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ON CL-ISOCOMPACTNESS AND WEAK
BOREL COMPLETENESS
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Introduction.

A space X is said to be isocompact [1] if every countably compact closed subset
of X is compact. In this paper we introduce a new class of spaces called CL-
isocompact spaces. We call a space X CL-isocompact if the closure of each countably
compact subset of X is compact. CL-isocompact spaces are isocompact. The
class of CL-isocompact spaces behaves well with respect to topological operations.
For example the class is productive and closed hereditary. After showing various
properties of CL-isocompact spaces, we investigate the relationship between CL-
isocompact spaces, weakly @-refinable spaces [6] and weakly Borel complete
spaces [3]. We show that every weakly O-refinable space of non-measurable
cardinal is weakly Borel complete and every weakly Borel complete space is
CL-isocompact.

All spaces are assumed to be completely regular. But this is not always
needed.

§1. Fundamental properties.

DEFINITION 1.1. A space X is said to be CL-isocompact if the closure of
each countably compact subset of X is compact.

Obviously CL-isocompact spaces are isocompact.

PROPOSITION 1.2. The following facts hold.

(@) Let f be a perfect map from X onto Y. Then, X is CL-isocompact iff
Y is CL-isocompact.

(b) Let X be CL-isocompact, and Y be an F,-subset of X. Then, Y is CL-
isocompact.

() If X:IQI Xo, with X CL-isocompact for a< A, then X is CL-isocompact.

(d) If X=O@ X., with X, CL-isocompact for ac A, then X is CL-isocompact.

Received November 14, 1983. Revised February 1, 1984.



378 Masami SAKAI

(e) If each X, is a CL-isocompact subset of X, then (\ X, is CL-isocompact.
() The following (1), (2) and (3) are equivalent.

(1) X is hereditarily CL-isocompact.

(2) X is hereditarily isocompact.

(8) For each x=X, X—{x} is CL-tsocompact.

Proor. (a) Compactness and countably compactness are preserved by perfect
maps. From this fact, it is easy to show (a). (b) We set Y:iUYi, each YV, is
=1

closed in X. Let E be any countably compact subset of Y. Since each Y is
CL-isocompact, C{ENY,) is compact. | JCHENY;) contains £ as a dense sub-

set. Since | JCI{EM1;) is pseudocompact o-compact, it is compact. We get
ClyE=UCHETYy. (c) Let E be any countably compact subset of X. Since

each Pr,E is countably compact, CI(Pr,E) is compact. Here Pr, is the projec-
tion of X onto X,. The closure of £ in X is contained in the compact space
TICIPr, E). ClE must be compact. (d) is trivial. (e) () X, can be naturally

embedded as a closed subspace into I X,. By (b) and (c), M\ X, is CL-isocom-

pact. (f) The equivalence of (1) and (2) is obvious. We assume (3). Let ¥ be any
subspace of X. Since Y=N{X—{x}|{x=X—-Y}, Y is CL-isocompact by (¢). 8

Bacon proved in [1] that the product of an isocompact space and a heredi-
tarily isocompact space is isocompact. The following result generalizes it.

PrOPOSITION 1.3, Let X be CL-isocompact, and Y be isocompact. Then XXY

15 isocompact.

PrOOF. Let E be any countably compact closed subset of XXY. Since
PryE is countably compact, CI{PryE) is compact. Therefore PryE is closed
countably compact in Y. So, PryE must be compact. E is contained in the
compact space Cl(PryE)XPryE. The proof is complete. &

PRrOPOSITION 1.4. The following (a) and (b) hold.

(a) For each space X, there exists a CL-isocompact space pX with the follow-
ing properties.

1) XcpXcpX. Here BX is the Stone-Cech compactification of X.

2 If fis a map from X onto a ClL-isocompact space Y, then [ has a con-
tinuous extention f? that maps pX onto Y.

) If X has a dense countably compact subspace, then pX=X. Conversely,



On CL-isocompactness and weak Borel completeness 379
if pX=BX, then X is pseudocompact.

PrOOF. (a) is obtained from Proposition 1.2. (b), (¢) and Theorem 2.1. in
[7]. (b) is trivial. Note that pXCuv X, vX is the Hewitt’s realcompactification. ®

§2. Weak Borel completeness.

A space X is said to be weakly Borel complete [3] if each Borel ultrafilter %
on X with c.i.p. (countable intersection property) has the property that N{Z|Z
EBNI X)) =NI{F|F< 3, F is closed in X.} is non-void. Here Z(X) is the set
of zero sets of X.

THEOREM 2.1. Weakly Borel complete spaces are CL-isocompact.

Proor. Weak Borel completeness is closed hereditary [3]. So, we show
that a weakly Borel complete space which has a dense countably compact subset
is compact. Let X be weakly Borel complete, and Y be a dense countably com-
pact subset of X.

Suppose that X is not compact. Since X is pseudocompact, X is not real-
compact. We take a free zero ultrafilter £ on X with c.i.p.. Each element of
Z must intersect with Y. Put A= {4 |4 is a closed family such that (1) ZC.4.
(2) If He 4, then HN\Y#@. (3) 4 is closed under the finite intersections.}. Let
4 be a maximal element of . It is easily showed that & is closed under the
countable intersections, and X< 4 by the maximality.

