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Introduction.

A submanifold M of a Kaehlerian manifold M is said to be totally real if

each tangent space to M is mapped to the normal space by the complex structure

of M. Many subjects for totally real subrnanifolds were studied from various

differentpoints of view, as ones of which Naitoh [ 9 ] and Naitoh and Takeuchi

[10] classifiedan n-dimensional totallyreal submanifold with parallelsecond fun-

damental form in PnC, and Ohnita [11] and Urbano [16] showed recently that

the second fundamental form of such a submanifold of non-negative curvature is

parallel,independently. Besides, the study for 3-dimensional totally real sub-

manifols of S^ by Mashimo [ 8 ] is also interesting.

In this paper the reduction of Allendoerfer type for the codimension of totally

real submanifolds of a complex space form is treated with. As for all sorts of

studies mentioned above, it is important that the dimension of the submanifolds

is half of that of the ambient space. The purpose of this articleis to show that

the fact is essential,namely, to verify the following

THEOREM. Let M be a complex space form of complex dimension m, and

M an ji-dimensional totallyreal sub?nanifold of M. If the induced f-structurein

the normal bundle is parallel, then there exists a totally geodesic comlex space

form Mo of complex dimension n of M in which M is totally real.

In the firstsection, preliminaries about totallyreal submanifolds of a complex

space form are prepared for and the theorem is proved in the case where the

ambient space is complex Euclidean. In §2, a (2m+ 1) -dimensional anti-de Sitter

space H?m+1 and the Sasakian structure on such a manifold are recalled. Loren-

tzian submanifolds of H＼m+1 are treated with in the next section and the theorem

is proved in §4 provided that the ambient space is hyperbolic. In the last section

the proof in PmC will be sketched.
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1. Totally real submanifolds of a complex space form.

A complete and simply connected Kaehlerian manifold of constant holomorphic

sectional curvature is called a complex space form. By Mm(V) a complex space

form with constant holomorphic sectional curvature c and of complex dimension

m is denoted. The complex space form consists of a complex projective space

PmC, a complex Euclidean one Cm or a complex hyperbolic one HmC, according

as c>0, c=0 or c<0. Let J and g be an almost complex structure and a Hermitian

metric which are equipped with in Afm(c). Let M be a real ^-dimensional

Riemannian submanifold immersed isometrically in Mm(c). By the same symbol

g the Riemannian metric induced on M from that of the ambient space is denoted.

Let 3£(M) and 3C^-(M) be the set of all vector fields tangent to M and the

set of all vector fields normal to M, respectively. Manifolds and submanifolds

which are discussed in this paper will be assumed to be connected and the smooth-

ness of any geometric objectsis also assumed to be of classC°°.Liner mappings

P and F of 3C(_M) into 3C(M) and J£"-L(M)are defined as follows: for any vector

fieldX in 3C(M), PX is the tangent part of JX and FX is the normal one of JX.

Namely, JX=PX+FX. Similarly, other two operators p and / of .J-L(M) into

3C{M~) and %-L(M) are defined as follows: for any normal field£,p£ and /? are

given by the tangent part and the normal one of J?, respectively. That is,
</?=

p£+f%. Then it is well known [18] that the following relations between these

operators hold true: for any tangent vector fieldsX and Y, and any normal fields

$ and 7).

(1.2)

g(PX,Y)+g(X,PY)=O,

g(FX,V)+g(X,pri=O,

f P2=-I-pF, FP+fF=O,
{

Pp+pf=O, p=-I-Fp,

where / denotes the identity mapping.

An w-dimensional submanifold M of Mm(c) is said to be totally real if JMX

cMi-i- for any point x in M, where MX( = TXM) and Mx1- denote the tangent

space of M at x and the normal one to M at x, respectively. The submanifold

M is assumed to be always totallyreal at the rest of this paper. Accordingly,

JX is the normal fieldto M, provided that X is tangent to M. This implies that

m^n and the operator P is zero, and moreover F is the linear isomorphism. The

orthogonal complement of JMX in Mx^- isinvariant under the operatorf and hence

the orthogonal sum decomposition Mx-L = FMX + fMx-t is obtained. This yields



Reduction of the codimension of totallyreal submanifolds 401

that the linear transformation / satisfies/3+/=0 and its rank is equal to 2m ―n.

