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ISOTROPIC MINIMAL SUBMANIFOLDS IN A SPACE FORM

By

Takehiro ITOH

Let ]\Zl”‘(c”) be an m-dimensional space form of constant curvature ¢, that is,
an m-dimensional Riemannian manifold of constant curvature ¢. By the Theorem
in [5], the author determined n-dimensional minimal submanifolds in ]\71"‘(6) with
the sectional curvature not less than né/2(n+1). We should pay attention to
the value next to n¢/2(n-+1), so that we could classify minimal submanifolds in
M”(f) with the sectional curvature not less than it.

In the present paper, we will classify n-dimensional isotropic minimal sub-
manifolds in M™(¢) with the sectional curvature not less than some value.
Indeed, we will prove the following

THEOREM A. Let M be a connected compact n-dimensional (n=3) orientable
submanifold isotropically and minimally immersed in an (n+v)-dimensional space
form M of constant curvature ¢. If the sectional curvature of M is not less than
né/3(n+2), then M is of constant curvature & or né/3(n+2), or the second funda-
mental form is parallel.

We may assume that 0<¢ by (2.17) and Remark in §2, that is, M is a
sphere S™(&) of constant curvature & When M is of constant curvature, by the
results in [2], according as the sectional curvature is & or né/3n+2), M is a
great sphere of S™(¢) or the immersion is the standard minimal one of degree 3
from a shere into a sphere as stated in [2], which we will call the generalized
Veronese submaniolfd in the present paper. When the second fundamental form
is parallel, the above immersion is the planar geodesic one, which is determined
in [8]. As a Corollary to Theorem A, using the results in [2], [4] and [8],
we have the following

THEOREM B. Let M be a connected compact n-dimensional (n=3) orientable
submanifold minimally and isotropically immersed in a sphere S(¢) of constant
curvature ¢ If the immersion is full and the sectional curvature K, satisfies the
inequality : né/3(n+2)<K,<¢, then M is a great sphere of S(&), a Veronese sub-
manifold, or a generalized Veronese submanifold.
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§1. Preliminaries.

Let M be an n-dimensional submanifold immersed in an (n+ p)-dimensional
space form M:M"”’(E) of constant curvature ¢, (i.e., Riemannian submanifold
with induced Riemannian metric). We denote by V (resp. V) the covariant dif-
ferentiation on M (resp. A7[). Then the second fundamental form (the shape
operator) ¢ of the immersion is given by

o(X, Y)=VyYV—VxY, where X and Y are tangent vectors,

and it satisfies o(X, Y)=0(Y, X). We choose a local field of orthonormal frames
€1, €2, Cny Cpit, ", Cnyp I M in such a way that restricted to M, ey, ¢y, -+, e,
are tangent to M (and, consequently the remaining vectors are normal to M ).
Let B be the set of all such frames in M. With respect to the frame field of
M chosen above, let @, @, '+, @n+p be the field of dual frames. Then the

~

structure equations of M are given by (%)

A& 4=2@45r005, Baptaps=0,
1.1

d(Z’ABZZCT)AC/\CDCB_CNCDA/\(DB .

Restricting these forms to M, we have the structure equations of M:

w,=0, Wi =2 h{0;, h?j:h}’u
do;=Fwi;n0;, ©;+0;=0,
(1.2) .
d0i;=2w 7\08— 8215, Qij:'_Z“ZRijklwk/\wl ,
Rijui=00:k0;i—0:1:0,;1)+ 2 A —hi b3 .
1
(12) dwaﬁ—zwaw\wrﬁ'—gaﬂy ‘QaﬂH?ZRaﬂijwi/\wj,

