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ACOUSTIC WAVE OPERATORS IN

TWO UNBOUNDED MEDIA
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1. Introduction.

In our previous paper Kadowaki [3], we have proved the nonexistence of

eigenvalues and the limiting absorption principlefor the acoustic wave operators

in two unbounded media. In the present paper we study the limiting amplitude

principle for these operators. We assume that the propagation speed is dis-

continuous at the interface and the equilibrium density is 1.

Let n^3 and x―{y, z)^Rn~1XR. We deal with the asymptotic behaviour

(as if―≫+oo)of the solutions of the following Cauchy problem

d＼u{t,x)-a(x)*Au(t,x)=exp(-itVm)f(x) (t,x)^R+xRn,

M(0,x)=dtu(Q, x)=0,

where ≪>0.

We make the assumptions for the interface separating two media and a(x).

Let (po(y)=a＼y＼ and (p(y)^C1(Rn~1＼0), where a^O. We assume that <p(y)

describes the interface and satisfies

(A.O) S ＼y＼lal＼da(<p(y)~?o(y))＼=0(＼y＼-d)(|y|-oo),
laiSl

for some 6>Q, and

(A.I) S ＼yVa{＼da<p(y)＼=O(＼y＼-°) (|jM-O),
I≪IS1

where 0<<r<l/2. For <p(y),we use the following notation

Q+={x=(y, z): z>(p(y)},

Q_={x=(y,z): z<<p(y)},

S={x=(y, z): z=<p(y)＼.

We denote the unit normal vector at the point xeS by v=(vu vZl･･■.vn-＼,v.)
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with v?,>0.

The propagation speed a(x)>0 is assumed to satisfy following

(A.2) l/c<a(x)<c

for some c>＼, and there exist a±>0, ai(x)<=BXQ±) and as(x)^L°°(Rn) such

that a(x) is decomposed as

a(x)=a± + ai(x)+as(x) (x^Q±),

as(x)=O(＼x＼-d-') (i^H + oo),

for some #>0.

Under (A.0)~(A.3), we show the limiting amplitude principle of the acoustic

operator, ―a(x)2A, for (1.1).

There are many works dealing with the limiting amplitude principle for

the acoustic operators. For example Eidus [2] has proved the limiting absorp-

tion and amplitute principle for two unbounded media problem with the interface

satisfying the following condition: for any xeS

(1.2)

(1.3) x-v＼^C2

where C,->O(/=1, 2),are independent of xeS. For example,

<p(y)^C＼Rn-1),<p(y)=
sm | y |

17T (3>≫D, <po(y)=o

satiafies(1.2) and (1.3), but not satisfies(A.O). We can also deal with the fol-

lowing interface not satisfying (1.2),

<p(y)=＼y＼-°, <po(y)=o

where, 0<<7<l/2. The propagation speed considered in Eidus [2] is a piecewise

constant function while we can perturb the propagation speed. Tamura [7] has

proved the limiting amplitude principle for the acoustic wave operators in in-

homogeneous media. Kikuchi and Tamura [4] have also proved this principle

for the acoustic wave operators in perturbed stratifiedfluilds.

In order to show the limiting amplitude principle for our operator, we need

a low frequency behaviour of the resolvent (see Eidus [1]). In [4] and [7],

they use Mourre's method to show a low frequency behaviour of the resolvent

and show the limiting amplitude principle. We also use Mourre's method to

show a low frequency behaviour of the resolvent of our operator (Theorem 1.1).
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We now define the acoustic operator L as

(1.4) L=-a(xfA

Under the above assumption, (A.0)~(A.3), L is symmetric operator in the Hibert

space L2(Rn ; a(x)~2dx)and admits a unique self-adjointrealization. We denote

by the same notation L this self-adjoint realization. Then L is a positive

operator (zero is not an eigenvalue) and the domain D{L) is given by D(L)=

H＼Rn), Hs{Rn) being the Sobolev space of order s over Rn. We also denote

by R{z; L) the resolvent (L―z)~l of L for Imz^O.