A non-null tensor field4> of type (1,1) on a Riemannian manifold N is called an

f-structure of rank r on N if it satisfieŝ3 + 0 = O and rank <j>= r. It means that

/ becomes the /-structure of rank 2m ―n in the normal bundle of M.

Let /7 and p be the Riemannian connections in Afm(c) and M respectively,

and {7-Lthe normal connection in the normal bundle of M. Let /3be the second

fundamental form on M and B the shape operator of Jl(M)Xl(M) into Z(M)

defined by #CBeX, Y)=,g(j8(X,Y), £)･ Since M is totallyreal,it follows that FZ

=JZ, which means that for any vector fieldstangent to M

g(KX,Y), FZ)=g(KX,Y), JZ)=g(FxY,JZ)^-g(Y,Jx(JZ≫

=g(JY,FxZ)=g(FY,KX,Z≫.

This implies that g(P(X,Y), FZ) is symmetric with respect to X, Y and Z.

The covariant derivativesfxP, fxF, fxp and fxfoi P, F, p and/are defiend

by

Fxp(Y) =fx(PY)-PfxY, V*F(J)=VxKFY)-FfxY,

FxPtf) = F*(/*) -PFx^, F*/(£)= VxHfZ) -fVx^.

Then it follows from the Gauss and Weingarten formulas that the following equa-

tions hold true:

(1.3) PKX,Y) = -BFxY, FxF(Y) =/j8(X,Y),

f.KO =BftX, p*/(O = -F(BeX)-j8(X,#).

The /-structure / in the normal bundle is said to be parallel ifit satisfiesff=0.

The operators F and /> are also said to be parallel, provided that the covariant

differentialsof F and p are 0 respectively. For the parallelism of /one finds the

following property, which was pointed out by the referee.

PROPOSITION 1.1. Let M be a sub-manifold of MTO(O- If there exists a

totally geodesic submanifold Mo of Afm(c), in which M is totally real, then the

f-structure in the normal bundle is parallel.

PROOF. For any point x of M, the assumption gives the direct sum decom-

position of the normal space Mx-L of M in the ambient space M

Since M is the totallygeodesic submanifold of Mo, it follows Bt = 0 for a normal

vector <?of Tx(M0')-i-,and moreover since Tx(M0)J- is J-invariant,it follows that

p$=(J^)T=0, where (J?)r denotes the tangent part of J?. It implies that

F*/(O = -F(B;X) -B(X,p$) =0 for any £in Tx(Mo)±
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by the last equation of (1.3).

Next, for any vector field Y it follows

gCFCBjyX), JZ)=g(J(BjYX), JZ)=gCBjrX,Z)=gCKX,Z), FY)

=g(KX,r), FZ),

because g(fi(X,Y), FZ) is symmetric with respect to X, Y and Z, and thus we have

F(BjyX) = P(X,Y). Consequently it follows from (1.2) and (1.3) that

VxfiJY) = -F(BjyX) -t3(X,pJY) = -KX,Y) + /3(X,Y) = 0.

These imply that pf=0.

LEMMA 1.2. Let M be a totally real submanifold in Mm(c). If the f-

structure f in the normal bundle is parallel, then so do operators F and p.

PROOF. The firstequation of (1.3) implies Fpfi(X,Y) +FBfyX=0. By means

of (1.2) the assumption of the parallelism of the structure /yields f2fi(X,Y)=0

and it follows that //3(X, Y)=0 by the property of /3+/=0, which means that F

is parallel. This is equivalent to fp = 0 in [ 1 ].

REMARK. ( 1 ) Lemma 1.2 holds true in the case where the ambient space is

only a Kaehlerian manifold. In general, it is also seen in [ 1 ] that AF=0 is

equivalent to fp = 0 in a CR-submanifold in Mm(c).

( 2 ) Pak [14] proved that in a totallyreal submanifold of PmC, if the second

fundamental form is parallel, then so do the operators F, p and f.

The distribution50 in the normal bundle of M is said to be parallel with

respect to the normal connection, if for any normal field^ in 50 the vector field

frx-L£is contained in SO for any vector field X in j£(M~).

PROPOSITION 1.3. Let M be an n-dimensional totallyreal submanifold in Cm.

