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ISOTROPIC MINIMAL SUBMANIFOLDS IN A SPACE FORM
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Let Mm(c) be an m-dimensional space form of constant curvature c, that is,

an
/n-dimensional Riemannian manifold

of constant curvature c. By the Theorem

in [5], the author determined n-dimensional minimal submanifolds in Mm(c) with

the sectional curvature not less than nc/2(n + l). We should pay attention to

the value next to nc/2(n + l), so that we could classify minimal submanifolds in

Mmic) with the sectional curvature not less than it.

In the present paper, we will classify n-dimensional isotropic minimal sub-

manifolds in Mm(c) with the sectional curvature not less than some value.

Indeed, we will prove the following

THEOREM A. Let M be a connected compact n-dimensional (n^3) orientable

submanifold isotropically and minimally immersed in an {n-＼-v)-dimensionalspace

form M of constant curvature c. If the sectionalcurvature of M is not less than

nc/3(?z+2), then M is of constant curvature c or nc/3(n+2), or the second funda-

mental form is parallel.

We may assume that 0<c by (2.17) and Remark in §2, that is, M is a

sphere Sm(c) of constant curvature c. When M is of constant curvature, by the

resultsin [2], according as the sectional curvature is c or nc/3(n+2), M is a

great sphere of Sm{c) or the immersion is the standard minimal one of degree 3

from a shere into a sphere as stated in [2], which we will call the generalized

Veronese submaniolfd in the present paper. When the second fundamental form

is parallel,the above immersion is the planar geodesic one, which is determined

in [8]. As a Corollary to Theorem A, using the results in [2], [4] and [8],

we have the following

THEOREM B. Let M be a connected compact n-dimensional (n^3) orientable

submanifold minimally and isotropically immersed in a sphere S(c) of constant

curvature c. If the immersion is full and the sectionalcurvature Ka satisfiesthe

inequality: nc/3(n+2)f^Ka<c, then M is a great sphere of S(c), a Veronese sub-

manifold, or a generalized Veronese submanifold.
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§1. Preliminaries.

Let M be an n-dimensional submanifold immersed in an (?z+ />)-dimensional

space form M=Mn+p(c) of constant curvature c, (i.e., Riemannian submanifold

with induced Riemannian metric). We denote by V (resp. V) the covariant dif-

ferentiation on M (resp. M). Then the second fundamental form (the shape

operator) a of the immersion is given by

a(X, Y)=1XY―1XY, where X and Y are tangent vectors,

and it satisfies o(X, Y)=a(Y, X). We choose a local field of orthonormal frames

&i,<?2>■",en, en+u ■･■,en+p in M in such a way that restricted to M, eue2,---,en

are tangent to M (and, consequently the remaining vectors are normal to M).

Let B be the set of all such frames in M. With respect to the frame field of

M chosen above, let au &2, ■･･,<dn+P be the field of dual frames. Then the

structure eauations of M are given bv (*)

dwA~H&ABA&B, &AB + &BA ―0,
(L1)

d&AB ―1]oJaca^cb~~C6)aa^b･

Restricting these forms to M, we have the structure equations of M:

o)a=0, a)ia=J!ihfjQ}j, hfj―h^i,

dCDi^^itiij^Wj, (Oij+ Q)ji= 0,
(1.2)

1
d(Oij= ^]<t)ikA(0kj―Qij, ≪o―y!]i?i;t,fi)iA(y;,

R≪w=?XhM-h%hfo.

Then, the second fundamental form a can be written as

o{X, Y)=^h?ja>i(X)(t>Jmea.