We need several notations to describe our results. Let L2 be the usual L2

space defined on Rn, with the inner product

(u, v~)―
＼u{x)v{x)dx

and the corresponding norm |･|0. For aei?, let LI be the weighted L2 space

defined by

L*={u(x): <xyau(x)^L＼Rn)},<xy=(l+＼x＼2y'2,

with the norm

u＼l=Ux>2a＼u(x)＼2dx

Let A: L%―>Lp be a bounded operator. We denote by H^L-^ the operator

norm considered as an operator from LI to L＼. If, in particular, A: L2―*L2

is considered as an operator from L2 into itself,then its norm is denoted by

the simplified notation ＼＼A＼＼.

In Kadowaki [3], we have obtained the following result

Theorem 1.0. Assume that(A.0)~(A.3). Then

( i ) L has no eigenvalues.

(ii) Let X0>0 and a>l/2. Then there existssome compact interval I<zR+

containing Xa and a positiveconstant C―C{X0, a) such that

＼＼<x}-aR(X±iic;L)(xya＼＼^C,

for XgI, 0<≪<l.

(iii) For every ^>0 and ≪>l/2, the following two limits

RU±iO; L)=＼＼mR(X±iie;L),
ffiO

existin the uniform operator topology of B{L＼, Lta). Moreover R(A±iO; L) are

locally Holder continuous.
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The aim here is to prove the following.

Theorem 1.1. Assume that(A.0)~(A.3), Let a>l and i8>l/2. Then there

exists d, 0<d<l/2, such that

＼＼R{X±iQ;L)＼＼^_a= O{k-% U-*0).

By Theorem 1.0 and 1.1, we have the following theorem (see Eidus [1] or

Tamura [7]).

Theorem 1.2 (limiting amplitude principle). Assume that (A.0)~(A.3).

Let u = u(t,x) be the solution of (1.1) with f^Lj, /3>l/2. Then u(t,x) behaves

like

u=exp(-itV(o)R((D+iO; L)/+o(l), (t-* oo)

strongly in Lla, a>l.

Acknowledgement. The author would like to express his sinceregratitute

to Professors M. Matsumura and K. Kajitani for their generous advice and

kind encouragement.

2. Reduction to main lemma.

We consider only the case I=ai2<a+2. The other cases can be proved

similarly. We define the self-adjointoperator H(X) on L2 by

r Ha)=-A-X(a-＼x)-l)

1
D(H(k))=H＼Rn).

Then we have

R(X±itc; L)=Q(X, ±iic;H(X))a~＼x),

where Q(X, ±ik; H{k))^{H{X)~X+iica-＼x))-＼ Therefore, Theorem 1.1 is ob-

tained as an immediate consequence of the following.

Lemma 2.1. Let the pair {a, j3) be as in Theorem 1.1. TTien

||QU, ±iO; H(X))＼＼^.a=(KX-d), W-0),

/or some d, 0<d<l/2.

By the assumption (A.3), we can decompose a~2(x) as a ＼x)=Ei(x)+

Ez(x)(x<=Q±) in such a way:

(2.1) 2 ＼x＼*a>＼d≪(Et(x)-a-±*)＼=O(＼x＼-d) (＼x＼-*oo,x =Q±)

Ia＼<1



(2.2)

(2.3)
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JS,(jc)=0(|*1-1-*) (|*|-*oo),

E <*>lal ＼d%{E%(x)-a-±*)＼£80 (*efl±)
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for 50>0 small enough, d0 being fixed throughout.

Lemma 2.2. Let H1(X)―-A-k(E1(x)-l), and a>l. Then, we have

(2.4) KH^-X+iKa-Xx^W^^Oa), U-0),

uniformly in k>0 small enough, where Ei(x)―Ei(x)(x^Q±)

We show that Lemma 2.1 follows from Lemma 2.2. We need the following

two lemmas to estimate an integral on the interface S.

Lemma 2.3. Let s>l/2. For u^S(Rn) (Schwartz space), we define

(T9uXy)=u(y,<p(y))

T9 has an extension to a bounded operator from Hs(Rn) to L＼Rn~l).

For a proof of Lemma 2.3, see that of Lemma 2.1 of Kadowaki [3].

Lemma 2.4 (Sobolev's thoreom). Suppose that

l/2-l/m=l/q, 2<q<oo.

