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THE LIMITING AMPLITUDE PRINCIPLE FOR THE
ACOUSTIC WAVE OPERATORS IN
TWO UNBOUNDED MEDIA

By

Mitsuteru KADOWAKI

1. Introduction.

In our previous paper Kadowaki [3], we have proved the nonexistence of
eigenvalues and the limiting absorption principle for the acoustic wave operators
in two unbounded media. In the present paper we study the limiting amplitude
principle for these operators. We assume that the propagation speed is dis-
continuous at the interface and the equilibrium density is 1.

Let n=3 and x=(y, z)&R*'XR. We deal with the asymptotic behaviour
(as t—>+oo) of the solutions of the following Cauchy problem
w1 { fut, x)—a(x’Ault, x)=exp(—itvw )f(x)  (t, x)ER,XR",

' (0, x)=8,u(0, x)=0,

where ©>0.
We make the assumptions for the interface separating two media and a(x).
Let ¢o(y)=aly| and ¢(y)=C'(R*"*\0), where a=0. We assume that ¢(y)
describes the interface and satisfies

(A.0) Ia%llyl"“16"‘(</>(y)—9ba(;v))l=O(Iyl"") (1y1—00),
for some >0, and
(A.1) 21 etemi=00y17) - (1y1-0),
where 0<a<1/2. For ¢(y), we use the following notation
Q.={x=(y, 2): z2>¢()},
Q_={x=(y, 2): z<¢p(y)},
S={x=(y, 2): z=¢(¥)}.

We denote the unit normal vector at the point x&S by v=(,, vs, ***, Yn-1, ¥2)
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with v,>0.
The propagation speed a(x)>0 is assumed to satisfy following

(A.2) 1/e<a(x)<c
for some ¢>1, and there exist a.>0, aif(x)€B*£.) and as(x)= L>(R") such
that a(x) is decomposed as
a(x)=a.+ai(x)+as(x) (x€2.),
(A.3) Sias | 2118%i(0)|=0(1x|7")  (lx]—+o, x&Q.),
as(x)=0(|x|7"")  (lx|—=+0o0),

for some 6>0.

Under (A.0)~(A.3), we show the limiting amplitude principle of the acoustic
operator, —a(x)?A, for (1.1).

There are many works dealing with the limiting amplitude principle for
the acoustic operators. For example Eidus [2] has proved the limiting absorp-
tion and amplitute principle for two unbounded media problem with the interface
satisfying the following condition : for any x&S

(1.2) v, =C,>0
(1.3) fxw| =G,
where C,;>0(;=1, 2), are independent of x&S. For example,

sin| y|

(2]

satiafies (1.2) and (1.3), but not satisfies (A.0). We can also deal with the fol-
lowing interface not satisfying (1.2),

e(NECHR™™), o(y)= (>, @o(y)=0

eM=131""  ¢(3)=0

where, 0<o<1/2. The propagation speed considered in Eidus [2] is a piecewise
constant function while we can perturb the propagation speed. Tamura [7] has
proved the limiting amplitude principle for the acoustic wave operators in in-
homogeneous media. Kikuchi and Tamura [4] have also proved this principle
for the acoustic wave operators in perturbed stratified fluilds.

In order to show the limiting amplitude principle for our operator, we need
a low frequency behaviour of the resolvent (see Eidus [1]). In [4] and [7],
they use Mourre’s method to show a low frequency behaviour of the resolvent
and show the limiting amplitude principle. We also use Mourre’s method to
show a low frequency behaviour of the resolvent of our operator (Theorem 1.1).
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We now define the acoustic operator L as
(1.4 L=—a(x)*A

Under the above assumption, (A.0)~(A.3), L is symmetric operator in the Hibert
space L*(R™; a(x)"*d x) and admits a unique self-adjoint realization. We denote
by the same notation L this self-adjoint realization. Then L is a positive
operator (zero is not an eigenvalue) and the domain D(L) is given by D(L)=
H?*R™), H%(R") being the Sobolev space of order s over R*. We also denote
by R(z; L) the resolvent (L—z)™! of L for Imz=+0.

We need several notations to describe our results. Let L? be the usual L°®
space defined on R", with the inner product

<u, v>=gu(x>m‘>dx

and the corresponding norm |-|,. For a€R, let L2 be the weighted L? space
defined by
Li={u(x): {x)*u(x)e LR}, <xd>=1+|x|%)"*,

with the norm
ul a:§<x>2“|u<x>12dx .

Let A: Li—L} be a bounded operator. We denote by |[Af..g the operator
norm considered as an operator from L% to L}. If, in particular, A: L*—L?
is considered as an operator from L? into itself, then its norm is denoted by
the simplified notation [[A]f.

