tag{3.8}
\end{equation*}
$$

For the sake of simplicity we assume $\alpha(t)$ is even function (the general case would be clear once we could prove this case), It follows from the monotoness of $\alpha(t)$ that for a small parameter $\lambda>0$ there exists a unique $t_{\lambda}>0$ such that $t_{\lambda} \alpha\left(t_{\lambda}\right)|\log \lambda|=2 \varepsilon$. Similarly we choose $s_{\lambda}>0$ such that $s_{\lambda} \alpha\left(s_{\lambda}\right)|\log \lambda|=\varepsilon$. For a while we assume λ is sufficently small such that $s_{\lambda}<\delta_{6}$. If we set $\delta^{\prime}=t_{\lambda}$ in (3.7) then

$$
\begin{align*}
4 \varepsilon\left\|P_{\lambda} u\right\| & \geqq\left\|\boldsymbol{\alpha}\left(t_{\lambda}\right)(\log \lambda) u\right\| \\
& \geqq\|\alpha(t)(\log \lambda) u\| \quad \text { if } \operatorname{supp} u \subset\left\{|t| \leqq t_{\lambda}\right\} . \tag{3.9}
\end{align*}
$$

If $s_{2} \leqq|t| \leqq \delta_{\varepsilon}$ then it follows from (3.8) that

$$
\frac{\varepsilon}{|\log \lambda|}\left\{\left|\log f^{\prime}(t)\right|+|\log \beta(t)|\right\} \leqq \varepsilon^{2},
$$

so that if $0<\lambda \leqq \lambda_{\varepsilon}$ for a sufficiently small λ_{ε} then

$$
\begin{equation*}
f^{\prime}(t), \beta(t) \geqq \lambda^{8} \quad \text { on } s_{i}<|t| \leqq \delta_{1} . \tag{3.10}
\end{equation*}
$$

In fact, if λ_{ε} is small enough we have $f^{\prime}(t), \beta(t) \geqq\left(\lambda_{\varepsilon}\right)^{\varepsilon}$ for $\delta_{\varepsilon}<|t| \leqq \delta_{1}$ in view of (1.12) and (1.13). Note that

$$
\begin{align*}
\left\|P_{\lambda} u\right\|^{2}= & \left\|D_{t} u\right\|^{2}+\left\|a_{\lambda}\left(t, x, D_{x}\right) B u\right\|^{2} \\
& +2 \operatorname{Re}\left(\left(\partial_{t} a_{\lambda}\right) B u, u\right) \tag{3.11}\\
& +2 \operatorname{Re}\left(a_{\lambda} f^{\prime}(t)\left|D_{x}\right| h_{\delta_{1}}\left(\lambda D_{x}-\xi_{0}\right) u, u\right)
\end{align*}
$$

Since it follows from (3.10) and (1.14) that

$$
a_{\lambda}(t, x, \xi) \geqq \lambda^{\varepsilon} \quad \text { on } \quad\left\{s_{\lambda} \leqq|t| \leqq \delta_{1}\right\} \times \operatorname{supp} H_{\delta_{1}}(x, \xi ; \lambda)
$$

the second term of the right hand side of (3.11) is estimated above from

$$
C\left(\lambda^{-\varepsilon}\left\|a_{\lambda} B u\right\|\|u\|+\|u\|^{2}\right) \leqq\left\|a_{\lambda} B u\right\|^{2}+C^{\prime} \lambda^{-2 \varepsilon} \sharp u \|^{2} .
$$

By means of (3.10) again we have, if supp $u \subset\left\{s_{\lambda} \leqq|t| \leqq \delta_{1}\right\}$,

$$
2 \operatorname{Re}\left(a_{\lambda} f^{\prime}(t)\left|D_{x}\right| h_{\hat{\delta}_{1}}\left(\lambda D_{x}-\xi_{0}\right) u, u\right) \geqq \lambda^{2 s-1}\left\|H_{200} u\right\|^{2}-C\|u\|^{2} .
$$