Then we have the embedding

ffI(J2ro)<=_L≪(JRm).

Proof of Lemma 2.1. We prove Lemma 2.1 in the same way as in the

proof of Lemma 1.1 of Tamura [7]. We assume (2.4). Let ≪>1 and iS>l/2.

We assert that

(2.5) ＼＼(Hl(X)-XTiKa-＼x))-l＼＼^.a=O(X-1't), tf-0),

(2.6) ＼＼{Ha)-^iica-＼x))-l＼＼^_^O{k-1), tf-0),

uniformly in k>0 small enough. By (2.5),(2.6) and Theorem 1.0(iii),we have

Lemma 2.1(see the proof of Lemma 1.1 of Tamura [7]). We prove the asser-

tions (2.5)and (2.6). We consider the + case only. Let u=(H1(X)―A-＼-itca~2(x))~1f

with /gL2. Then u satisfies

(2.7) (-A-ZE1(x)+iiea-Xx))u=f.

We take the L2 scalar product of (xyru with equation (2.7), where y^O. In-

tegrating by part and taking real part, we have
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(2.8) {ixyriu, Vm>-1/2<m, (V<x>->≫

= X<E1u, <xy-rU>+Re<f, <x}-ru).

Let 8<mln{d, a}, 0<5<Cl, be fixed arbitrarily. Let X(x)―{Xj}lijSn be a real

smooth vector fieldsuch that

■fa-＼x＼-8)yj/＼x＼ (/=l,2f3, -,n-l)

I (1―|jc|-a)ar/|x| (j=n)

for ＼x＼>R and

suppZ^c{|x| >/?'},

where i?>i?'>l. We use the summation convention. Noting that

.7 = 1

+

(

8+1 ≫

1 1

1*1 |x|a+1

2j Xj OjU ＼―
x＼5+3 jti

)|7u|2

^
ttS^|3,m|2 (＼x＼>R)

and

we have

(2.9)

n
S RedkttdkUdjU

s(-|ip―i|prX.i|,,4≪JI9.-li (Ul>*>.

RedkVdkUdjU^ C^x)"1"3 ＼lu＼＼ ＼x＼>R.

We take the L2 scalar product of Z-7k+(1/2)(7-%)m with equation (2.7).we have

(2.10) <-Am, Z-7m+(1/2)(7-Z)m>

-KEiU, Z-7m+(1/2)(7-Z)m>

+/*<a-2(-)M, Z-7m+(1/2)(7-Z)m>

=</, Z.7m+(1/2)(7.Z)m>.

First, we calculate the first term of left side of (2.10). Integrating by parts,

we have

(2.11) Re<-Au, Z-7k+(1/2)(7-Z)u>

= Re((dklj)dku, d,u>-l/4<(3|d,Z')M, u>.

In orded to calculate the second term of left side of (2.10), we set wn―z―<p(y)

and u/'=(j>i, yt, y3, ･･･, yn-i)- Then we have
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1

D(y,z)
D(w' wn)

0

1

0

0

i

-dxipiw') ―dt<p(wf) ･･･ -dn-i(p{w') 1

1
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Thus, integrating by parts, we have (for detail, see the proof of Lemma 2.2

of Kadowaki [3])

(2.12) ReiE.u, %-7u+(1/2)(7-Z)u>=-1/2<Fm, m>

+l/2^
RnJiy(y,

(p(y))-ly<p{y)-ln(y, pO0))(Et0-£l0)|7>|2d;y,

where ly={V}lijSn-i, F=X-lE1(x)(x<=Q±) and E±1°=E1(y,<p(y)±0).

Noting that (2.11) and (2.12), we take the real part of (2.10). Then we have

(2.13) Re(dkW)dku, ^m>-1/4<(S|3^)m, u>+X/2(Fu, u)

