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ON HOMOGENEITY OF HYPERSPACE OF MATIONALS

By

Hiroshi FUJITA and ShinjiTANIYAMA

Abstract. We show, assuming analytic determinacy, that the

hyperspace consistingof compact sets of rational numbers is

topologicallyhomogeneous.

Introduction

For a metric space X with metric d, we consider the set 3?(X) of all non-

empty compact subsets of X. We metrize Jf(X) by the Hausdorff metric as

dH(A,B) sup d(x, A), sup d(x, B)
xsB xeA

}

The metric space (Jf(X),dH) thus obtained is called the hyper space of

compact sets of X. Relationship between metric and topological properties of X

and Jf(X) has been studied. Here we study homogeneity of hyperspaces. A

topological space X is homogeneous if each point of X can be carried to any other

by a homeomorphism of X onto itself.

The hyperspaces 3?{X) are known to be homogeneous for many spaces X.

For example, it is known that if X is a Peano continuum, then Jf(X) is

homeomorphic to the Hilbert cube [0,1]<Uand hence homogeneous. For X = 20}

(the Cantor space) or of (the Baire space), J?(X) is homeomorphic to X itself

and hence homogeneous. For X = Q, the space of rational numbers, the situation

was less trivial,since no simple topological characterization of
<W{Q)

has been

known. In fact, Jf(Q) is homogeneous under certain set theoretical assumption,

as our main theorem shows. Under the same assumption, Jf(Q) is characterized

as the unique subspace of 2<u which is meager in 203 and everywhere property co-

analitic(for the terminology, see Section 1).

Theorem. Assume analytic determinacy. The hyper space ,5f(Q) of

compact sets of rational number, with the Hausdorff metric, is homogeneous.
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Analytic determinacy is the statement that every two person infinitegame on (0 is

determined if its payoff set is analytic as a subset of Q)m. This assumption is

strictlyweaker than the existence of a measurable cardinal. The reader may

consult [1] for details.

§1. Proof of The Theorem

For the sake of technical convenience, we regard Q as a countable dense

subset of the Cantor space 2W, not of the real line. This may cause no confusion

because every countable dense subset of perfect Polish space is in fact

homeomorphic to the space of rational numbers. The inclusion gc2ftl induces

another topologicalinclusion ^(Q) a ,3f{2m) in an obvious way.

We need the notions of analytic and co-analytic sets.For general information

about analytic and co-analytic sets,we refer the reader to [2]. A subset of Polish

space X is analytic if it is the projection of a Borel subset of XxF where Y is

Polish. The class of analytic sets is closed under countable unions, countable

intersections,continuous images and continuous preimages, while it is not closed

under complements. The complement of an analytic set is called co-analytic. A

subset £ of a Polish space X is everywhere properly co-analytic if Ef]U is co-

analytic but not analytic for every basic neighborhood U in X.

We will use a result of J. Steel [3] in descriptive set theory. This is the only

place we should mention analytic determinacy.

Lemma 1.1. (Steel) Assume analyticdeterminacy. Suppose A,Bcz2a are

everywhere properly co-analyticand meager. Then there is a homeomorphism

h:2w ≪2fl)such thath＼A＼= B.

Lemma 1.2. The space Jf(Q) is meager as a subsetof 5?(2a)

Proof. Let & be the set of non-empty compact subsets of 2m without

isolated points. Then <P is a dense Gs subset of jr(2tt)).To see that <? is Gs,

note

Ke^> 4=>(VAT)r A"n/V^0^>i<:n/Vis infinite!

(where TV runs over basic clopen subsets of 2<B). For each N, we have

{K-.KHN is infinite} = ^(2") ＼(J {K : K (1 AT has at most n points}

The setsunder countable union on the right hand side are closed. So the condition
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" Kf)N is infinite" determines a Gs set of K e J?(2m) for each fixed basic clopen

set iVc2ffl. It now follows immediately that ,9s is G5, since there are only

countably many basic clopen setsin 2ft).

Since every countable compact set has an isolated point, Sfi is disjointfrom

Jf(Q). Being disjointfrom a dense Gs set, Jf(Q) is meager. Ii

Lemma 1.3. The space ^f{Q) is everywhere properly co-analyticas a subset

of ^(2<w).

The proof of thislemma is given in Section 2. Here we prove the main

theorem taking Lemma 1.3 forgranted.

Proof of the main theorem: We show that every two points H and K in

3?{Q) have arbitrarilysmall homeomorphic clopen neighborhoods. Let U and V

be any neighborhoods in Jf(Q) of H and K respectively. There are clopen

subsets U' and V of J?(2W) such that He UT＼Jr(Q)cz U and

K g V'f)'^(Q) cV.As compact zero-dimensional metric spaces without isolated

points, all non-empty clopen subsets of ,3f{2(O)are homeomorphic to the Cantor

space 2a .Let h :U' = 2a and k : V = 2W .By Lemmas 1.2 and 1.3, h[U' D ^(G)]

and A;[V'n^"(<2)] are b°th everywhere properly co-analytic meager subsets of

2W. By Lemma 1.1, there is a homeomorphism of 2W onto itself which maps

h[U'0.5?(Q)] onto k[V'05?(Q)]. So the neighborhoods f/'fl^G) and

V'OJT(Q) are homeomorphic.