In Kadowaki [3], we have obtained the following result

THEOREM 1.0. Assume that (A.0)~(A.3). Then

(i) L has no eigenvalues.

(ii) Let 2,>0 and a>1/2. Then there exists some compact interval ICR,
containing A, and a positive constant C=C(,, &) such that

[<x>~*R(A+ir; LXx)™¢|<C,

for 21, 0<k<]1.
(iii) For every A>0 and a>1/2, the following two limits

R(A+:0; L):1i{r01R(kiz'lc; L),

exist in the uniform operator topology of B(LZ, LZ2,). Moreover R(2+i0; L) are
locally Hilder continuous.
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The aim here is to prove the following.

THEOREM 1.1.  Assume that (A.0)~(A.3), Let a>1 and f>1/2. Then there
exists d, 0<d<1/2, such that

IR(A£i0; L)|p._e=0(1"%), (2A—0).
By Theorem 1.0 and 1.1, we have the following theorem (see Eidus [1] or

Tamura [7]).

THEOREM 1.2 (LIMITING AMPLITUDE PRINCIPLE). Assume that (A.0)~(A.3).
Let u=u(t, x) be the solution of (1.1) with feLj, B>1/2. Then u(t, x) behaves
like

u=exp(—itvVw )R(w+i0; L)f+o(l), (t— o)
strongly in L%,, a>1.
Acknowledgement. The author would like to express his sincere gratitute

to Professors M. Matsumura and K. Kajitani for their generous advice and

kind encouragement.

2. Reduction to main lemma.

We consider only the case 1=a-2<a;2. The other cases can be proved
similarly. We define the self-adjoint operator H(i) on L? by

{ H()=—A—Xa"*(x)—1)

D(HQ)=H*R").
Then we have
R(At+ir; L)=Q(A, +ix; HA))a ¥x),

where Q(4, +ix; H(A)=(H(A)—AFika *x))"'. Therefore, Theorem 1.1 is ob-
tained as an immediate consequence of the following.
LEMMA 2.1. Let the pair (@, B) be as in Theorem 1.1. Then
1Q4, £i0; HMlg--a=0"), (A2—10),
for some d, 0<d<1/2.

By the assumption (A.3), we can decompose a~*x) as a ¥ (x)=FEi(x)+
Eyx)Xx€8.) in such a way:

2.1 > x["OHEI(x)—a)=0(x["")  (lx|—0e0, x€Q.),

lajgl
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(2.2) Ey(x)=0(1x]7"%  (lx] = ),
(2.3) IEI@)““I&‘;(E?(X)—aZZ)l§5o (xe8.),

for §,>0 small enough, d, being fixed throughout.

LEMMA 2.2. Let H{(A)=—A—AE(x)—1), and a>1. Then, we have
(2.4) (H(AD—2Fika () auea=00), (A—0),
uniformly in >0 small enough, where E(x)=Ei(x)(xc£.)

We show that Lemma 2.1 follows from Lemma 2.2. We need the following
two lemmas to estimate an integral on the interface S.

LEMMA 2.3. Let s>1/2. For usS(R") (Schwartz space), we define

(T u)¥)=uly, ¢(¥)
T, has an extension to a bounded operator from H*(R") to LER™Y).

For a proof of Lemma 2.3, see that of Lemma 2.1 of Kadowaki [3].

LEMMA 2.4 (SOBOLEV’S THOREOM). Suppose that
1/2—1/m=1/q, 2<g<0.
Then we have the embedding
HY{R™) —_, LYR™).
ProoF OF LEMMA 2.1. We prove Lemma 2.1 in the same way as in the

proof of Lemma 1.1 of Tamura [7]. We assume (2.4). Let a>1 and §>1/2.
We assert that

(2.5) I(H(D)—2Fika ™(x)) 7 g-a=0@"""),  (A—0),
(2.6) I(H(D)—AFika (%) | 5--p=0@7Y),  (4—0),

uniformly in £>0 small enough. By (2.5), (2.6) and Theorem 1.0(iii), we have
Lemma 2.1 (see the proof of Lemma 1.1 of Tamura [7]). We prove the asser-
tions (2.5) and (2.6). We consider the + case only. Let u=(H,(A)—A+ika™*(x))"'f
with feL? Then u satisfies

2.7) (—A—AE(x)+iea X x))u=f.

We take the L? scalar product of (x> 7u with equation (2.7), where y=0. In-
tegrating by part and taking real part, we have
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(2.8) x>y, Tud—1/2¢u, (Vx> Nud
=XKEu, <x>Tud+Relf, {x>Tu.