-l/2^
RnJV(y,

<p{y))-ly<p-ln{y,(piyMEV-E^lT^yWdy

= Re(f, X-lu+(l/2)C7-X)u)+Klm(a-＼-)u, X-7m>,

We set a=l+8 and j8=(l+d)/2. Assume that f^L＼. In order to prove (2.5),

we firstestimate the fourth term of the left side of (2.13). Take 0<ro-Cl and

i?0>l such that if ＼y＼<r0 or ＼y＼>R0, we have ＼y12+ ＼<p(y)＼2>R. Using r0

and RQ, we decompose the fourth term as

f my,
<p{y))-lv<p-r{y, ip(y))){EV-Er)＼T9u＼My

=
[ i-(lyr+ly(y)lV/8
Ji≫i<rod^r+i^)!8)178

{yl yW-yXEV-E-^T
9uVdy

+
f

{IKy, <p(y))-Vv<p(y)-X'l(y, (piyMEV-E^lT^dy
Jra<＼y＼<R0

r l-(＼y＼2+＼<p(y)＼2r512
{yly<p-tp)(EX*-E?)＼Tvu＼*dy

If ＼y＼<r0,there exist some C,>0 such that ＼<p(y)＼>C1>0. Then we have

where v

/,sc(

^

ISM-Co

＼y＼<i~o

=O>-(1+<T)/2w

ll-(!yl2+|y(301T3/2

(＼y＼2+＼<p(y)＼2)112

y＼-"ll+a>＼T9v＼sdy,

＼y-ly<p―<p＼ ＼T,,u＼2dy



182 Mitsuteru Kadowaki

If 0<<r<l/2, there existsome s>l/2and p>n―1 such thatn―l―a(l+<r)p

>0 and (n―l)/2p+s=l. Thus, by Lemma 2.4 and Holder inequllty, we have

Jim
＼y＼-il+9>＼T9v＼*dy

P(l+C2)*( ＼y＼-'tl*'i＼dS.vXy,01WC

J-°° J＼y＼<r0

^CroU-I-.(1+,))/2pf+00(1+C2)S|(g2u)(.)0|i2p/(p_1)(ijn_i)^
J―oo

<*Cr <n-1-a<1+<T>>/2P
(+"(l+Ofl(≫.vX-,0lir<≫-≪/≪P≪≫-i>dC

j―oo

^^^0 U M l-(l+<r)/2~TIVM |-u +<r)/2j

where &v(C)=(2*0~1/8f+"'e~iZ"v(z)dz. By Lemma 2.3 and (A.O), we also have

the following

I2£C[ ＼Tvu＼Hy^C(＼u＼U^a)n+＼lu＼l{l+a)l2),
jrn<＼V＼<Rt>

h^c
L

.^(|y|

'

'+W)l

U|r'"l'''3'gC(l"l'-"l"+|7"|1"*>'")

Thus, we have

(2.14) ＼＼RnJ*v(y,
<p(y))-vy<p(y)-*n(y, <p(y)))(EX≪-E-l≫)＼T(pu＼zdy＼

£C(＼u＼la+e),z+＼lu＼l(1+gU2+＼u＼i(1+a-)/2+＼r7u＼l(1+a)/2)

Following Lemma 1.1 of Tamura [7], we estimate the other terms of (2.13)

By (2.9), we have

(2.15) Re[ (da^dkUdjudx^cS ixy-l~d＼lu＼zdx

hx＼>R J＼x＼>R

By Lemma 2.2,we have

(2.16) ＼<{dldjV)u>uy＼^C＼f＼l.

By (2.1),we also have

(2.17) ＼<Fu,u>＼£C＼u＼!(1,d)/2.

Noting Lemma 2.2,we use (2.8)with y―2a to obtain

(2.18) |7u|.a^C|/|B.

It follows from (2.18)and Lemma 2.2 that

(2.19) ＼Re<f,Z-7m+(1/2)(7-Z)m>|^C|/I5
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We again use (2.8) with y=0 to obtain

(2.20) |7m|§=;<£1m, u>+Re<f, u>,

(2.21) K<a-＼-)u, M>=/m</, u>.

By (A.2), (2.21) and Lemma 2.2, we have

(2.22) *|u|g^C|/|*.

Thus (2.20),(2.22) and Lemma 2.2 imply

(2.23) ＼ielm<a-＼')u,l-!W)＼^C＼f＼l.

Since /3<(l+0)/2, (l+<r)/2, we have by (2.13)~(2.17),(2.19) and (2.23)

(2.24) ＼lu＼l^CX{＼u＼lil+em+＼u＼l^am)+C＼f＼l.