If the f structure f in the normal bundle is parallel, then there exists a totally

geodesic submanifold M0 = Cn in which M is totally real.

PROOF. Let 50 be the distribution consisting of subspaces FMX in Mx^- at

each point x in M. Then it is of dimension n and 50(x) =Kerxf From Lemma

1.2 it follows that the operator F is parallel and hence fx^-(FY) = Ffx Y in £),

which means that £)is parallel with respect to the normal connection. The first

normal space M* at x is defined by the orthogonal complement of the following

subspace (?eMj:Bf = 0} in Mx-L. Accordingly the firstnormal space M＼. isiden-

tifiedwith the linear subspace in Mx^- spanned by fl(u,v) for any vectors u and

v in Mx. The parallelism of the operator p together with the property S)(x) =

Ker^/" implies that the firstnormal space Ml is contained in the subspace £)(x).
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By means of the reduction theorem of Erbacher [ 4 ], there existsa 2w-dimensional

totallygeodesic submanifold MQ of Cm in which M is a submanifold. This means

that Mo is a complex Euclidean space equipped with the complex structure J＼Cn,

which is denoted by the same J. Then JMx = FMx = £)(x'),which implies that M

is totallyreal in M0=Cn.

This concludes the proof.

2. Odd dimensional antl-de Sitter spaces.

In this section, the Sasakian structure on a (2m+ 1)-dimensional anti-de Sitter

space is recalled [15]. In an (jn + Y)-dimensional complex Euclidean space Cm+1

with standard basis, a Hermitian form F is defined by

where 2= (20, zi,---,Zm) and w=(wo, zvu---,Wm) are in Cm+1. The space(Cm+1, F)

is called an (w + 1) -dimensional complex Minkowski space, which is denoted by

Cf+1. A non-degenerate symmetric bilinear form g of a real vector space V is

called a scalar product and the index of the scalar product g is by definitionthe

largest number that is the dimension of a subspace W of 7 on which g＼W is

negative definite. A metric tensor g on a.smooth manifold M is by definitiona

symmetric non-degenerate (0,2) tensor fieldon M of constant index r, and a smooth

manifold M furnished with a metric tensor fieldg is called a semi-Riemannian

manifold with semi-Riemannian metric g of index r. The common value r

of the index g on a semi-Riemannian manifold M is called the index of M.

The scalar product given by Re F(z,w} is a semi-Riemannian metric of index

2 on C?+1. Let Hf*+1 be a real hypersurface in C?+1 denoted by

Hfm+1= {2SE C?+1: F(z,z) = -1},

and let G be a semi-Riemannian metric on J/fm+1 induced from the complex

Lorentzian metric Re F in Cf+1. Then (Jff^1, G) is the Lorentzian manifold

with constant curvature ―1, which is called the anti-de Sitter space of constant

curvature ―1 ([3] and [17]). For any point z in f/f1"1"1the tangent space Tz

jj2m+i can j^ identified through parallel translation in C +1 with the subspace

(weC7+1:Re F(z,w)=0} of Cf+1. In particular iz is a point in Him+1 where

z denotes the imaginary unit, and moreover it is contained in the tangent space

TzHlm+1. For any point z in Hlm+1, $z=z can be regarded as a unit normal

time-like vector to fl"fTO+1up to translation. For the almost complex structure J

in C?+1 E,= -JS,= -iz is the unit time-like vector of Hlm+＼ i.e. E^SCQHf1^1)

and G(E,E) = -1.
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For the orthogonal projection it: TzClm+1-^TzHlm+1 the linear transformation

<f>of %(Hfm+l) into itselfis defined by the composition of J and it, and let o>be

a 1-form on Hlm+1 defiend by JX=<ftX+(v(X)£ for any tangent vector fieldXon

J7?m+1. Then it is seen in T151 that

<o(X) = -G(X,EX o.(£)=l,

<t>E=O,(oo<fi= 0,

G(<pX,Y)+G(X,<f>Y)=O,

$*=-I+a><g)E,

G(<f>X,<pY)=G(X,Y)+a)(X)a>(Y＼

Let a be the second fundamental form for the hypersurface Hfl+1 of Cf+1 and

A( the shape operator with respect to £. Then Hlm+1 is the totally umbilical

hypersurface and A= ―I. Let D be the semi-Riemannian connection of J/fm+1.

