COMPACT CARDINALS AND ABELIAN GROURS

By

Katsuya EDA and Yoshihiro ABE

Some properties about abelian groups are known to be related to large cardinals. Among them a certain property of the radical R_z , i.e., $R_z(A) = \cap \{\text{Ker}(h) : h \in \text{Hom}(A, \mathbb{Z})\}$ for an abelian group A, has been known to be related to the existence of a compact cardinal and a measurable cardinal. To state it more precisely, let $R_z^{[\kappa]}(A) = \sum \{R_z(B) : B \text{ is a subgroup of } A \text{ of cardinality less than } \kappa \}$ for a cardinal κ . The radical R_z satisfies the cardinal condition, if there exists a cardinal κ such that $R_z(A) = R_z^{[\kappa]}(A)$ for every abelian group A. M. Dugas and R. Göbel [4] proved that if there exists no measurable cardinal, then the condition does not hold. On the other hand M. Dugas [5] showed that if there exists a strongly compact cardinal, then the condition holds. Using subgroups of $\mathbb{Z}^{\kappa}/\mathbb{Z}^{\langle\kappa}(\simeq \mathbb{Z}^{\langle B\kappa\rangle})$, which itself was also used in [5], B. Wald [15] got some result relating to a weakly compact cardinal.

In the present paper we show that their results can be unified under the notion of $\lambda - L_{\omega_1\omega}$ -compactness and using it we improve their results, e.g. the radical R_z satisfies the cardinal condition iff a strongly $L_{\omega_1\omega}$ -compact cardinal exists, where the last property has been studied by J. Bell [2].

First we state definitions. \mathbb{Z} is the additive group of integers and N is the set of natural numbers. In this paper κ always stands for an infinite cardinal and in most cases is regular. The word "of cardinality $\leq \lambda$ " is an abbreviation of "of cardinality less than or equal to λ ". $L_{\mu\nu}$ is the infinitary language which admits α -sequences of disjunctions and conjunctions and β -sequences of quantifiers for $\alpha < \mu$ and $\beta < \nu$. See [3] for a precise definition. A cardinal κ is λ - $L_{\mu\nu}$ -compact, if the following hold: For a set T of $L_{\mu\nu}$ -sentences of cardinality λ , if any subset of T of cardinality less than κ has a model, then T itself has a model. κ is strongly $L_{\mu\nu}$ -compact, if κ is λ - $L_{\mu\nu}$ -compact for any λ . $P_{\kappa}\lambda$ is the set of all subsets of λ whose cardinalities are less than κ . Let $U_x = \{y \in P_{\kappa}\lambda : x \subseteq y\}$ for $x \in P_{\kappa}\lambda$ and $F_{\kappa}\lambda$ $= \{x \subseteq P_{\kappa}\lambda : U_x \subseteq X$ for some $x \in P_{\kappa}\lambda\}$. Then, $F_{\kappa}\lambda$ is a κ -complete filter on $P_{\kappa}\lambda$ for a regular cardinal κ . Let $B_{\kappa\lambda}$ be the quotient algebra $P(P_{\kappa}\lambda)/F_{\kappa\lambda}$. (We use filters instead of ideals when constructing quotient algebras, differing from [13].) Then, a filter on $P_{\kappa}\lambda$ which contains U_x for all $x \in P_{\kappa}\lambda$ corresponds to a filter of $B_{\kappa\lambda}$.

Received August 11, 1986.