Let d<min{§, ¢}, 0<0<K], be fixed arbitrarily. Let X(x)={X’},s;s» be a real
smooth vector field such that

; { (1#1x|—6)yj/lxl (]:1’ 27 3) Ty n—l)
Y{ix)=
A=1x12/1x]  (j=n)

for |x|>R and
supp’C {|x|>R'},

where R>R’>1. We use the summation convention. Noting that

no 1 1
e—f - 2
]g,lajxwajm_(m mm)wu\
O+l o e L3 a0
+ e 2 A0l s sl (%>R
and
> Red X0, ud;u
jok=1j#k
1 o+1 no,
(e a5 ), a3, 0l (51>R),
we have
2.9 Red 9,ud;u=Cslx)" 0| Vul?,  |x|>R.

We take the L* scalar product of X-Vu+(1/2)(V-X)u with equation (2.7). we have
(2.10) {=Au, X-Vu+(1/2)N-Du>
—KEu, X-Nu+4(1/2)V-Du>
+ixa™?(Hu, X-Vu+1/2)N-Du>
={f, X-Nu+1/2)N - Du.

First, we calculate the first term of left side of (2.10). Integrating by parts,
we have

(2.11) Red—Au, X-Vu+(1/2)(V-Du)
:Re<(akxj)3ku, 3]u>—1/4<(8§6,xf)u, u> .

In orded to calculate the second term of left side of (2.10), we set w,=z—¢(y)
and w'=(yy, ¥3, ¥s, ***, ¥Yz-1). Then we have
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1 0o - 0 0|
DG,z _| 9 SR S &
D(w’, wa) 0 0 . i o

—Bp(w’)  —Bup(w’) - —Bpap(w’) 1|

Thus, integrating by parts, we have (for detail, see the proof of Lemma 2.2
of Kadowaki [3])

(2.12)  Re<Eyu, 2-Vu+(1/2)V-Nuy=—1/2{Fu, u
+172{, 00, ) Typ(0) =120, @B —E0) Tyul*dy,
where XV={¥} 5201, F=X-VE(x)(x€2.) and E'=E(y, ¢(3)=0).
Noting that (2.11) and (2.12), we take the real part of (2.10). Then we have
(2.13)  Re<0:X)0,u, 0;u>—1/4K(0%0;4 ) u, u>+2/2{Fu, uy
~2/25Rn_,(xy(y, PNV =Xy, @NNET—ET)T ju(y)[*dy
=Relf, X-Vu+1/2)V-D)ud+rImla™()u, X-VNuy,

We set a=1+d and B=(1+4)/2. Assume that f€Li. In order to prove (2.5),
we first estimate the fourth term of the left side of (2.13). Take 0<#,«1 and
R,>1 such that if |y|<#, or |y|>R,, we have |y|*+]e(»)|*>R. Using 7,
and R,, we decompose the fourth term as

w0 0Ty, QOIMEY—E*)IT ] *dy

1— 2 12N\=-d/2
:S|y|<r0*(7|y| o)1) (9 Vyp—@NEP"—E)| T ul*dy

(I 1*+ TenIH?
X, @) V() =24, QNET—ET)IT jul*dy

Sro<\yl<Ro

S L=(ly 1"+l
wiske ([P 1e(y)[*)

:II+12+13-

(¥ -Vyo—NET—EIT ul*dy

If |y|<r, there exist some C,>0 such that |¢(y)|>C,>0. Then we have

1—(1y 15 | () ]2
hSCl LT e

ty Vyo—ol | T ul*dy

gcg 1y | T ol2dy,

1yi<ro

where v=,x)~+O /%y,
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If 0<o<1/2, there exist some s>1/2 and p>n—1 such that n—1—a(l+a)p
>0 and (n—1)/2p+s=1. Thus, by Lemma 2.4 and Hoélder inequlity, we have

[ ireere Ty
1YiI<ro

<c{Tarey| | 1T el@a), Oltdydg

171<

<Crgn-imear e[ L E | Fa), Ol iswro-n an-ndl

<Crorrimearo (" ALCPEa), Ol a-brancan-ndl

—~o0

écro(n_l—uuﬂ)/”(lu|£(1+a)lz‘|’|vu|~2—(1+a)/2),
where %ZU(C):(ZE)‘WEWe‘“"v(z)dz. By Lemma 2.3 and (A.0), we also have
the following

Iz§CS <1V IR, |T(/,ulzdy§C([u|3(1+,),2+|Vu|3<1+a)/2),

o 0

nsc| IOl T ity £ COlul a1 T2
= visr, Uy PP+leHe % Y= ~(1+6)/2 UlZa+eriz)-

Thus, we have
@1 [ 000, g0 Typm—20, pIES—E)I Tyuldy|

SCUullasory et VUl Zavor et 8] 2away e+ 1 VU 2040y /)

Following Lemma 1.1 of Tamura [7], we estimate the other terms of (2.13).
By (2.9), we have

(2.15) ReSm>R(akZ")aku6,_udxg C"g|z,>g<">_1_5 |Vu|2dx.