Using (2.24) and (2.8) with r=2j8, we have

(2.25) X＼u＼^CX{＼u＼^l+d),i+＼u＼!a+o)n)+C＼f＼l.

Again since j8<(l + 0)/2,(l + ff)/2,(2.25) implies

^|M|i^C|/|≪

Considering the adjoint operator, we have (2.5). To prove (2.6), we repeat the

same argument as above. Assume that /eL|. Then, by the same way as in

the proof of (2.24), we can show that

(2.26) |7u|£^C^(!M|£(1+fl)/2+|M|£(1+(,)/8)

+ C(|M|£a+|/|/J.|7M|.i8+|/|/,.|M|-/j).

Using (2.5) and (2.8) with r=2J8, we have

(2.27) JUmH^CCIVuIVM-M/IJ).

Noting that /3<(l + 0)/2,(1+<t)/2, we have by (2.26) and (2.27)

＼u＼-t<CX-i＼f＼fi.

The proof of Lemma 2.1 is now complete, m

3. Proof of Lemma 2.2.

In this section we prove Lemma 2.2 by making use of commutator method

developed by Mourre F5]. Let A be the generator of the dilationunitary group:

A=~(x-l+"7-x).
a

We define the commutator ilHAX), A] as a form on HHRn)r＼D(A) as follows:
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For u, veEH＼Rn)r＼D(A),

(ilH^X), A]u, v}=i≪Au, H^Dvy-iH^Du, Av≫.

Lemma 3.1. The form ilH^X), A] definedon H2(Rn)nD(A) is extended to

a bounded operatorfrom H＼Rn) to H~＼Rn) which is denoted by i[Hi(X),A]0.

Moreover we have

where Fx

HHM), AT=~2A+X(F1-T*(E+10-E-1°XyT7yip(y)-<p(y))T(p)

= x-VE1(x)(xseQ±).

For a proof of Lemma 3.1, see that of Lemma 2.2 of Kadowaki [3].

If |j≪|>1,{A+ipt)'1 sends Hk(Rn) into Hk(Rn) and as an operator on

Hk(Rn)(k=0, ±1, ±2)

(3.1) s- lim in{A+iu)-x=I

is valid (see Lemma 2.3 of Weder [9]). Put A{fi)=ifiA{A+ifi)-K Using (3.1),

we can prove the following lemma in the same way as the proof of Lemma

2.4 of Weder [91.

Lemma 3.2.

ilH.iX), Aitt^iftiA+iitrHlHM), AYi^A+ifiT1

and

s- lim (-A+iy^ilH^X), ^(≪)](-A+l)'1/2

=(-A+l)-1/8≪[//iU), ^]°(-A+l)-1/2

for all /le(O,1), as an operator on L2.

Using Lemma 3.2, we can also prove the following lemma in the same

way as the proof of Lemma 2.5 of Weder [91.

Lemma 3.3. Let /eC"(i2). Then

( i ) f(H(X)) sends D{A) into D(A).

(ii) [f(H(X)), A] defined as operator on D(A) is extended to a bounded

operator on L2 which is denoted by [f(H(X)), Al°.

Lemma 3.4. Let 0< Jl≪ 1, take f x(p)^C {R), O^/^l such that fx has

support in (X/'3, 3^) and /^ = 1 on [_X/2, 2X~＼.Then, there exists a positive constant

C which is independent of X such that

(3.2) f x{Ha))i{.H,{X), AYfx{Hx{Xm CXf^HUW
■

in the form sence.
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In order to show Lemma 3.4,we need the followinglemma.

Lemma 3.5. Let u<=HHRn). Then, we have

＼T9u＼l2(.Rn-i)―+2Re＼ udzudx

Proof. Let u^S(Rn). Noting that

I udzudx―±＼ ＼ udzUdzdy

we have by integrating by parts

Thus we have

＼ udzudx=±＼ ＼T0u＼2dy ― ＼ dzuudx

[ ＼Tv>u＼2dy
= +2Re[ ud~udx

185

This implieslemma because S(Rn) is dense in H＼Rn). m

Proof of Lemma 3.4. We simply write fx instead of fx(Hi(X)). For mg

L2, we have (for detail,see the proof of Lemma 2.2 of Kadowaki [3])