Moreover, a countably complete ultrafilter on $P_{\kappa}\lambda$ which contains Ux for all $x \in P_{\kappa}\lambda$ corresponds to a countably complete ultrafiter of $B_{\kappa\lambda}$. In case that κ is regular, by B_{κ} , we denote the κ -complete quotient Boolean algebra $P(\kappa)/F_{\kappa}$, where $F_{\kappa} = \{X \subseteq \kappa : |\kappa - X| < \kappa\}$. A κ -complete Boolean algebra B is κ -representable, if B is isomorphic to the quotient algebra of a κ -complete field of sets modulo a κ -complete filter [13, § 29]. (Note that " κ -complete", " κ -representable" and so on in [13] mean our " κ^+ -complete", " κ^+ -representable" and so on.) The symbols \lor , \land , 7 denote least upper bound, product, complement respectively. For a countably complete Boolean algebra B, $Z^{(B)}$ is the Boolean power of the group of integers Z, i.e. $Z^{(B)} = \{f : f : \mathbb{Z} \rightarrow B \ \& \ \lor_{m \in \mathbb{Z}} f(m) = 1 \ \& f(m) \land f(n) = 0$ for $m \neq n\}$ and $(f+g)(m) = \land_{m=n+k} f(n) \land g(k)$. An abelian group A is torsionless, if A is a subgroup of \mathbb{Z}^I for some I. It is equivalent to the property that for any nonzero $a \in A$ there exists a homomorphism $h : A \rightarrow \mathbb{Z}$ such that $h(a) \neq 0$.

Now we state the main theorem.

THEOREM 1. Let κ be an uncountable regular cardinal and $\lambda^{<\kappa} = \lambda$. Then, the following propositions are equivalent:

- (1) κ is λ - $L_{\omega_1\omega_1}$ -compact;
- (2) κ is λ - $L_{\omega_1\omega}$ -compact;
- (3) Any κ -complete κ -representable Boolean algebra of cardinality λ has a countably complete ultrafilter;
- (4) If A is an abelian group of cardinality $\leq \lambda$, then $R_z(A) = R_z^{[\kappa]}(A)$ holds;
- (5) If A is an abelian group of cardinality ≤ λ and any subgroup of A of cardinality less than κ is torsionless, then A itself is torsionless;
- (6) Any subgroup of $\mathbf{Z}^{(B_{s,\lambda})}$ of cardinality $\leq \lambda$ is torsionless;
- (7) For any subgroup S of $Z^{(B_{\kappa\lambda})}$ of cardinality $\leq \lambda$, Hom(S, Z) $\neq 0$;
- (8) For any κ -complete κ -representable Boolean algebra B of cardinality $\leq \lambda$, Hom $(\mathbf{Z}^{(B)}, \mathbf{Z}) \neq 0$.

To prove the theorem, we state some lemmas.

LEMMA 2. ([7, Theorem 1]) Let B be a countably complete Boolean algebra. Then, $\operatorname{Hom}(\mathbf{Z}^{(B)}, \mathbf{Z}) = \bigoplus_{F \in F} \mathbf{Z}$, where \mathcal{F} is the set of all countably complete ultrafilters of B. Consequently, $\operatorname{Hom}(\mathbf{Z}^{(B)}, \mathbf{Z}) \neq 0$ iff a countably complete ultrafilter of B exists.

LEMMA 3. ([13, 29.3]) Let B be a κ -complete κ -representable Boolean algebra. If $b \neq 0$ and $\forall_{m \in N} \ b_{am} = 1$ for $\alpha < \mu$ where $\mu < \kappa$, then exists an $f \in {}^{\mu}N$ such that $\{b, \ b_{\alpha f(\alpha)} : \alpha < \mu\}$ satisfies the finite intersection property. PROOF OF THEOREM 1. Our proofs go on according to the following diagram : $(1) \rightarrow (2) \rightarrow (3) \leftrightarrow (8)$

$$(4) \rightarrow (5) \rightarrow (6) \rightarrow (7) \rightarrow (1)$$

 $(1) \rightarrow (2)$: trivial.