By making use of the Gauss and Weingarten formulas, the following relationsare

nbainprl･

(V^ = -o){V)U-G(U,V)E,

(V)=G(<j>U,V), d<o(U,V)=G(<?>U,V),

= -<pU

for any vector fieldsU and V on Hlm+1.

Let N be an odd dimensional manifold equipped with the set (0, E, a),G),

which consists of a tensor field<j>of type (1,1), a unit time-like vector fieldE, a

1-form a) and a Lorentzian metric G. The set is called the Sasakian structureif

it satisfiesproperties (2.1) and (2.2) [15]. The anti-de Sitterspace J/fm+1 admits

the Sasakian structure.

3. Lorentzian submanifolds of Hlm+1.

Let J/fm+1 be a (2ra + l)-dimensional anti-de Sitterspace of constant curvature

―1 and (jj),E, a),G) its admitting Sasakian structure on Jffm+1. Let Nbe a semi-

Riemannian submanifold of J/fm+1 tangent to the structure vector fieldE. By the

same G the semi-Riemannian metric induced on N from that of Hfn+1 is denoted.

Each tangent space Np is by definition a non-degenerate subspace of TpHfl+1,

and hence a property of the linear space with indefinite scalar product gives the

direct sum decomposition TpHfn+1 = NpRNp-L, and the subspace A^-L which is

called the normal space at p to N is also non-degenerate. Its dimension is equal

to 2m ―n, where dim 7V=w + l. The index of G restricted to Np is called the

co-index. In fact, the co-index of N is independent of the choice of the point p

and it is easily seen that ind Hlm+1 = ind AM-co-ind N. Accordingly ind N=l

and co-ind N―0.
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Now, by the similar definitionto that of 2-sets(P, F) and (p, /) of operators

denned for the submanifold M of the Kaehlerian manifold M, operators P', F', p'

and /' are defined as follows: for any vector field U in 3f(iV) and any normal

field t in %-L(N), <f>U= P'U+F'U and <f>v=p'T+f'T, where P'U and p'z are

tangent parts of <j>Uand <pr respectively,and F'U and f'r are also normal parts

of $U and <f>vrespectively. Then it is easily seen that for any vector fields U

and V on N and any normal fieldsr and a on N, the following relations hold

true:

(G(P'U,V)+G(U,P'V)=O,

(3.1)
＼g(F'U,o)+G(U,p'o)=0,

{G(f'T,o)+G(T,f0)=O,

(F'2 +p'F' =
~I+o)0E,

F'P' +f'F' = 0,

(3.2) P'p' +p'f = 0, f2 =-I- F'p',
[p'E

= F'E=0.

Let D and D be the semi-Riemannian connections on Hlm+1 and IV respectively,

and D-L the normal connection in the normal bundle of N. Let a be the second

fundamental form of N and A the shape operator of JT-L(IV)x%(N) into 5E(N)

denned by G(ATU,V)=G(a(U,V"),r). The Gauss and Weingarten formulas are

also given by DuV = DuV+a(U,V) and Dur= ―AJJ+Du^t. For example, see

[131. For the vector fieldE the last equation of (2.2) gives

(DuE=-P'U, a(U,E) = -FUt

(3.3) |aCE,E)=O,

lArE=pfT.

The covariant differentialsDP', DF', Dp' and Df of these operators are defined

similarly. Then it follows from the Gauss and Weingarten formulas that the

following relations are given:

(3-4)

DvP'iV) =Af>vU+p'a(JJ ,V) -G(U ,V)E-w(J)U,

DuF'(V) = -a{JJ,P'V) +fa(U,V),

Dupf(.T)~AfTU-P'ATU,

A submanifold N tangent to the structure vector fieldE in Hlm+1 is said to

be totallyreal, if $NP is contained in the normal space iVp-L at each point p in

N. In this case, the operator P' satisfiesP' = Q, and therefore f makes the f-

structure in the normal bundle, because of (3.2). The structure f is said to be

parallel, provided that Df' = 0. The others F' and p' are said to be parallel, if

DF'=0 and Dp'= 0 respectively. Similarly to Lemma 1.2, the following property
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holds true:

LEMMA 3.1. Let N be a totallyreal submanifold tangent to E in Hlm+1.

If the f-structure f in the normal bundle is parallel, then so do the others Ff

and p'.