Therefore, if supp $u \subset\left\{s_{\lambda} \leqq|t| \leqq \delta_{1}\right\}$ then

$$
\left\|P_{\lambda} u\right\|^{2} \geqq \lambda^{2 \varepsilon-1}\left\|H_{20 \delta} u\right\|^{2}-C \lambda^{-2 \varepsilon}\|u\|^{2},
$$

provided that $0<\lambda \leqq \lambda_{\varepsilon}$. If $\varepsilon<1 / 16$ and if $0<\lambda \leqq \min \left(\lambda_{\varepsilon}, \varepsilon^{2}\right)=\lambda_{\varepsilon}^{\prime}$ we have

$$
\varepsilon\left\|P_{\lambda} u\right\|^{2} \geqq \lambda^{2 \varepsilon-1 / 2}\|u\|^{2}-C \lambda^{-2}\left\|\left(1-H_{200}\right) u\right\|^{2}
$$

$$
\begin{equation*}
\text { if supp } u \subset\left\{s_{\lambda} \leqq|t| \leqq \delta_{1}\right\} . \tag{3.12}
\end{equation*}
$$

Let $\chi_{0}(t)$ be $C^{\infty}(\boldsymbol{R})$ such that $\chi_{0}(t)=1$ for $t \leqq 0$ and $\chi_{0}(t)=0$ for $t \geqq 1$. Set $\psi_{ \pm}(t)=$ $\chi_{0}\left(\pm\left(t \pm s_{\lambda}\right) /\left(s_{\lambda}-t_{\lambda}\right)\right)$ and $\psi(t)=\psi_{+}(t) \psi_{-}(t)$. The fact that $t_{\lambda}-s_{\lambda} \geqq c \varepsilon /|\log \lambda|$ for a suitable $c>0$ shows $\left|\psi^{(j)}(t)\right| \leqq C_{\varepsilon}|\log \lambda|^{j}(j=1,2, \cdots$,$) . It follows from (3.12)$ that

$$
\begin{align*}
& \left\|\left[P_{\lambda}, \psi\right] u\right\|^{2}=\left\|\psi^{\prime} u\right\|^{2} \tag{3.13}\\
& \leqq C \lambda^{1 / 2-2 \varepsilon}\left\{\left\|\left[P_{\lambda}, \psi^{\prime}\right] u\right\|^{2}+|\log \lambda|^{2}\left(\left\|P_{\lambda} u\right\|^{2}+\lambda^{-2}\left\|\left(1-H_{20 \delta}\right) u\right\|^{2}\right)\right\} .
\end{align*}
$$

Since similar estimates hold with ψ replaced by $\psi^{(j)}|\log \lambda|^{-j}, j=1,2, \cdots$, in view of $u=\phi(t) u+(1-\phi(t)) u$, it follows from (3.9) and (3.12) that

$$
\begin{equation*}
16 \varepsilon\left\|P_{\lambda} u\right\|^{2} \geqq\|\alpha(t)(\log \lambda) u\|^{2}-C \lambda^{-2}\left\|\left(1-H_{20 \delta}\right) u\right\|^{2} . \tag{3.14}
\end{equation*}
$$

if $0<\lambda \leqq \lambda_{s}^{\prime}$. From (3.14), (3.7) and (3.12) we have the desired estimate (1.10)
because it is trivial for $\lambda_{\varepsilon}^{\prime}<\lambda \leqq 1$ by taking a sufficiently large C_{6} in the right hand side.

4. Proof of Theorem 3

Since $\rho_{0}=\left(0,\left(0, \xi_{0}\right)\right) \in \Gamma$ it follows from (1.20) that $\xi_{01}+b\left(0,0, \xi_{0}^{\prime}\right)=0$. By taking the canonical transformation such that $\xi_{1}+b\left(0,0, \xi^{\prime}\right) \rightarrow \xi_{1}$ and $\xi^{\prime} \rightarrow \xi^{\prime}$ we may assume that $\xi_{0}=\left(0, \xi_{0}^{\prime}\right),\left|\xi_{u}^{\prime}\right|=1$. Because Γ is of codimension 2 in Char P it follows from (1.20) and (1.6) that $\partial_{t} b\left(t, x, \xi^{\prime}\right)$ has the definite sign. Note that

$$
\begin{equation*}
\left.\left(a^{-1} \partial_{t} q\right)\right|_{\text {Char } P}\left(\pi \gamma_{\rho}(t)\right)=\partial_{t} b\left(t, x, \xi^{\prime}\right) . \tag{4.1}
\end{equation*}
$$