 $(2) \rightarrow (3)$: Let \mathcal{F} be a κ -complete field and F a κ -complete fiter of \mathcal{F} and $B = \mathcal{F}/F$. By the assumption of cardinality of λ , we can take a κ -complete subfield \mathcal{F}' of \mathcal{F} cardinality λ such that $B = \mathcal{F}'/\mathcal{F}' \cap F$. Let $\mathcal{F}' = \{P_{\xi} : \xi < \lambda\}$ and T be the set of the following $L_{\omega_1\omega}$ -sentences:

- (a) $\underline{P}_{\xi}(\mathbf{c})$ if $P_{\xi} \in F$:
- (b) $\forall x (\wedge_{n \in N} \underline{P}_{\xi n}(x) \leftrightarrow \underline{P}_{\xi}(x)) \text{ if } \cap_{n \in N} P_{\xi n} = P_{\xi};$
- (c) $\forall x (\underline{P}_{\xi}(x) \leftrightarrow \overline{P}_{\eta}(x)) \text{ if } P_{\xi} = P_{\eta}^{c}.$

Since F is κ -complete, any subset of T of cardinality less than κ has a model. Hence T has model \mathcal{A} . Let $P_{\varepsilon} \in \overline{F}$ iff $\mathcal{A} \models \underline{P_{\varepsilon}}(c)$. Then, \overline{F} extends $\mathcal{F}' \cap F$ and is a countably complete ultrafilter of \mathcal{F}' . Consequently, B has a countably complete ultrafilter.

 $(3) \leftrightarrow (8)$: Clear by Lemma 2.

 $(2) \rightarrow (4)$: To prove it by absurd, suppose the negation of (4). Then, there exists an $a^* \in R_z(A)$ such that $a^* \notin R_z^{[\kappa]}(A)$. Let T be the following set of $L_{\alpha_1 \omega}$ -sentences:

- (a) $a \neq a'$ for $a \neq a'$, $a, a' \in A$, a+b=c for a+b=c, $a,b,c \in A$;
- (b) The axiom of abelian groups;
- (c) $\forall x \lor_{m \in \mathbf{z}}(H_m(x) \& \land_{n \neq m}, n \in \mathbf{z} \neq H_n(x));$ $\forall x, y \lor_{m,n,k \in \mathbf{z}}, m_{+n=k}(H_m(x) \& H_n(x) \& H_k(x+y));$ $\lor_{m \neq 0} H_m(\underline{a^*}).$

Let T' be a subset of T of cardinality less tank κ . Then, there exists a subgroup B of cardinality less than κ such that B contains a^* and if \underline{a} appears in T' then a belongs to B. Since $a^* \notin R_z^{\lceil \kappa \rceil}(A)$, there exists an $h \in \text{Hom}(B, \mathbb{Z})$ such that $h(a^*) \neq 0$. Now, the group B with the homomorphism h is a model of T'. By (2) there exists a model \mathcal{A} of T'. Then, A is a subgroup of the domain of \mathcal{A} and $H_m(m \in \mathbb{Z})$ defines a homomorphism to \mathbb{Z} which maps a^* to a nonzero element, which is a contradication.

 $(4) \rightarrow (5)$: It is clear, since A is torsionless iff $R_z(A) = 0$.

 $(5) \rightarrow (6)$: It is enough to show that S is torsionless for any subgroup of $Z^{(B_{\epsilon,1})}$ of cardinality less than κ . Let s^* be a nonzero element of S, then $s^*(m) \neq 0$ for some $m \neq 0$. By Lemma 3, there exists a map $h: S \rightarrow Z$ such that $\{s(h(s)) : s \in S\}$ satisfies the finite intersection property and $h(s^*) = m \neq 0$. If s+t=u for $s,t,u \in S$, then $u(h(s)+h(t)) \geq s(h(s)) \wedge t(h(t)) \neq 0$. Hence $u(h(s)+h(t)) \wedge u(h(u)) \neq 0$ and so h(s)+h(t)=h(u). Now, We've gotten a desired homomorphism. (6) \rightarrow (7): Trivial.

 $(3) \rightarrow (1)$ and $(7) \rightarrow (1)$: The property (1) is reduced to the existence of a countably complete ultrafilter of κ -complete subfield \mathcal{F} of $P(P_{\epsilon}\lambda)$ which extends $F_{\epsilon\lambda}$ [1, pp. 76-77; or 14, pp. 64-65]. By Lemma 2, both of (7) and (3) imply the existence of such an ultrafilter.