(3.3) <fxi[Hx{X),Alf.u, m>=2<7/^m, ifxifi+KFJxu, fxu>

x＼

RnJy
･v*＼>-y>X£t°-£70)l T9fiu |2^

We estimate the second and the third term respectively.(2.3) implies that

(3.4) KFJxu, fxu>＼, ＼<(E1-E0)flu, fxu}＼£do＼f,u＼l,

where E0(x)=aiz(x^Q±). Let r>0 small enough. We decompose the third

term as the following form

＼

RnJyVy<p-<p)(Er-El°)＼T9fxu＼*dy

=
＼
(yVvV-vXEr-E^lTyfiuydy

+
f
(y -lyip-ipXE r-El0) |T9fzu 12dy

J＼y＼>r ' r

Repeating the argument in the proof of Lemma 2.1,we have

(3.5)
f
{ylip-ip){Er-E-l0)＼T<pfxu＼2dy＼^Cr'n-l-"^ip(＼lfxu＼t+＼fx＼l)

J＼V＼<r

for some p, n ―l<p<(n ―l)/a
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Noting that X＼y＼>r(y)(y-^<p―<p)is bounded, by Lemma 3.5, we have

f (yV<p-<pXEV-E?')＼T9fiu＼*dy＼£C<＼fiu＼, |3,/,u|>
J＼y＼>r

Moreover, let t>0, small enough. Then we have

(3.6)
f
(y'l<p-(p)(Ey-E-,≪)＼T9f xu＼Hy＼^z＼f xu＼l+C/t＼lf xu＼l

Using (3.3)~(3.6),we can estimate the following

<fxilH1(X), A]°fxu, u>

^(2-CAr<n-1-ap"p-CA/T)＼Vfzu＼l-X(d0+Cr<n-1-ap)IP+T)＼fxu＼l

^{2-CXr'n-l-a^ip-CX/r){Hl{X)fxu, fxu>

+X(2-CXr(n-1-°p"p-CA/T)≪(E1-Eo)fxu, f xu>+<(E0-l)fxu, f xu≫

-X(do+Cr<n-l-°p"p+T)＼fxu＼l

>X(2-CXr(n-1-ap≫p-CX/T)/3＼fxu＼l-dQX(2-CXr(n-1-ap)IP-CX/T)＼fiu＼20

+X(2-CXr(n-1-ap>IP-CX/TK(E0-l)fxu, fxu}-X(d0+Cr<n-1-ap≫p+T)＼fiu＼l

Noting 0<X, r, r, 50<l, we have (3.2). R

Following Tamura [8], we consider cut off functions, Xn(x)^ C (Rn) such

that Xn(x) has support in {xg/J": |x|<2} and Xn=l for ＼x＼<l. For s>0

small enough, we define

E1,s(x)=Eo(x)+Xn(£xXE1(x)-Eo(x))>

Vl(y)=X,y]>r{y)Xn_^y){ylyip{y)-ip{y)).

We further define an operator B(s; X) as

B(e; X)=-2A+KF1..-T%EV>-E-S)VXy)Tv

-(R'nEV-ET'Wv),

where F1,s=x^E1,£(x)(x^Q±)y R;=X,y^yXylyipiy)-^))1^^

We can consider B(e; X) to be a bounded operator from H＼Rn) to H~＼Rn)

(for detail, see the proof of Lemma 2.2 of Kadowaki [3]). For u<=H%Rn)r＼

D(A) satisfing Au^H＼Rn), we define the commutator i＼_B{&＼X),A~]as follows

</[£(s; X), A~]u,m>=
£
<i"[fl/e; X), A]u, u}

=
j±{<Au,

Bj(e; X)u}-(Bj(e; X)u, Am}),
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where

B2(e; X)=-XT%EV-E-?)VIT9,

B2(e; x)=~x(r;)he+1o-e-1°)r;-

Following Appendix of Kadowaki [3], we show that i[B(e ; X),A] is extended

to a bounded oparator H＼Rn) to H~＼Rn). By a straightforward calculation,

the form i＼_Bx{s;X), A] is extended to a bounded operator from H＼Rn) to

H~＼Rn). Moreover we have that

i"[fli(e;X),4]°=-4A+;i(F1.,*-7+7*-xF1., + nF1.,).