Rapii=2(hghf—h3hb).
Then, the second fundamental form ¢ can be written as
o(X, V)= hfw:(X)wi (Y )e, .
If we define h¢s,.i,,,n (1<E) by
(1.4) 2Tty @ =G iy A DRE iyt Oty D0y @pa,

then we have

(*) We use the following convention on the range of indices unless otherwise stated;
A, B,C,o =1,2,-.n+p; 4,5,k =1,2, -0 yn5 @, 8,7, =n+1,n4+2,-- ,n+p. We agree
that repeated indices under a summation sign without indication are summed over the
respective ranges.
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(15) hqu...ikzm"‘h{‘ruikmL=zhglmij-lrij.‘_lmikRri]-lm'i‘zhé:lmikRﬁalm'
If M is of constant curvature ¢, then we have
(1.6) Rijkm:C(5ik51m”5im5jk>-

The vector a(X, X) is called the normal curvature vector in the direction of a
unit vector X. If the normal curvature vector has the same length 2 for any
unit tangent vector to M, then the immersion is said to be A-isotropic. 'The
immersion is called minimal if 3}h% =0 for all @. We easily see that the im-
mersion is A-isotropic if and only if the components of the second fundamental
form satisfy the following relations ([71);

(L7 ShEhE+ D hinhit S hGhGn =2(0:0km~+0in0;5+0:i50m).
Now, we consider the functions on M defined by
S:=|el*=3hihs,, Ly :=Shihiahiihin,
Ky :=3RapisRapii=(hihb—hi ki) hehh— hi,hE).

Then we know the following differential equation ([1]);

1
(1.8) 7AS=]]03]]2+n55—'LN—KNy where [los]® :=22A% A

§ 2. The proof of Theorems.

We suppose that M is a A-isotropic and minimal submanifold in a space form

form M of constant curvature &, Then, from (1.7), we have

that is, M is an Einstein manifold. If n=3, as is well known, 4 is constant on
M. From (1.2) and (1.7) we have

(2.2) 3 hEGhg=(A2—28)8:;0 5+ (A +E)0:40;1+0:050)— Rivws— Rintj,
which implies
(2.3) Zh:mRumF(z?Jre)h?j—%Eh:mhimh%j.
Since A is constant, from (1.7), for all 7, 7, k and [/, we have

Shenhf+ ShGnhsi+ ShGnhii=—(SAGhEn+ DRGSR Tn T,
which implies

(2~4)1’jmkl 2hgjmhl(:l‘zhgjhglmzzh?jlhgm+zh?jkh?m+2<2h7,qm ?Izl_!"zh;rmhgkl)'
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Making (2.4)ijmr1+(2.4) 41 mi;, We have
(2.5) 2 hinhfut+ 2 hinhti+ 2 hin i+ 2 hinh=0.
It follows from (2.4);;,», and (2.5) that we have
(2.6) Zhihgim— 2R he =20 h+ 2 hnhe .
Since M is minimal, from (2.6) we get
2.7) 2 hinhine=0.
Furthermore, from (2.6) we get
@.8) ShihEimh i h =20 m i h i R+ 2 b R G R 5o
ShEGhgmhl bl =—hgnh& hE by =—h& & hB hE
whcih imply
(2.9) 3B hfhfm R =R hh iy
Letting AhB,=3h%;m, from (2.6) we have
S A8 ARG — SARE DR =5 R hf s+ S0 A e,
which implies that
(2.10) Shihihfnhim=0.
It follows from (1.5) and (2.7) that we have
ShEhehE whb s =—RhGhEhE b = — S h GG R hE
F2AGhE R { R R piim+RER pjim+ IR gim}
which, together with (1.2), (1.3), (1.7), (2.3) and (2.9), implies

@11)  ShEhGhE nhh = {("7;4) 5}LN—22<nc~+212>s

+2Trace (H*HEHTH*HPHY)
__{n+10
L2

22~5}LN—~ nA(¢—A)S— —%— Trace A®
—23(Trace H*HPH")(Trace H*HFHT),

where A=(3h%h%;) and H*=(hg). By means of (1.2), (1.5), (2.1) and (2.3), we
have

(2.12) A= hEmm=n(C—A)RE—23hg hE hE;.
Since S=31hhE=n(n+2)4%/2 is constant on M, using (1.7), we rewrite (1.8) as
(2.13) los||?=2L y—n(c—2%)S.