COROLLARY 4. The radical R_z satisfies the cardinal condition iff there exists a strongly $L_{\omega_1\omega}$ -compact cardinal.

The proof is clear by the equivalence of (2) and (4) of the theorem. Another characterization of the strongly $L_{\omega_1\omega}$ -compact cardinal has been given in [2, Theorem 2]. As noted in [2, Theorem 4], the existence of a strongly $L_{\omega_1\omega}$ compact cardinal is strictly stronger than that of a measurable cardinal. However, we do not know whether it is strictly weaker than the existence of a strongly compact cardinal. (See the last remark.)

Under the assumption that κ is inaccessible, many conditions are known to be equivalent to the κ - $L_{\kappa o}$ -compactness of κ . An observation of the proof of [14, Theorem 1] gives us

PROPOSITION 5. Let κ be an infinite cardinal, then the following propositions are equivalent:

- (1) $\kappa \rightarrow (\kappa)_2^2$ (See [14] or [12] for the definition.);
- (2) κ is $2 \leq \kappa L_{\kappa \omega}$ -compact;
- (3) κ is regular and any κ-complete κ-representable Boolean algebra of cardinality ≤2^{<κ} has a κ-complete ultrafilter;
- (4) κ is regular and any κ -complete subalgebra of B_{κ} of cardinality $\leq 2^{<\kappa}$ has a κ -complete ultrafilter.

PROOF. Since $\kappa \to (\kappa)_2^2$ implies that κ is inaccessible, $2^{<\kappa} = \kappa$ and hence (1) $\to (2)$ is clear by [14, Theorem 1.13]. It is known that the κ - $L_{\kappa\sigma}$ -compactness of κ implies that κ is regular [3]. Hence, (2) implies that $2^{<\kappa} = \kappa^{<\kappa}$. The proof of implication (2) \to (3) is similar to that of (2) \to (3) of Theorem 1. The difference is to take (b)' instead of (b), where (b)' is: $\forall x (\wedge_{\alpha < \mu} \underline{P}_{\xi\alpha}(x) \leftrightarrow \underline{P}_{\xi}(x))$ if $\cap_{\alpha < \mu} P_{\xi\alpha} = P_{\xi}$ for $\mu < \kappa$. After this change the cardinality of the set of sentences does not exceed $2^{<\kappa}$. Therefore, we can prove similarly as before.

The implication $(3) \rightarrow (4)$ is clear. Though Silver's proof [14, p. 64] is essentially a proof of $(4) \rightarrow (1)$, we present the proof for reader's convenience. Suppose the negation of (1), then there exists $f: [\kappa]^2 \rightarrow 2$ such that there exists

no homogeneous set of cardinality κ . Let \mathcal{F} be the minimal κ -complete subfield of $P(\kappa)$ generated by all singletons and $U^i_{\alpha}(=\{\beta:f(\{\alpha\beta\})=i\})$ for $\alpha<\kappa$, i<2. Then, the cardinality of \mathcal{F} is $2^{<\kappa}$. Let $\pi:P(\kappa)\rightarrow B_{\epsilon}(=P(\kappa)/F_{\epsilon})$ be the canonical map. Then, $\pi(\mathcal{F})$ is a κ -complete subalgebra of B_{ϵ} of cardinality $2^{<\kappa}$. Let F be a κ -complete ultrafilter of $\pi(\mathcal{F})$, then $\pi(U^0_{\alpha}) \in F$ or $\pi(U^1_{\alpha}) \in F$. Construct a sequence $\alpha_{\xi}(\xi<\kappa)$ and $\phi:\kappa\rightarrow 2$ such that $\alpha_{\xi} \in \bigcap_{\eta < \xi} U^{\phi(\eta)}_{\alpha}$ and $\pi(U^{\phi(\xi)}_{\alpha_{\xi}}) \in F$, then we can get homogeneous sets $\{\alpha_{\xi}: \phi(\hat{\xi})=0\}$ and $\{\alpha_{\xi}: \phi(\hat{\xi})=1\}$. One of them must be of cardinality κ , which is a contradiction.