If we define h?lh...ik+im (i^k) by

(1.4) S^t"
-ik +lm0)m : =

dhl..4k
+ 1
+ ^h?1..4j_1mij+v.4k

+ 1(≫mij
+ 'Zhfiv..ik

+ 10)f}a
,

(*) We use the following convention on the range of indices unless otherwise stated;

A, B,C, ･･･ -1,2, ■■■.n+p; i,j,k,― =1,2, ■■■,n; a, p,r, ･■■=n+l, n+2, ･･･ ,n+p. We agree

that repeated indices under a summation sign without indication are summed over the



(1.5)
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hil...iklm h.i1-ikml = 2jhiv~ij-1rij+1-ikK rijlm~＼'2-ihil-ikR fialm.･
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If M is of constant curvature c, then we have

(1.6) Rijkm―c{dikdjm―8im8jk).

The vector o(X, X) is called the normal curvature vector in the direction of a

unit vector X. If the normal curvature vector has the same length X for any

unit tangent vector to M, then the immersion is said to be X-isotropic. The

immersion is called minimal if S/zmm^O for all a. We easily see that the im-

mersion is ^-isotropicif and only if the components of the second fundamental

form satisfy the following relations([7]);

(1.7) l]h?jh^m+^h?mhfk+Tlh?khfm=X2(dij8km+8indjk+dik8jm).

Now, we consider the functions on M defined by

S:=＼＼<T＼＼*=?}h?jh?},LN:^^hatjhakmh＼Mm,

KN:=-ZRapiJRaMJ='2(h?Mj-hPikhfljXh?Mj-h＼lhfj).

Then we know the following differentialequation ([1]);

(1.8)
^AS=＼＼a3＼＼2+ncS-LN~KN> where ＼＼a3＼＼2:= ^hfJkh?jk.

§2. The proof of Theorems.

We suppose that Mis a 1-isotropicand minimal submanifold in a space form

form M of constant curvature c. Then, from (1.7). we have

(2.1)
m.

a

mi

(n+2)

2
Ma,

that is, M is an Einstein manifold. If n^3, as is well known, X is constant on

M. From (1.2) and (1.7) we have

(2.2) 2^h^hakl={Xz-2c)dijdkl+U^mi^nJr^jk)-Rii^-RikiJ,

which implies

(2.3) ^h^mRikm}^a2+c)h?j-^h^mhimh^.

Since X is constant,from (1.7),for alli, j, k and /,we have

which implies
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Making {2A)ijmki+ {^A)klmij,we have

(2.5) S/ltam^ + S^flm^i + S^m/lfi> + SAfm/lf>*=0

It follows from (2.4)v,-im,and (2.5)that we have

(2.6) '2h?jhf:lm-'2h?Jmhf!l='£IiSnh?jt + '£h?mh?Jk

Since M is minimal, from (2.6) we get

(2.7)

Furthermore, from (2.6)we get

(2.8)

Zjhimh"mk―0

llh?Jhf!lMMjm=^h?jmhf;MMjm+2^hf;mhuhpMjn,

whcih imply

(2.9) SIlhSjhfrMMjm^hbh&MMtn.

Letting A/i^=2^^mm, from (2.6) we have

which implies that

(2.10) Hh?}hzMMjlm=0.

It follows from (1.5) and (2.7) that we have

+ ^h?jh%Mm{hPjRpiim + hPiRpjlm + hrijRrisim}

which, together with (1.2),(1.3),(1.7),(2.3) and (2.9),implies

(2.11) ^h?jhMlMJm={^^--cJLN-X＼n(!+2Xt)S

+2 Trace(HaH^HrHaH^Hr)

=1
n + 10

2
X2-c＼LN-nX＼c-X2)S- -^Trace Az

-2S(Trace HaH^Hr)(Trace HaH?Hr),

where A=(^h?Mj) and Ha=(h?j). By means of (1.2),(1.5),(2.1) and (2.3),we

have

(2.12) AhfJ='Zh?jmm=n((;-Xt)h?j-2^hSmhiMj.