For each $\rho=\left(0, x,\left(0,-b\left(t, x, \xi^{\prime}\right), \xi^{\prime}\right)\right) \in \operatorname{Char} P \cap V$, let $t\left(x, \xi^{\prime}\right)$ denote the extremal point in the condition (1.21). Since it follows from (4.1) that $F_{\rho}(t)$ in (1.21) equals ($\left.\tilde{e} \partial_{t} b\right)\left(t, x, \xi^{\prime}\right)$ for some $\tilde{e}\left(t, x, \xi^{\prime}\right) \in C^{\infty}\left(\boldsymbol{R}_{t} \times \boldsymbol{R}_{x_{1}} ; S_{1,0}^{0}\right)$, we have in a conic neighborhood of ρ_{0}

$$
\begin{align*}
&\left|\left(\tilde{e} \partial_{t} b\right)\left(t\left(x, \xi^{\prime}\right), x, \xi^{\prime}\right)\right|<\left|\left(\tilde{e} \partial_{t} b\right)\left(s, x, \xi^{\prime}\right)\right| \leqq\left|\left(\widetilde{e} \partial_{t} b\right)\left(t, x, \xi^{\prime}\right)\right| \tag{4.2}\\
& \text { if } 0<\left|s-t\left(x, \xi^{\prime}\right)\right|<\left|t-t\left(x, \xi^{\prime}\right)\right| .
\end{align*}
$$

Set $\tilde{b}\left(t, x, \xi^{\prime}\right)=\int_{t\left(x, \xi^{\prime}\right)}^{t} \partial_{t} b\left(s, x, \xi^{\prime}\right) d s$ and take the canonical transformation in $T *\left(\boldsymbol{R}_{x}^{n}\right)$, keeping x_{1} variable, such that

$$
\xi_{1}+b\left(t\left(x, \xi^{\prime}\right), x, \xi^{\prime}\right) \longrightarrow \xi_{1} \quad\left(\text { and }\left(0, \xi_{0}^{\prime}\right) \rightarrow\left(0, \xi_{0}^{\prime}\right)\right) .
$$

Then $\xi_{1}+b\left(t, x, \xi^{\prime}\right)$ is transformed to $\xi_{1}+b_{0}\left(t, x, \xi^{\prime}\right)$ of the form:

$$
\begin{equation*}
b_{0}\left(t, x, \xi^{\prime}\right)=\widetilde{b}\left(t, x_{1}, \Phi\left(x, \xi^{\prime}\right), \Psi\left(x, \xi^{\prime}\right)\right) \text { in a small conic neiborhood of } \rho_{0} \tag{4.3}
\end{equation*}
$$ where $\Phi\left(x, \xi^{\prime}\right) \in S_{10}^{0}, \Psi\left(x, \xi^{\prime}\right) \in S_{1,0}^{1}$. It follows from (4.2) that

$$
\begin{equation*}
\left|\nabla_{x} b_{0}\left(t, x, \xi^{\prime}\right)\right|+\left|\nabla_{\xi^{\prime}} b_{0}\left(t, x, \xi^{\prime}\right)\right||\xi| \leqq C\left|\partial_{t} b_{0}\left(t, x, \xi^{\prime}\right)\right| . \tag{4.4}
\end{equation*}
$$

In fact, for example, the direct calculation gives

$$
\begin{array}{r}
\left|\partial_{x_{2}} b_{0}\left(t, x, \xi^{\prime}\right)\right| \leqq C_{1}\left|\partial_{t} b\left(t\left(x_{1}, x^{\prime}, \xi^{\prime}\right), x^{\prime}, \xi^{\prime}\right)\right|\left(x^{\prime}, \xi^{\prime}\right)=\left(\Phi\left(x, \xi^{\prime}\right), \Psi\left(x, \xi^{\prime}\right)\right) \mid \\
+C_{2}\left|\int_{t\left(x, \xi^{\prime}\right)}^{t}\right| \partial_{t} \partial_{x_{2}} b\left(s, x_{1}, x^{\prime}, \xi^{\prime}\right)\left|\left(x^{\prime}, \xi^{\prime}\right)=\left(\emptyset\left(x, \xi^{\prime}\right), \Psi\left(x, \xi^{\prime}\right)\right)\right| d s \mid . \tag{4.5}
\end{array}
$$