Lemma 2.3 implies that i＼_B2(e;X), A] is extended to a bounded operator from

H1+s(Rn) to H-l-＼Rn), where s>l/2. We also have

z[52(s; X), A]°

= -KT*(EV-ET°WIy ■TvVy+(TvVy)* -yiEV-ErWlT^y

+ T*(Er-E-1o)<p(y)V;T<pdz+(T9d,nEr-E-1°)<p(y)VZT9

+ nT%{EV-E-1°WlT9).

We define operator Prv as

/J;M=Z,tfl<r(3'X(3"71,9)(3')-9>(3')M3'))I/8^M,

for u^S{Rn). Then we can show that PT9 is extended to a bounded operator

from H＼Rn) to L＼Rn~l)(see Appendix of Kadowaki [3]). Thus we have that

i[B3(e; X),A]0 is extended to a bounded operator from H2(Rn) to H~＼Rn).

Moreover we have

+ n(Pp*(JEr-JET°)Pp

We define an operator i＼B{e; ^), ^4]°as

i[fl(≪; X), A]°= 2 i[Bj(e ; X), AT

J―1

Thus the form i[B(e; X), A]0 is extended to a bounded operator from H＼Rn)

to H~＼Rn).

Lemma 3.6. Let M(s ; X) = f x{H{l))B{s,; X)fx(H(X≫. Then [M(e ; X), A]

defined as a form on D(A) is extended to a bounded operator on L2 which is
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denoted by [M(e; X),A]0.

Proof. The lemma is proved in exactly the same way as in the proof of

Lemma 3.3 of Kadowaki [3]. We here give a briefsketch of the proof.

We write fx for fx(H(X)). Since A(/t)sends Hk(Rn) into Hk(Rn)(k=0,

±1,±2),we have

(3.7) i[M(fi; X),A{iij]

=fitB(e; X),Ai/tXfi+fxBte; X)Ux, A(tti＼+ Ui, A(ft)]B(e;X)fx.

Again, noting that A(p) sends Hk{Rn) into Hk(Rn)(k=0, ±1,±2),we have

(3.8) fiWe; X),A(ft)2fx=fxifiiA+iftT'We ; A),̂ VC^+'iw)"1/;

as an operatoron L2. (3.1)and (3.8)imply that

(3.9) s- lim /i[J3(e; X),A(fty]fx=filB(e; X),A]≪fx

for all >£e(0,1), as an operator on L2. We also prove that

(3.10) s- lim (-A+l)1^/,, ^XK-A+1)1/2

= (_A+l)l/.[/if ^]0(_A+1)1/2

for all X^(0, 1), as an operator on L2 (for detail,see Lemma 2.4 of Weder [9]).

(3.9) and (3.10) imply that

(3.11) s= lim [M(s; X), A(uj]

=/j[0(e; X),ATfi+fxBie; X)U x, A]< + Ui. A]*B(s; X)fX

for all ^e(0, 1), as an operator on L2. We define [M(e; ^),^4]°by the right

side of (3.11).

Finally, for u, vgD(A), we have

<[M(s ; X),A]°u, y>= lim ≪A(u)u, M(e ; ^)t;>-<M(s ; i)w, y4(≪)u≫

= <^Lm, M(s ; X)v}-(M(e ; ^)m, ^y> . m

We can prove the following lemma by a straightforward calculation.

Lemma 3.7. ^4s A-≫0,one has

(i)

(ii)

||(-A+;O-1/2(B(s; ^)-JSU))(-A+;)-1/2|| = £(?O(l),

＼(-A+X)-1/2((d/d£)B(e; A))(-A+,r1/2ll = £^W),

(iii) K-A+X)-1 [fi(e; X),A^-A+X)'1]] = e'-'Otf-1)+0U~x),

where B(X) =i＼Hx(X),A]0.
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Lemma 3.4 and 3.7(i) imply that

(3.12) M(e;X)^Un

for £>0 small enough, where y>0 is independent of e, X. It follows from (3.12)

that M(e; X) is non-negative and hence we define an operator, GK(s; X), on

V by

GK(s; X)={Hl{X)-X-iita-＼x)-ieM{ke; DT1

for k, 0</c<l and £>0 small enough.