As noted in [1, Corollary], if κ is less than the least measurable cardinal and $2 < \kappa - L_{\omega_1 \omega}$ -compact, then κ is $2 < \kappa - L_{\kappa \omega}$ -compact. Any κ -complete subalgebra of a κ -comlete κ -representable Boolean algebra B is also κ -representable and any restriction $[0, b](=\{x \in B: 0 \le x \le b\})$ for nonzero $b \in B$ is also a κ -complete κ -representable Boolean algebra. Hence, Theorem 1, Lemma 2 and Proposition 5 imply

COROLLARY 6. (B. Wald [15]) Let κ be an uncountable regular cardinal which is less than the least measurable cardinal. Then, the following are equivalent:

- (1) $\kappa \rightarrow (\kappa)_2^2$ holds;
- (2) If A is an abelian group of cardinality $2^{<\kappa}$, then $R_z(A) = R_z^{[\kappa]}(A)$;
- (3) If a subgroup S of $\mathbb{Z}^{(B_{\kappa})}$ is of cardinality $\leq 2^{<\kappa}$, then Hom $(S, \mathbb{Z}) \neq 0$.

REMARK: It is known that some results are restricted under the lest measurable cardinal and they do not hold beyond it [11, p. 161; and 5, Theorem 2.7]. However, we did not know whether the class of Fuchs-44-groups were closed under arbitrary direct products [8]. Here, we show that it is not. To treat such things it is convenient to use elementary embeddings of the universe [5, Remark 2; and 10]. Therefore, we use notions about elementary embeddings [12]. Let κ be the least measurable cardinal, F a normal ultrafilter on κ and M_F the related transitive universe. For an $f \in {}^{\kappa}V$, $[f]_{F}$ is the element of M_{F} corresponding to f. Let $A_{\alpha}(\alpha < \kappa)$ be the abelian groups such that $A_{\alpha} = (\bigoplus_{\omega} \mathbb{Z})^{(B\alpha)}$ if α is a regular uncountable cardinal and $A_{\alpha}=0$ otherwise. Since B_{α} has no countably complete ultrafilter, A_{α} is a Fuchs-44-group for each α [8, Corollary 3; and 9]. Since F is normal, $[\langle A_{\alpha} : \alpha < \kappa \rangle]_F = (\bigoplus_{\omega} \mathbb{Z})^{(B_{\kappa})}$ holds in M_F . Since $B_{\kappa} = (B_{\kappa})^M_F$, $\prod_{\alpha < \kappa} A_{\alpha} / F \simeq$ $(\bigoplus_{\alpha} \mathbb{Z})^{(B_{k})}$. On the other hand, B_{α} has a countably complete ultrafilter and hence there exists a surjective homomorphism from $\prod_{\alpha < \kappa} A_{\alpha}/F$ to $\bigoplus_{\omega} \mathbb{Z}$. This implies that $\prod_{\alpha < \epsilon} A_{\alpha}$ contains a direct summand isomorphic to $\bigoplus_{\alpha} \mathbb{Z}$. Hence, $\prod_{\alpha < \epsilon} A_{\alpha}$ is not a Fuchs-44-group.

As we have referred it before, Dugas and Göbel proved that the radical R_z

does not commute with a measurable direct product [5, Theorem 2.7]. Here we show,

PROPOSITION 7. Let κ be a cardinal less than the least measurable cardinal. If the cardinality of A_i is less than κ for every $i \in I$, then $R_z(\prod_{i \in I} A_i) = \prod_{i \in I} R_z(A_i)$ holds.