Since S=S/jf;/zf; = n(n+2)A2/2 is constant on M, using (1.7), we rewrite (1.8) as

(2.13) lks||'=2Lv-ntf-nS.
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Making use of (1.5),(2.7) and (2.12), we have
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2jhijmlm ―^]hijmmi ―2^hpjmRpiim-＼-2jhipmRpjim-＼-2jhijpKpmimJrZjh ijmRfialn

2j"ijlmm ^jlT-ijmlm,―2^<lpjmKpilm~T~2-iHpim.Kpjlm~T~2-1"■ijmK-{ialm

Summing up these equations and making use of (2.2)~(2.11), we have

A＼＼Oz＼＼2=22Zh?Jkmh?jkm+2^h?jkAh?jk = {2(2n+3)c-3(n-2m＼＼o4z

+2＼＼ai＼＼2-6Tih?Mmh^hilm--l8^h?j^MMhilm,

that is,

(2.14) AJk3||2=2||(;4||2+ {2(2n+3)c-3(n-2)A2}||(T3||2-6S/i?^m/iU^m

-ls{^^-X'-c＼LN + lSnX＼c-^)S

+9 Trace ,43+362(Trace HaH^Hr)(Trace HaH^W),

where ＼＼ai＼＼2=Jlh?jkmhijkm.On the other hand, using (2.9) and (2.12), we have

(2.15) yAL.v =
^S/2^^mAi-^m+S/i?^^/iim^^m+n(c-A2)LiV-2TraceA3.

Now, we consider the function /=(2/9)||<r3||2+(l/4)LiV. Making use of (2.14)

and (2.15), we have

(2.16)
a^ 4/n

1,2
, U ,

QA~
3(n~2)

^^"^v"^4" r 2―

+Hh?jhMJMlm-U^LY~

X2}＼＼as＼＼2)+^nX＼c-X2)S

X2-c }-n{c-?))LN

+82(Trace HaH^ H^Trace HaH^W).

On the other hand, from (1.2)and (2.3)we have

(2.17) n(c-^-)s-^LN=^h^mRkijm+J]h?jh^Rkmjm.

For each a. let hi, h
a

2> ■" h%,be the eigenvaluesof Ha. Then we have

2j ＼hijh"mRkijm-＼-hijhkiRkmjm)―ttSv/*? h") Riktk
i,j,k,m o i,k

Z i,k i

where c is the minimum of the sectional curvature of M and the equality holds

only when the sectional curvature is constant. This, together with (2.17),implies
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that is

(2.18)

n(c ―

L N
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2 r
1

2
LN^ncS

£j{2(c-c)-X*}S

where the equality holds only when the sectional curvature is constant.

Pemark. It followsfrom our assumptionnc/3(n+2)^c that

(2.19) O^c.

When M is simply connected and complete, since M is a compact minimal snbmani

fold of M, c must be positive.

It follows from (1.7) and nLN^KN (see [4]) that we have

(2.20)
nk2

n ―1
o^Ljv,

where the equality holds only when the sectional curvature is constant. From

(2.18) and (2.20) we have

(2.21) 0£LN-
nX2

n-l
< In
= 9(n+2)

{2(rc+3)c-
3(n+2)2

2(n-l)
As

Since S is constanton M, if S=^hijhij=O, then M is totallygeodesic. There-

fore,from now on we may assume thatS^O. Let us now findthe lower bounds

for ^h?jhaKMJmhilm, S(Trace#ai^#O(Trace#a/^#O and ||(T4||2when 5^0,

thatis, we willprove the following.

Lemma. // S^O, then we have the following inequalities

(2.22) iierji2^
3(n+2) [n+1 ,a j 6(n+2) r )U! 1

(2.23) Hh?jh'M,MlM> -^r
n ―i

lk3il2+

kM{L^^l

(2.24) 2S(Trace HaH^Hr)(Trace HaH^W)^
(n-2)(n+4)

2(n-l)