PROOF. First of all, the operator F' is verified. Since N is totally real, the

first equation of (3.4) gives

F'Af'vU~+Fp'a(U＼V) -(o(V)F'U= 0

for any vector fields U and V, which together with (3.2) and the assumption

yields f'2a(U,V) = 0. This means that f'a = 0, namely, it is equivalent to the fact

that F' is parallel. The second assertion is easily given by the third equation of

(3.4) and the total reality.

PROPOSTION 3.2. Let N be an (w + 1) -dimensional complete and totally real

submanifold tangent to the structure vector field E in Hlm+1. If the f-structure

f in the normal bundle is parallel, then there existsa totallygeodesic submanifold

N0 = Hfn+1 in which N is totally real.

PROOF. For the given distributionSO consisting of each tangent space Np at

each point p in N, the distribution consisting of each subspace <pNp of the normal

space is denned by $£). By (3.2), F'E=0 and because of G(F'U,F'V) =G(U,V)

for any vector fields U and V on N orthogonal to E, the dimension of the

subspace F'NP is equal to n for each point p in N, which implies dim <fr£)= n.

Since the parallelism of the operator F' induces Du^-(F'V) = F'{DuV) for any

vector fieldsU and V in X{_N), the distribution <fioDis parallel with respect to

the normal connection.

On the other hand, the parallelism of the operator p' reduces to Aj't ―O for

any normal r in .3fJ-(iV),which means that f'Np is the subspace of the subspace

{ceiVpJ-: Ao = 0} of the normal space Np^-. Because the normal space JVP-L has

two kinds of orthogonal sum decompositions

Np-i-= FfNpRfNp^=N1pRla^NPi-: A.-OJ ,

the firstnormal space Np at p is contained in the subspace F'NP=<f>S0(Kp').Thus

the reduction theorem due to Dajczer [ 2 ] and Magid [ 7 ] in the anti-de Sitter

space can be applied to thissituation,and hence there exists a (2w ―1)-dimensional

complete and totallygeodesic submanifold iVo of Hlm+1 such that NdNo and Tp

(No)=Np(&F'Np for any point p of N. Fix a point p in N and put R＼n+2=Tt

(No)RR≫. Then Rjn+2 is a complex linear subspace of Rlm+2=C?+1 and H＼n^
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which is defined by the intersectionof R22n+2 and Hfl+1 is the (2w + l)-dimensional

anti-de Sitter space with the metric induced from that of H2m+1. Since the geo-

desies of Hlm+1 are just the intersections of P and Hfn+1, where P is a plane

through the origin O in CT+1 which meets Hfn+1, the anti-de Sitterspace J/fn+1

is a complete and totallygeodesic submanifold of Hlm+1. Obvious it follows Tp

H2n+1=TpN0. Apart from this viewpoint, it is seen in [13] that for complete and

totallygeodesic semi-Riemannian submanifolds Ni and N2 of a semi-Riemannian

manifold if there is a point p in Ni and N2 at which the tangent spaces coincide,

then Ni coincides with N2. This implies that N0=H21n+1. Moreover, since Hfw+1

is invariant under the multiplication by eie,N is totallyreal in H＼n+1.

This concludes the proof.

The argument developed in this section can be applied to the case where the

subrnanifold in the unit sphere S2m+1 is totally real. Accordingly the following

property is verified. The proof is omitted.

PROPOSITION 3.3. Let N be an (n + l)-di?nensional complete and totallyreal

submanifold tangent to the structure vector fieldE of S2m+1 with the Sasakian

structure (0, E, a),G). If the f-structure in the normal bundle is parallel, there

exists a totallygeodesic unit sphere S2n+1 of S2m+1, in which N is totally real.

REMARK. When the proof of the above Proposition is checked carefully, it

ie seen that the condition that the /-structure in the normal bundle is parallelcan

De replaced by the apparently weaker one that fa vanishes identically.

REMARK. Under the additional condition that the mean curvature vector field

is not trivialand parallel in the normal bundle, the compact iV is minimally

contained in a hypersurface of positive curvature in S2n+1 [5 1.