PROOF. Since $R_{\mathbf{z}}(\Pi_{i\in I}A_i) \subseteq \Pi_{i\in I}R_{\mathbf{z}}(A_i)$ clearly, we show the other inclusion. Hom $(\Pi_{i\in I}A_i, \mathbf{Z}) = \bigoplus_{F\in\mathcal{F}} \text{Hom}(\Pi_{i\in I}A_i/F, \mathbf{Z})$ where \mathcal{F} is the set of all countably complete ultrafilters on I [6, Corollary 2] and hence what we must show is that $h \cdot \pi_F(f) = 0$ holds for $f \in \Pi_{i\in I}R_{\mathbf{z}}(A_i)$, $h \in \text{Hom}(\Pi_{i\in I}A_i/F, \mathbf{Z})$ and $F \in \mathcal{F}$, where $\pi_F : \Pi_{i\in I}A_i \to \Pi_{i\in I}A_i/F$ is the canonical homomorphism. By the fundamental theorem of ultraproducts [12], $V^I/F \models \forall h \in \text{Hom}(\Pi_{i\in I}A_i/F, \Pi_I\mathbf{Z}/F)(h(\pi_F(f))=0)$. Since the cardinaity of $\Pi_{i\in I}A_i/F$ is less the least measurable cardinal and $\Pi_I\mathbf{Z}/F \simeq \mathbf{Z}$, $h \cdot \pi_F(f) = 0$ for each $h \in \text{Hom}(\Pi_{i\in I}A_i/F, \mathbf{Z})$.

Added in proof

1. There is another radical R_z^{∞} , i.e. $R_z^{\infty}A = \Sigma \{X \le A : \text{Hom}(X, \mathbb{Z}) = 0\}$. The purpose of this addendum is to answer a question in [17]. Therefore, we use their notion.

We show,

PROPOSITION 8.

- (1) The radical R_z^{∞} satisfies the cardinal condition (iff R_z^{∞} is a singly generated socle) iff there exists a strongly $L_{\omega_1\omega}$ -compact cardinal.
- (2) R_z^{∞} is not a singly generated radical.

PROOF. First observe the following fact: For a cardinal κ of uncountable cofinality, $A = \Sigma \{X \leq A : \operatorname{Hom}(X, \mathbb{Z}) = 0 \& |X| < \kappa\}$ iff $A = \Sigma \{R_z X : X \leq A \& |X| < \kappa\}$. This can be shown by a closure argument. If there exists a strongly $L_{\omega_1\omega}$ -compact cardinal, let κ be a regular strongly $L_{\omega_1\omega}$ -compact cardinal. Suppose that $R_z^{\infty}A \neq \Sigma \{R_z^{\infty}X : X \leq A \& |X| < \kappa\}$. Since $R_z^{\infty}Y$ is the largest subgroup X of Y such that $\operatorname{Hom}(X, \mathbb{Z}) = 0$, $R_z^{\infty}A \neq \Sigma \{R_z X : X \leq R_z A \& |X| < \kappa\}$ by the above fact. Hence, there exists an $a^* \in R_z^{\infty}A$ such that $a^* \notin R_z X$ for any subgroup X of $R_z^{\infty}A$ of cardinality less than κ . As the proof of $(2) \rightarrow (4)$ of Theorem 1, we get a nonzero homomorphism $R_z^{\infty}A$ to \mathbb{Z} , which is a contradiction.

Suppose that a regular cardinal κ is not strongly $L_{\omega_1\omega}$ -compact. Then, there exists a λ such that $\lambda = \lambda^{<\kappa}$ and κ is not $\lambda \cdot L_{\omega_1\omega}$ -compact. By Theorem 1 (7) and a fact in the proof of $(5) \rightarrow (6)$ of Theorem 1, there exists a group S such that $R_z^{\infty}S = S$ and $\Sigma \{X \leq S : \operatorname{Hom}(X, A) = 0 \& |X| < \kappa\} = 0$. Hence, the cardinal condi-

358

tion does not hold. Another equivalence is easy to show.