Isotropic minimal submanifolds 501

Making use of (1.5), (2.7) and (2.12), we have

tha]mlm thjmmlﬁzhgjm pilm+2hgmepjlm‘i‘Zh?ijpmlm“'Eh%ijﬁalm
Zhulmm Zhumlm'—zhp]m ptlm+2hpszpJLm+2hmeﬂalm
+2h z]hklmhkm_zhijh kmhklm,
S mm = — )R — 25 hfimhf wh8 =23 W by h— 25 hm i hf
Summing up these equations and making use of (2.2)~(2.11), we have
Aoy =25 s mhn+ 2SR ARE = {220+ 30— 30 —2) 2} o
+2”0'4”2 GEh hklmhﬂwhkLm_lszh hklhejmh'klmy
that is,

(2.14) Alas)* =2||le.|*+{22n+3)¢—3(n— DA% o> —62hE hklmhéjhum
n+10 " s a2
—18{ ; *C}LN—{-lSnl(c——Z)S
+9Trace A*+363)(Trace H*H? H")(Trace H*H?H),

where |0 =30 e nhlen. On the other hand, using (2.9) and (2.12), we have

%ALN— S hG R mh B h S hGRE A b h8, m+n(@—A%)L y—2Trace A®.

Now, we consider the function f=(2/9)[cs|*+(1/4)Ly. Making use of (2.14)
and (2.15), we have

(2.15)

3(n—2)
2

2.16) Af= %(nmuu{(szrsw- 2Hllo1?)Han2e—i)S

n-+10
2

+ S hha Al mhin—(4] 22—5}—n(5#22)>L

+83(Trace H*HPH)Y(Trace H*HP H").

On the other hand, from (1.2) and (2.3) we have

~ 2 3 Qa ha a ha
(217) n( '——2*>S—‘7LNZZhijhkakijm‘l_zhijhkiRkmjm-

For each a. let h%, h%, .-, he be the eigenvalues of H* Then we have
1
; J_Ek m(h(ixjhl(emekijm'{_hijhl?ikajm):_z_izk(h%-—hgy}?ikik
Z—;—_Ek(h‘i’—h,‘:)zc:ncZ_(h’;)zzncTrace(H”‘Y,

where ¢ is the minimum of the sectional curvature of M and the equality holds
only when the sectional curvature is constant. This, together with (2.17), implies
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N 3
n(c—?—)S——TZ-LN;ncS,
that is,

(2.18) LyS 4 {20—0)—3)S,

3

where the equality holds only when the sectional curvature is constant.

PEMARK. [t follows from our assumption né/3(n+2)<c that
(2.19) 0se.
When M is simply connected and complete, since M is a compact minimal snbmani-

fold of A7I, & must be positive.

It follows from (1.7) and nLy=Ky (see [4]) that we have

nA

n—1

S LN}

(2.20)

where the equality holds only when the sectional curvature is constant. From
(2.18) and (2.20) we have

nA? 2n 3(n+2)*

< _ P
@.21) 0SLy— "S54y {en+3— T
Since S is constant on M, if S=X2h&hE=0, then M is totally geodesic. There-
fore, from now on we may assume that S#0. Let us now find the lower bounds
for SShGhahE jmhfim, X(Trace H*HPHT)(Trace H*HPH") and ||g,)®* when S=#0,

that is, we will prove the following.

zz}s.

LEMMA. If S#0, then we have the following inequalities;
6 2 A
DD Vol {Ly— "

@2 o= (n+4){ G e n(n+)S 7 P
22
2.23)  ShEASRbhnz T2 ol oLy s)
(2.24)  25(Trace H*HPH'Y(Trace H*H#HNz "7 (zx_";)f«@ 2Ly
_ (n+4) nat

s L5y )