4. Lorentzian circle bundles over a submanifold of HmC

Let H＼m+1 be a (2ra + l)-dimensional anti-de Sitter space of C +1 equipped

with the Hermitian form F on Cf+1. Let U(l,m) be the set of matrices A in

GL(m + l,C) such that F(Az,Aw) = F(z,w) for each 2 and w in Cf+1. Then the

group U(l,ni) acts transitivelyon Hlm+1 and the group S1={eie] acts freely on

jj2m+i ky z_^eiBZt ^g oj-^t |ew 2j |ies jn negative definiteplane spanned by z

and iz. Let Af be the base manifold of the principal fiber bundle Hfm+1 with

the structure group -51. For any point z in //fm+1 let 7Y be the subspace of Tz

Him+1 defined by T,'= {wtETzHf1*1: ReF(iz,w) = 0}. Then the restrictionof F

to Tz' is positive definiteand the orthogonal sum decomposition T2JJfm+1= 7Yc



408 U-Hang Kl and Hisao NAKAGAWA

span {iz} is given. Moreover we have a connection in iffm+1 such that 7V s, z

in Hlm+1, are the horizontal subspaces. The natural projection tt: Hlm+1->M

induces a linear onto isomorphism dn : T/->T^z^M. The complex structure w-^>

iw in 7V is compatible with the action of S1 and induces the almost complex

structure J on M such that dTz°i=J°dx. A scalar product g on each tangent space

Mx at each point x in M is denned by g(X,Y) = ―ReF(U,V), where U and V

are elements in TV such that x(z)=x, dn(U)=X and dn(V) = Y. Then (M, g,

J) is the w-dimensional complex hyperbolic space HmC with constant holomorphic

sectional curvature ―4 ([ 3 ] and [17]). It is well known that Hf71*1 is the principal

^-bundle over HmC with the projection n : Hfn+1->HmC, which is the Riemannian

submersion in the sence of O'Neill [12] with fundamental tensor J and totally

geodesic time-like fibers. For any point z in f/fm+1 we put Ez=―Jz in TzHlm+1,

and then the orthogonal sum decomposition T?i:ffm+1=TIrcz)lfm r0span {EZ} is

given up to identification. Let (<fi,E, (o, G) be the Sasakian structure equipped

in Hfm+1 and (J, g) the Kaehlerian structure in HmC. Let * be the horizontal

lift of the Riemannian submersion k : Hfl+1-*HrnC. By the construction.

(4.1) (JX)*=^X*, G(X*,Y*)=g(X,Y)

for any vector fields X and Y on Z(HmC). The above decomposition gives the

following relationships between the semi-Riemannian connection D of Hlm+1 and

the Riemannian connection p of HmC:

(4.2) D**Y* = (p*Y)*-G(0X*,Y*)£, Dx*E=-$X*.

For an w-dimensional submanifold M of HmC, one can construct the Lorentzian

submanifold Ar=?r~1(il<f)which is the principal ^-bundle over M with time-like

totally geodesic fibers and the projection it [ 6 ]. Moreover, iz is compatible with

the fibration Tt:H＼m+1-^HmC, that is, the diagram

N-^Htm+1

I

,-

I

M >HmC

is commutative, where i and zv are the respective immersions. This shows that

Nz = (Mr.(z^<&span{Ez}. The Gauss formulas for the immersions i' and i and the

equation (4.2) yield

la(X*,Y*) = j8(X,Y)*,

while the Weingarten formulas for the immersions i' and i give rise to the fol

lowing relationships between the shape operators A and B:
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(4.4) (At*Y* = (B;Yy + G(A;*Y*,E)E,

lZV<±£*=(|7*J-f)*.

On the other hand, for orthogonal operators(P,F), (/>,/) and (P',Ff), (J>',f)

of the immersions i' and i respectively,(4.1) means that

(4.5) J(PX)* = i>/X*, (FX)*=F'X*,

and using (3.3) and (4.4), we have

(4.6) GBeX)* = A5*X* + GGF'X*,f*)£, Ae*£=^>'l*.

From (4.5) it follows easily that N is totallyreal in Hf1*1 if and only if M is

totallyreal in HmC [18].

Now, for the diagram mentioned above, the relation between the parallelism

of the operators f and f is investigated.

LEMMA 4.1. // the f-structure f in the normal bundle of M is parallel, then

so does the operator f.