By means of (4,2), the first term of the right hand side is estimated above from $C\left|\partial_{t} b_{0}\left(t, x, \xi^{\prime}\right)\right|$. Because $\partial_{t} b$ is semi-definite we have $\left|\partial_{t} \partial_{x_{2}} b\right| \leqq C\left|\partial_{t} b\right|^{1 / 2}$ and the second term is estimated above from

$$
\left.\left.C\left|\int_{t\left(x, \xi^{\prime}\right)}^{t}\right|\left(\tilde{e} \partial_{t} b\right)\left(s, x, \xi^{\prime}\right)\right|^{1 / 2} d s\left|\leqq C^{\prime}\right| \partial_{t} b\left(t, x, \xi^{\prime}\right)\right|^{1 / 2}
$$

with $\left(x^{\prime}, \xi^{\prime}\right)=\left(\Phi\left(x, \xi^{\prime}\right), \Psi\left(x, \xi^{\prime}\right)\right)$. Here we have used (4.2) in the last inequality.

As stated in the section 1, it follows from (1.19) that Hamilton vector fields $H_{1}=\partial_{t}$ and $H_{2}=H_{q}$ are transversal to Γ. In view of (4.4), the fact that $\partial_{t} b_{0}\left(0,0, \xi_{0}^{\prime}\right)=0$ shows that

$$
\left\{\begin{array}{l}
\text { for any small } \mu>0 \text { there exists a } \delta_{\mu}>0 \text { such that } \tag{4.6}\\
\left\{(t, x, 0, \xi) ; \mu \leqq \max \left(|t|,\left|x_{1}\right|\right) \leqq 2 \mu,\left|x^{\prime}\right|+\left|\frac{\xi}{|\xi|}-\xi_{0}\right|<\delta_{\mu}\right\} \cap \Gamma=0 .
\end{array}\right.
$$

In the new variable we shall apply Corollary of Theorem 1, together with Remark 1. For the brevity we write b instead of b_{0} in what follows. Set $\varphi(x, \xi)$ $=\left(1-\chi\left(x_{1} / \mu\right)\right)+\left(1-h_{2 \delta}\left(x^{\prime}\right)\right)+\left(1-h_{5 \delta}\left(\lambda \xi-\xi_{0}\right)\right)$. Choosing $\nu=2 \mu / \delta$ in Remark 1 of Corollary we have (1.8). Since $H_{q} \varphi=a\left(\partial_{x_{1}} \varphi+H_{b} \varphi\right)+\left(H_{a} \varphi\right)\left(\xi_{1}+b\right)$, in view of $a \neq 0$ it follows from (4.4) and (1.20) that

$$
\begin{gather*}
\left|H_{q} \varphi\right|^{2} \leqq C\left(\left(\mathcal{X}^{\prime}\left(x_{1} / \mu\right)\right)^{2}+a \partial_{t} b /|\xi|+(q /|\xi|)^{2}\right) \\
\quad \text { on }\left\{|t| \leqq \delta_{1}\right\} \times \operatorname{supp} H_{100 \delta}(x, \xi ; \lambda) \tag{4.7}
\end{gather*}
$$

because the second term of the right hand side is non-negative by means of (4.1) and (1.6). Putting $\alpha(t, x, \xi)$ equal to the right hand side of (4.7), we shall check (1.10)'. It follows from (4.6) that

$$
\begin{equation*}
\lambda^{-1}\left\|\chi^{\prime}\left(x_{1} / \mu\right) H_{20 \hat{u}} u\right\|^{2} \leqq C\left(\left\|P_{\lambda} u\right\|^{2}+\|u\|^{2}\right) \tag{4.8}
\end{equation*}
$$

Setting $Q_{\lambda}(t, x, \xi)=Q(t, x, \xi) H_{\delta_{1}}(x, \xi ; \lambda)$ we have

$$
\left\|P_{\lambda} u\right\|^{2}=\left\|D_{t} u\right\|^{2}+\left\|Q_{\lambda}\left(t, x, D_{x}\right) u\right\|^{2}+2 \operatorname{Re}\left(O p\left(\partial_{t} Q_{\lambda}(t, x, \xi)\right) u, u\right),
$$

where $O p(r)$ denotes the pseudodifferential operator with symbol r. Since the principal symbol of $\partial_{t} Q_{\lambda}(t, x, \xi)$ equals $\left(a \partial_{t} b+\left(\partial_{t} a / a\right) q\right) H_{\delta_{1}}(x, \xi ; \lambda)$ it follows from the Schwartz inequality