Put 9={BeBo(X)|BDHNY for some He4(}. Here Bo(X) is the set of
Borel sets of X. We take a Borel ultrafilter @ on X containing 9. Put €=
{BeBo(X)|If BDHNY for any He 4, then BNHNY=¢ for some H= 4.}

Now, & satisfies the following conditions.

(a) If Fis closed in X, then Feé&.

(b) If Beeg, then X—Beé.

(¢) If €D{B;}3,, then [:\ B.eé.

Firstly we show (a). Let F be a closed subset of X, and suppose that
FDHNY for any Hedl. Obviously Fe . Put L=HU{FNH|Hed}. L
satisfies (1), (3) of 4, and 4 +#., because Fe.L. By the maximality of 4,
there exists He 4l such that FNHNY=¢@. This shows that F€&. The proof
of (b) and (c¢) is a routine matter. We omit the proof.

Since Bo(X) is the smallest ¢-field containing the set of closed subsets of X,
we get £=Bo(X).

Suppose that Be @, and BNHNY =@ for some He= ¢, Then X—B€9C 3.
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It is a contradiction that @ is a filter. Therefore, for each B 8, BNHNY# @
for any He 4. It follows from &€=Bo(X) that for each B& # there exists some
H(B)e 4 such that BDH(B)NY. This fact gives that 4 has c¢.i.p.. Since ZC 3,
we obtain that N {Z|Ze 8N2Z(X)} =@. This is a contradiction that X is weakly
Borel complete. =

COROLLARY 2.2. If X has a countably compact dense subset, then wX=p5X.
Here wX is the weak Borel completion of X.

Proor. Apply Proposition 1.4. (b) and Theorem 2.1. ®

COROLLARY 2.3. If X is a perfect image of a weakly Borel complete space,
then X is CL-isocompact.

ProOF. Apply Proposition 1.2. (a) and Theorem 2.1. &

It is not known whether perfect images of weakly Borel complete spaces are
weakly Borel complete.

THEOREM 2.4. If X is a weakly O-refinable space of non-measurable cardinal,
then X is weakly Borel complete.

Proor. Hardy proved in [2] that a weakly #-refinable space of non-meas-
urable cardinal is a-realcompact. The procedure of the proof is valid for this
theorem.

Let 8 be a Borel ultrafilter on X with c.i.p.. Let #={H|He 3, H is
closed in X.}. Suppose that N =@. Since U={X—H|He4} is an open

cover of X, there exists a weak #-refinement CV= O <y, of Y. For n, j, let
n=1
H,;={xe X|1=ord(x, V,)<j}. Then obviously X=\JH,;, By c.i.p. of 3,
n,J

there exist natural numbers n, j such that H,,N\B# @ for any Be 8. We fix
these n, j.

By virtue of Zorn’s lemma, we can find a discrete subspace DC H,; such
. that

(@) {Stx, V,)|x=D} covers H,j,

(b) If Vecy,, then |VND|Z1.
Since | X|<m,, D is realcompact. Here m, is the first measurable cardinal.

For each Fe4, let F*={xeD|St(x, VYV IYNFN\H,;# @}. Then n=
{F¥|Fe %} is a free filter base on D. Take a ultrafilter X on D such that
M K. Since D is realcompact, there exists a countable subcollection {K;}3,
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CK such that M\ JG=@. Let U;=\U{St(x, V,)|xeK;}. If xe\ U, then for

each 7 there exist x;=K; and V, eV, with x, x;€V;. Since this shows that
ord(x, V,)=w, we have x&H,; Consequently H,,N\(\U,)=@.

If X—U;es4 for some 7, we can consider (X—U;)*. But it is easily showed
that ;N(X—U,;)=@. Since K;, (X—U,)*< X, this is a contradiction. It must
be X—U;& 4 for every i. Therefore X—U,< @ for every 7. Since it must be
U, 8 for every i, we have (\U;& 4. It follows that H,,N\(\U,)*@. This
is a contradiction. & ' '

By the similar procedure of the proof of Theorem 2.4, we can show that
each @-refinable space [6] is weakly Borel complete if the cardinality of each
closed discrete subspace is non-measurable.

REMARK 2.5. Hardy conjectured in [2, Remark 2.8.] that there exists an
a-realcompact space of non-measurable cardinal which is not weakly #-refinable.
Rudin’s Dowker space in [4] is, in fact, such a space. Because Simon proved
in [5] that the Rudin’s Dowker space is a-realcompact, and not weakly Borel
complete. This fact answers the third question posed in [9].

COROLLARY 2.6. A quasi-developable space of non-measurable cardinal is Borel
complete.

PrROOF. It is known that a quasi-developable space is hereditarily weakly
@-refinable, and that Borel completeness is equivalent to be hereditarily weakly
Borel complete [3]. m

Addendum

Theorem 2.4 is extendable to the class of #-penetrable spaces. Namely each
@-penetrable space of non-measurable cardinal is weakly Borel complete. For
@-penetrable spaces, refer to [8]. For the proof, we use the fact that, for a
free closed filter  on X with c.i.p. which is extendable to a Borel ultrafilter on
X with c.i.p., {(X—F|F= g} has a weak @-refinement if it has a #-penetration.
This fact is proved by the quite similar way of [8, Lemma 2.2].
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