Lemma 3.8. There exists e0, 0<s0Cl, independent of X such that for s, 0<

||G,(£;X)＼＼= *-lO(X-1), U-0)

uniformly in k, 0</c<1.

For a proof of Lemma 3.8, see that of Lemma 5.3 of Kikuchi and Tamura

[4] or Lemma 3.2 of Tamura [7].

We write

F&; X)=X1G^s; X)X,,

where ^=(1+ |x|2)-1/2.

Differentiating FK(s; X) in e, we have

(d/de)FK(e; X)=-iX1GKM(B; X)GKX1-ieX1GK((d/de)M(e; X))GKXX.

We ran show that

(3.13) G,(e; X)D{A)aD(A)r＼H＼Rn),

(3.14) Range(fiX1)c:D(A),

(see Weder [9]).

Let gx(p) = l-fx(p). We write in brief fx and gx for fxiH^X)) and

gxiH^X)) respectively. Using (3.13) and (3.14),we can decompose (d/ds)FK(s; /I)

as a form on L2

(3.15)

where

(d/de)FJe ; X)= SK&e; X)

Yl ―

Y＼

Y＼

iX1GJx(B(e; X)-Ba))fXGKXX

=iX1GtglB(X)fiGtXl

=iX1GKgiB(Z)giGKX1,

^XiGJzBWgzGJd
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Y^-iXJiGAHiW-X-iKaW'-ieMie; A),A]GtfiXlt

Yl=-iX1f,GKBa)GKg,X1,

Yl = -iXlgxGKB(X)GKg,X1

Yl=-iXl8xGtB(X)GKfiXl,

K!=≪*i/jG,[a(x)-≪,A]GJxXlt

Ylo=-isX1GK((d/de)M(£; X))GKX1}

Y?=£XJxGKiM(s; X),A^GJ.X,.

We need the following two lemmas to estimate each term of the right side of

(3.15)

Lemma 3.9. As X-^0, one has:

(i)

(ii)

(iii)

(iv)

WgiGJLe; X)＼＼= O(X-1),

＼＼giGK(s; XX-A+Wl^OiX-1'*),

K-A+XyigxCie ; AX-A+Xy<*＼＼ = O(l),

＼＼(-A+Xy'2fiGK(e; X)X1＼＼=z-^＼＼FK＼V"O{l),

(v) IK-A+JO^CCe; W=O(1),

(Vi) ||F,(s;Jl)||= ≪-≫O(l)f

uniformly it,0<£<l.

For a proof of Lemma 3.9(i )~(iii),see that of Lemma 3.5 of Tamura [7]

or Lemma 5.4 of Kikuchi and Tamura [4]. Also, for a proof of (iv) and (v),

see that of Lemma 3.4 of Tamura [7] or Lemma 5.5 of Kikuchi and Tamura

[4]. In order to prove (vi),we need the well-known inequality

(3.16) Ux}-2＼u(x)＼idx^c[＼7u(x)＼zdx

(3.16),(iv) and (v) imply (vi).

Noting the definition of [M(e; 1), A]0 (see (3.11)) and Lemma 3.7(iii),we

can prove the following lemma in the same way as the proof of Lemma 3.5 of

Tamura [7] or Lemma 5.6 of Kikuchi and Tamura [4].

Lemma 3.10. As ^->0, one has;

||[M(s; X),Ay＼＼= B8-lO{X).

Using Lemma 3.8,3.9 and 3.10,we can evaluatethe norm of Y{, 1^/^11,

and obtain the following differentialinequality(see Tamura [8]).

(3.17) ＼＼(d/de)FK(s;X)＼＼^C(l+ s-^＼＼FK＼＼1/2+ee-1＼＼FK＼＼).
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Let e0,0<£0<l. Then by Lemma 3.9(vi), we have

(3-18) ＼＼FK(e0;;OII= £oW), tf-0).

(3.17) and (3.18) imply

||FK(0;X)＼＼= O(X), W-0),

uniformly k, 0</c<1. The proof of Lemma 2.2 is now complete.
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