PRrROOF OF LEMMA. Taking the length of the tensors
Kz]km hz]km hv.'jmk+2(5imhfk+51mhfk—5jkh?m-aikhfm)

and
L?jlem:hgjkm—x(aijhl?m"{_aikh?m_f‘ajkh >+y(5kmh +5Jmhzk+6zmhjk>
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where z=|lg,l?/nS, x=2y/(n+2) and y=(n+2)|a,)*/n(n+4)S, we have (2.22)

and (2.23), because we have (A% rn—hGme) AGen—hSGnr) =8 hGhGhE jnh sy m—

4Q4-8)]os? from (1.2), (1.3), (1.5), (2.3) and (2.11). Next, taking the length of

the tensor

Pi‘;kmzzhg]’hirh;}m_’_zhérhimhgj_a<6jkh?m+2aikh?m+5imhfk>
+b<5ijhl?m+6kmhgj)~

we have

(2.25) 23(Trace H*HPH")(Trace H*HPH") =z —2(3n+4)a*S+2a{(3n+8)A2S— L 5}
+16abS—20*nS—4bL y—(n+2)2%L y,

n—+2)2% .
( 2 )*5“ and SSAGAE RS RS =30 hGhE) S hE R, 4-8(8:;0 4,

—8:0:)+ Riry;}=42S—(1/2)L 5 from (2.2). For some positive constant x and

because D hf hg ;=

any positive constant ¢ such that

2x+1

. < <
2T D) e+ Ly=2aS<nbS<Ly+e,

(2.26)

we set
23n+4)aS=3n+8)A*S— L y+4b*nSx/a+8(1—x)bS.

Then, from (2.25) we have
(2.27) 23 (Trace HAHEH(Trace H*HAH)=(3n+8)A2Sa—aL y—4bL y
—(n+2)AL y+2{—2x+1)nbS+4(x+1)aS}b.

Since Ly=2(x+1)Ly+Q@2x+1)e—Qx+1)YLy+e)< —2x+1)nbS+4(x+1)aS
by (2.26), using (2.26), (2.27) implies

(2.98)  235)(Trace HHS H7)(Trace H*H? H')> %’%’9 2Ly
_ (nt4) & @Bn+8)(2x+1) ., n+4
2nS L”{L” n—15}+( Ax+1) 47 2ns LN)“:'

Since ¢ is any positive constant, we have (2.24).
Now, we will prove Theorem A. Making use of (2.22), (2.23) and (2.24),
from (2.16) we have

4(n+1) ~ (420 )

(2.29) 872(g0 g PR 2oty )
3n*+13n-+20 ni* .
T 3n(n+4)S {Lv_ n—15})”‘“” ’

which, together with (2.21), implies
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2(3n*+5n—38)
21(n+4)(n+2)

{2<n+3>6—M22}|103i\220,

2.30) Afz 2ne )

Therefore, if M is compact and orientable, we have SMAfd Vol M=0, and so
we get Af=0 on M, that is,

3(n+2y

f is constant on M and {2(71“"3)5- 2(n—1)

2ol =0,

which implies that if M is not totally geodesic, then

los]|=0 or 2n+3)¢= %((7;_4;%22.

If S0 and ||¢s] 0, then it follows from (2.20) and (2.21) that M is of constant

curvature In this case, as stated in [2] or [6], the immersion may

né
3(n+2)
be considered as a standard minimal one of degree 3 from a sphere into a sphere.
If S#0 and |lo,]=0, then the second fundamental form is parallel, and so the
immersion is the planar geodesic one which is determined by K. Sakamoto in
[8]. Thus we have proved Theorem A.

Next, we will prove Theorem B. If the sectional curvature K;, of M
satisfies the inequality »3(:%2) <K,<¢?, then, by Theorem A, we see that M is

of constant curvature ¢ or né/3(n+2), or the second fundamental form of M is
parallel. Looking over the curvatures of planar geodesic submanifolds in [8],
we easily see that M must be of constant curvature & or né/2(n-+1) when |los|
=0. By the results in [5] and [6], according as K, is ¢, né/2(n+1), or n¢/
3(n+2), M is a great sphere of S(¢), a Veronese submanifold, or a generalized
Veronese submanifold.
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