*}

A L＼r

~2^S~Ln＼Ln

and

n-1
*}

Proof of Lemma. Taking thelength of the tensors

L?Jkm=h?Jkm-x(8ijhf:m+dikhJm+8Jkh?J+y(dkmhf}+8jmh?k+dtmh%)
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where z=＼＼as＼＼2/nS,x=2y/(n+2) and ;y=(n+2)|i(TsIIYn(n+4)S, we have (2.22)

and (2.23),because we have ^h?jkm-hfjmk)(h?jkm~h?Jmk)=8^h?jhf!MjMim-

4U+c)]|<r3||2from (1.2),(1.3),(1.5),(2.3) and (2.11). Next, taking the length of

the tensor

Pt%m=llh＼Mrh?m+^h＼Mmh?j-a(djkh?m+28ikhU^Simh%)

we have

(2.25) 2S(Trace//a//^//0(Trace/fa^//0^-2(3n+4)G25+2a{(3n+8)^2S-LJV}

+ 16abS-2b2nS-4bLN-(n+2)X2LN

because S/i?m/i^=^y^-3y and ^hfjh^MMj^m^hfjh^i^h^Mt+cid.jd^

―dudkj)+Rikij}=/(2S―(l/2)LN from (2.2). For some positive constant x and

any positive constant s such that

(2.26)

we set

2x + l

2(* + l)
£+ LN^2aS<nbS^LN + s

2(3n+4)aS=(3n+8)X2S-LN+4b*nSx/a+${l-x)bS.

Then, from (2.25) we have

(2.27) 2^(TraceHaH^Hr){TnccHaH^W)^(3n+S)X2Sa-aLN-4bLN

-(n+2)A2LN+2{-(2x+l)nbS+4(x + l)aS}b.

Since L^=2(x + l)Liv+(2x + l)£-(2x + l)(LiV+ £)̂ -(2x+l)nbS+4(x + l)aS

by (2.26),using (2.26),(2.27) implies

(2.28) 2S(Trace HaH?Hn(TrsLce HaH?W)>

(2.29)

(n+4)
T
＼T nk2

A/^(
4(

9(

(n-2)(n+4)

2(n-l)

o] , /(3n+8)(2x + D
*r＼

4(x + l)

2(n+3)c-

3n2+13n+20

3n(n+4)S

which, together with (2.21),implies

3(n+2)2

2(n-l)

{ln-

A

A L$r

X2-

s})ll*≫ll"

n+4
JnS

Since s is any positive constant, we have (2.24).

Now, we will prove Theorem A. Making use of (2.22), (2.23) and (2.24)

from (2.16) we have

nX2

n-1



504

(2.30) A/^
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2(3n2+5n-8)

27(n+4)(n+2)
{2(n+3)c-^=^2}|kall2^0

Therefore, if M is compact and orientable,we have ＼ AfdVolM=0, and so
JM.

we get A/=0 on M, that is,

/ is constanton M and h{n+3)c -―^―X'lWo.W^O

which implies that if M is not totally geodesic, then

|k,||=0 or 2(n+3)c =
q^yX＼

If S^O and ||<r3||^0,then it follows from (2.20) and (2.21) that M is of constant

curvature
nc

3(n+2) "
In this case, as stated in [21 or [61. the immersion may

be considered as a standard minimal one of degree 3 from a sphere into a sphere.

If S^O and 11cr31|=0, then the second fundamental form is parallel,and so the

immersion is the planar geodesic one which is determined by K. Sakamoto in

[8]. Thus we have proved Theorem A.

Next, we will prove Theorem B. If the sectional curvature Ka of M

satisfies the inequality
nc

3(n+2)
^Kff<c, then, by Theorem A, we see thatMis

of constant curvature c or nc/3(n+2), or the second fundamental form of M is

parallel. Looking over the curvatures of planar geodesic submanifolds in [8],

we easily see that M must be of constant curvature c or nc/2(n + l) when ||<r3||

=0. By the results in [5] and [6], according as Ka is c, nc/2(n+l), or nc/

3(n+2), Mis a great sphere of S(c), a Veronese submanifold, or a generalized

Veronese submanifold.
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