PROOF. Under the assumption that the operator / is parallel,for any vector

field X in 3£(M) and any normal fieldf in 3C±(M)> it follows from (4.4), (4.5)

and the above equation that Dx*f (£*) = 0. Since dn : £■-!-(#)->3f-L(M)is an

isometric isomorphism, it means Dx*f = 0.

On the other hand, for any normal fieldr in ,3f-L(iV),the last equation of

(3.4) is reduced to Djs//(r) = ―F'(ArE―p'z), which together with (3.3) gives

De/' = 0. This means that f is parallel.

THEOREM 4.2. Let HmC be a complex m-dinientional complex hyperbolic

space of constant holomorphic sectional curvature ―4, and M an n-dimensional

complete and totallyreal submanifold of HmC. If the f-structure in the normal

bundle of M is parallel, then there existsa complex n-dimensional totallygeodesic

submatiifold M0 = HnC of HmC in which M is totally real.

PROOF. By means of Proposition 3.2 and Lemma 4.1, there existsa (2n + l)-

dimensional totallygeodesic anti-de Sitter space H?1+1 = Nq of Hfm+1, in which N

is totallyreal. The restrictionof the projection ?r:J/fTO+1-*ifmC to HfTC+1 is de-

noted by the same tc,and let Mo be the image of JVo under jr. Then, since JV0

is invariant under the multiplication by ei$, the image Mo is a submanifold of

HmC. Induce a metric on Mo so that the projection x: NQ-^MQ is a Riemannian

submersion. For the isometric immersion i＼: N-^No and the totallygeodesic im-

mersion i＼: Nq-^HV11*1, smooth mappings i0(resp. in) of Minto Mo (resp. MQ into
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HmC) can be chosen in such a way that the diagrams are commutative. Then i0

and z'imake both isometric immersions, because it:Nq-^Mq is also the Riemannian

submersion. On the right diagram, let ax and /3Xbe the second fundamental forms

for i＼ and ix. By the similar way to (4.3) we get ai(X*,y*) = j81(X,Yr)*for any

X and Y in ,3f(Mo), which implies that /3Xvanishes identically, i.e., Mo is also

totallygeodesic. Since Mo is a Kaehlerian submanifold of HmC, itis the complex

hyperbolic space HnC and M is totallyreal in HnC.

This concludes the proof.

5. Principal circle bundles over a subraanifold of PmC.

Let M be an ^-dimensional totallyreal submanifold of a complex w-dimen-

sional complex projective space PmC. Then one can construct a principal circle

bundle over the submanifold M with the projection it in such a way that x is

compatible with the Hopt fibrationit: S2m+1->PmC. Namely, the following diagram

is commutative :

tc-＼M) >$2m+1
I I

M ―+PmC

By the similar verificationto that stated in the previous section, the following

theorem is proved.

THEOREM 5.1. Let M be an n-dimensional complete and totally real subma-

nifold of PmC. If the f-structure in the normal bundle on M is parallel, then

there exists a totallygeodesic submanifold Mo = PnC of PmC in which Mis totally

rcnl

The proof will be sketched. Let (0, E, co, G) be the Sasakian structure

admitted in S2m+1 and (J, g) the Kaehlerian structure in PmC. By these struc-

tures, the set (P, F), (p, f) and (P', F'), (p＼ /') of orthogonal operators are

defined for the isometric immersions M-^PmC and N=7t-1(M)-+S2m+1. As is well

known, M is totallyreal in PmC if and only if N is totally real in S2m+1, the

parallelism of the /-strucure / derives that F and p are both parallelby the same

discussion as that developed in the previous sections,and moreover the operators

F', p' and f are also so. These properties imply that the distribution F'3b

denned by p-^F'Np is parallel with respect to the normal connection and dim F'oD

= n, and furthermore the firstnormal space Np1 is the subspace of F'NP. By means

of the reduction theorem of Erbacher [ 4 ], it yields that there exists a totally

geodesic S2n+1 of S2m+1 in which N is totallyreal(Proposition 3.3.). The restric-
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tion of the Hopf fibration to S2n+1 gives a complete totally geodesic Kaehlerian

submanifold M0 = x(S2n+1) of PmC Hence Mo is the complex projective space

PnC and M is totally real in Mo

Thus the proof is complete.

The authors would like to express their thanks to the referee by whom some

improvements were made out of the original manuscript.
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