(2) (The same reasoning as [17, Proposition 2.8]) Suppose that R_z^{∞} is a singly generated radical, i.e. $R_z^{\infty}A = R_YA = \cap \{\text{Ker}(h) : h \in \text{Hom}(A, Y)\}$. Then, $R_z^{\infty} = R_YY = 0$. Let α be an ordinal such that $R_z^{\alpha}Y = 0$. By [16, Corollary 3.10] (due to Mines), there exists a group A such that $R_z^{\infty}A = 0$ and $R_z^{\alpha}A \neq 0$. Since A is isomorphic to a subgroup of the direct product Y^I for some I, $R_z^{\alpha}A \leq R_z^{\alpha}Y^I \leq (R_z^{\alpha}Y)^I = 0$, which is a contradiction.

2. Recently, G. Bergman and R. M. Solovay [18] announced a similar result to Theorem 1, i.e. The class of all torsionless groups is characterized by a set of generalized Horn sentences, iff there exists a strongly $L_{\omega_1\omega}$ -compact cardinal. They also commented that M. Magidor had shown that the existence of a strongly $L_{\omega_1\omega}$ -compact cardinal is strictly weaker than that of a strongly compact cardinal, which answers our question after Corollary 4.

References

- [1] Bell, J. L., On the relationship between weak compactness in $L_{\omega_1\omega_1}$, $L_{\omega_1\omega_1}$, and restricted second-order languages, Arch. Math. Logik 15 (1972), 74-78.
- [2] Bell, J. L., On compact cardinals, Zeitschr. f. Math. Logik und Grundlagen d. Math. 20 (1974), 389-393.
- [3] Dickmann, M. A., Large infinitary languages, North-Holland Publishing Company, Amsterdam-Oxford, (1975).
- [4] Dugas, M., On reduced products of abelian groups, Rend. Sem. Mat. Univ. Padova, 73 (1985), 41-47.
- [5] Dugas, M. and Göbel, R., On radicals and products, Pacific J. Math., 118 (1985), 79-104.
- [6] Eda, K., A Boolean power and a direct product of abelian groups, Tsukuba J. Math., 6 (1982), 187-194.
- [7] Eda, K., On a Boolean power of a torsionfree abelian group, J. Algebra, 82 (1983), 84-93.
- [8] Eda, K., Almost-slender groups and Fuchs-44-groups, Comment. Math. Univ. St. Pauli, 32 (1983), 131-135.
- [9] Eda, K., A generalized direct product of abelian groups, J. Algebra, 92 (1985), 33-43.
- [10] Eda, K., Z-kernel groups of measurable cardinalities, Tsukuba J. Mach. 8 (1984), 95-100.
- [11] Fuchs, L., Infinite abelian groups II, Academic Press, New York, (1973).
- [12] Jech, T., Set theory, Academic Press, New York, (1978).
- [13] Sikorski, R., Boolean algebras, Springer-Verlag, Berlin-Heiderberg-New york, (1969).
- [14] Silver, J., Some applications of model theory to set theory, Ann. Math. Logic, 3 (1971), 45-110.
- [15] Wald, B., On the groups Qk, in Abelian group theory, pp. 229-240, edited by R. Göbel and E. A. Walker, Gordon and Breach, New York-London, (1987).
- [16] Fay, T. H., Oxford, E. P. and Walls, G. L., Preradicals in abelian groups, Houston J. Math. 8 (1982), 39-52.

- [17] Fay, T. H., Oxford, E. P. and Walls, G. L., Preradicals induced by homomorphisms, in Abelian group theory, pp. 660-670, Springer LMN 1006, 1983.
- [18] Bergman, G. and Solovay, R. M., Generalized Horn sentences and compact cardinals, Abstracts, AMS (1987) 832-04-13.

Institute of Mathematics University of Tsukuba Tsukuba Ibaraki, 305 Japan

Fukushima Technical College 30 Nagao, Kamiarakawa, Taira Iwaki, 970 Japan