$$
\begin{align*}
\left\|P_{\lambda} u\right\|^{2} \geqq & \left\|D_{t} u\right\|^{2}+\left\|Q_{\lambda}\left(t, x, D_{x}\right) u\right\|^{2} / 2 \\
& +2 \operatorname{Re}\left(O p\left(a \partial_{t} b H_{\dot{\delta}_{1}}\right) u, u\right)-C\|u\|^{2} \tag{4.9}\\
\geqq & \left\|D_{t} u\right\|^{2}+\left\|Q_{\lambda}\left(t, x, D_{x}\right) u\right\|^{2} / 2-C^{\prime}\|u\|^{2} .
\end{align*}
$$

Noting that $\left(a \partial_{t} b /|\xi|+(q /|\xi|)^{2}\right) H_{20 \delta}^{2} \leqq a \partial_{t} b H_{\delta_{1}} / \lambda+Q_{\lambda}^{2} / \lambda^{2}$, by means of the sharp Gårding inequality we have (1.10) from (4.8) and (4.9), because it follows from the Poincaré inequality that the term $\|u\|^{2}$ is absorbed by $\left\|D_{t} u\right\|^{2}$ if δ_{1} is small enough.

References

[1] Beals, R. and Fefferman, C., On local solvability of linear partial differential equations, Ann. of Math. 97 (1973), 482-498.
[2] Egorov, Yu. V., Subelliptic operators, Russian Math. Surveys $30: 2$ (1975), 59-118,
$30: 3$ (1975), 55-105.
[3] Helffer, B. and Nourrigat, J., Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress Math. Vol. 58 Boston: Birkhäuser 1985.

44 Hörmander, L., Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math. 83 (1966), 129-209.
[5] Hörmander, L., Subelliptic operators, Seminar on Singularities of Solution of Linear Partial Differential Equations, Princeton University Press 1979, 3-49.
[6] Hörmander, L., The analysis of Linear Partial Differential Operators IV, (1985), Springer-Verlag, Berlin, Heiderberg, New York, Tokyo.
[7] Kajitani, K. and Wakabayashi, S., Propagation of singularities for several classes of pseudodifferential operators, Bull. Sc. Math. 2^{e} série 115 (1991), 397-449.
[8] Lerner, N., Sufficiency of condition (Ψ) for local solvability in two dimensions, Ann. of Math. 128 (1988), 243-258.
[9] Lerner, N., An iff solvability condition for the oblique derivative problem, Séminar EDP 90-91, Ecole Polytechnique, exposé $n^{\circ} 18$.
[10] Lerner, N., Nonsolvability in L^{2} for a first-order operator satisfying condition (Ψ), Ann. of Math. 139 (1994), 363-393.
[11] Morimoto, Y., Criteria for hypoellipticity of differential operators, Publ. RIMS Kyoto Univ. 22 (1986), 1129-1154.
[12] Morimoto, Y., A criterion for hypoellipticity of second order differential operators, Osaka J. Math. 24 (1987), 651-675.
[13] Morimoto, Y., Hypoelliptic operators in \mathbb{R}^{3} of the form $X_{1}{ }^{2}+X_{2}{ }^{2}$, J. Math. Kyoto Univ. 32 (1992), 461-484.
[14] Moyer, R.D., Local solvability in two dimensions: Necessary conditions for the principal-type case, Mimeographed manuscript, University of Kansas 1978.
[15] Nirenberg, L. and Treves, F., On local solvability of linear partial differential equations, I. Necessary conditions, II. Sufficient conditions, Correction. Comm. Pure Appl. Math. 23 (1970), 1-38 and 459-509; 24 (1971), 279-288.
[16] Wakabayashi, S. and Suzuki, M., Microhypoellipticity for a class of pseudodifferential operators with double characterisitics, Funkciaj Ekvacioj, 36 (1993), 519-556.
[17] Morimoto, Y., Local solvability and hypoellipticity for pseudodifferential operators of Egorov type with infinite degeneracy, to appear in Nagoya Math. J., 139 (1995).

[^0]: * Division of Mathematics, Yoshida College, Kyoto University, Kyoto 606-01, Japan, fax : 81-75-753-6767, e-mail: morimoto@math.h. kyoto-u. ac.jp.
 Received May 31, 1993.

[^1]: \dagger Some special cases will be studied in the forthcoming paper 17