Thus we have proved that H and K have arbitrarily small homeomorphic

clopen neighborhoods. Then Bernstein type back-and-forth construction yields a

homeomorphism of Jf(Q) onto itselfwhich maps H to K. ■

§2, The Cantor-Bendlxson Number

For each K e J^(2ffl),let <5^ be the set of all accumulation points of K. Since

K is compact, dK is also compact, though it may be empty. By transfinite

induction on £, define d*K as follows: d°K = K, d^+lK = d(d^K), and

dAK - flf
3<??^

when A is a limit ordinal.If K is countable, there is a countable

ordinal t, such that <9A^ = 0. The smallest such £ must be a successor ordinal

because each dnK is compact. The Cantor-Bendixson number, denoted by ＼K＼CB,

of countable compact subset K of 2m is the unique countable ordinal £ such that

d*K*(d and d^+1K = R.

We need the following "coding procedure" of countable well-ordering
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relations. Let {rs:i <co} be a fixed one-to-one enumeration of Q. For each a e 2W

let

Z(a) = {ri:a(i)= 0},

and then define WO to be the set of a el10 such that Z(a) is well-ordered by

usual linear-ordering of Q. For each aeWO, let |a|wo be the order type of

(Z(a),<).

Lemma 2.1. (Folklore) The set WO is co-analytic set which is not analytic

Lemma 2.2. The Cantor-Bendixson number is unbounded on each non-empty

clopen subset of ffl^Q).

Proof. We show that each non-empty clopen subset of JZ(Q) contains an

element whose Cantor-Bendixson number is t,,where £,is an arbitrary countable

non-zero ordinal.

Suppose that a clopen subset E of ,%{Q) is given. Without loss of generality,

we may assume E is of the form [NQ,Nx,---,Nk)r＼J^{Q) where N0,Nv---,Nk are

basic clopen setin 2W and (N0,N,,---,N.) is the Vietoris neighborhood:

{N0,Nlt-,Nk) =
Ik

g ,W{2m): Kc U^,. &(V/ < k)[KnNi * 0]}

Now, since NonQ is homeomorphic to Q, there is a subset KQ of NonQ

homeomorphic to the ordinalspace (0^+1 whose Cantor-Bendixson number is t,.

Pick Xj e Ni ng for i = l,...,k. Then

K = Kol){Xl,...,xk}

is a compact set belonging to (N0,Nl,...,Nk)r＼Jf(Q)and its Cantor-Bendixson

number is exactly£. ■

Deffne a relationS(F,a) as the conjunctionof the followingclauses:

(1) F is a functionon 0)into Jr(2w);

(2) r0is the smallestelement of Z(a);

(3)if both rtand r}isin Z(a) and if >j< r},then F(j)c o!F(/).

Then 5 isidentifiedwith a subset of (^(2<w))w x2<u.In fact:

Lemma 2.3. 17*erelationS on (5?(2c0))0}x2w is Bor^/.

PROOF. The only non-trivialpart is the computation of the relation ^0 c dK{

for K0,Kl 6 ^(2ffl). This relationis in fact Borel as a subset of Jf(2(O)x^(2(O)
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because

Ko c dK} ≪=>(V7V)[^0 flN * 0 => [AT, flN is infinite]

where Af runs over basic clopen neighborhoods in 2m.

Lemma 2.4. The following relation R is co-analytic:

R(K, a)^Ke 3?{Q) & [a £ WO v |£|CB < |a |wo ].

Proof. We shall show the equivalence

R(K, a)^Ke Jf(Q) & i^ (K, a)

where R^ is defined, using S in Lemma 2.3, as follows:
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R0(K,a) ^ (VF)(VP)[S(F,P) & F(0) = K => (Z(a),<) cannot be embedded into

any initial segment of (Z(/3),<)].

Indeed, a pair (F,P) in the relation S represents, provided that /3eW0, a

sequence of non-empty compact sets (^. :<f;<|j3|wo) such that

Kn a dK, for t,< 77< |/J|WO ･ Then by transfinite induction we have K* c d^K0 for

every £<|jS|wo- Thus the Cantor-Bendixson number |AT|CB is the maximum

possible length of such sequences starting with Ko = K. This means if P e WO

and if S(F,P) holds for some F, then |/?|wo <|#|CB should be the case. The

relation Rq expresses the situation that as far as aeWO,|a|wo is not less than

any of such |/?|wo. These observation proves the equivalence as required. Using

this equivalence, one can show that R is co-analytic by simple computation of

relations. ■

LEMMA 2.5. If a set s/ c: Jf(Q) is analytic as a subset of
t^(2<u) then

sup{| ^f|CB : K e jzf} < (Qx.

PROOF. By contradiction. Suppose there is an analytic subset j/ of 3£{Q) on

which the Cantor-Bendixson number is unbounded: sup{| K＼CB : K e s/} = col. Then

the equivalence

aeWOo (BK)[K e $/ & (a e WO & |a|wo < |K＼CB]

o (3K)[K es/& -H(K,a)]

shows that WO would be an analytic set. But in fact WO is not an analytic set as

shown in Lemma 2.1. This contradiction proves Lemma 2.5. ■

Proof of Lemma 1.3: Since J?(Q) is co-analytic as subspace of

3?(2w),ur＼J?(Q) is also co-analytic for each basic clopen subset U of Jer(2a>).
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By Lemmas 2.2 and 2.5,we know thatUf)J?(Q) is not analytic.Hence Jf(Q) is

everywhere properly co-analytic. ■

In our proof of the main theorem we needed the assumption of analytic

determinacy only to obtain an autohomeomorphism of J?(Q). Thus, the following

problem arises:

Problem: Is 3£{Q) homogeneous in ZFC?
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