By Lemma 2.2, we have

(2.16) [<(030;%)u, uy| <C|f15%.

By (2.1), we also have

(2.17) KFu, w)|<Clul2q.0y2.
Noting Lemma 2.2, we use (2.8) with y=2a to obtain
(2.18) IVul_o<Clfla-

it follows from (2.18) and Lemma 2.2 that

(2.19) | Relf, X:-VNu+1/2)V-Dud| <CIf15.
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We again use (2.8) with y=0 to obtain

(2.20) |Vuli=Eu, up+Relf, u,

(2.21) k<a™()u, ud=Im{f, ud>.

By (A.2), (2.21) and Lemma 2.2, we have

(2.22) eluli=Clfla.

Thus (2.20), (2.22) and Lemma 2.2 imply

(2.23) leImla=2()u, X-Vuy| <C| f15.

Since B<(1+6)/2, (1+0)/2, we have by (2.13)~(2.17), (2.19) and (2.23)

(2.24) IVul2s=<Calul2asmnet Ul ainm)+CI L.

Using (2.24) and (2.8) with y=28, we have

(2.25) Aul2p=CAullasmntlullaso)+CI G,

Again since B<(1480)/2, (1+0)/2, (2.25) implies
Aullp=Clfla

Considering the adjoint operator, we have (2.5). To prove (2.6), we repeat the
same argument as above. Assume that f&L:. Then, by the same way as in
the proof of (2.24), we can show that

(2.26) V|25 CAN Ul Zaror et U] 2asors)
+Cul2a+1F 1 IVul g+ 1 flg-lul-p).
Using (2.5) and (2.8) with y=28, we have
(2.27) Aul2<CUTVul2+ 21 £19).
Noting that B8<(1+8)/2, (140)/2, we have by (2.26) and (2.27)
lul g<CA'| flp.

The proof of Lemma 2.1 is now complete. &

3. Proof of Lemma 2.2.

In this section we prove Lemma 2.2 by making use of commutator method
developed by Mourre [5]. Let A be the generator of the dilation unitary group:

1
A_fézf(x-V—{—V-x).

We define the commutator :[H,(1), A] as a form on H¥R")N\D(A) as follows:
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For u, ve H3{R"YND(A),
GLH(A), Alu, vy=i({Au, Hi(Av>—<H(Du, Av)).

LEMMA 3.1. The form i[H\(R), A] defined on H*(R")ND(A) is extended to
a bounded operator from H(R™) to H Y(R"™) which is denoted by i[H\(2), A]°.
Moreover we have

([H(A), A]’=—20+XF\—T¥EF—ET?XY -Vyp(3)—(yNT,),
where Fi=x -VNE,(x)(x€8.).

For a proof of Lemma 3.1, see that of Lemma 2.2 of Kadowaki [3].
If [pi>1, (A+ip)™" sends H*(R") into H*(R") and as an operator on
H*R™(k=0, =1, +2)

3.1 s— lim fu(A4ip)'=1

[ ft)s4oo
is valid (see Lemma 2.3 of Weder [9]). Put A(p)=ipA(A+ip)~'. Using (3.1),
we can prove the following lemma in the same way as the proof of Lemma
2.4 of Weder [9].

LEMMA 3.2.

iLH\(A), Alp)]=ip(A+ip) i[H\(2), AL ip(A4-ip)™"
and
s— lim (—A+1)"V4H[H(A), A(p)](—A+1)712

|pl~+oo

=(—A+1)""*%[H, (), AJ(—A+1)""*

for all 2€(0, 1), as an operator on L=
Using Lemma 3.2, we can also prove the following lemma in the same
way as the proof of Lemma 2.5 of Weder [9].

LEMMA 3.3. Let f€CyR). Then

(1) f(H(A) sends D(A) into D(A).

(ii) [f(H(), A1 defined as operator on D(A) is extended to a bounded
operator on L* which is denoted by [ f(H(A), A]".

LEMMA 3.4. Let 0< iK1, take fi(p)e CFR), 0L =1 such that f; has
support in (2/3, 34) and fi=1 on [2/2, 24]. Then, there exists a positive constant
C which is independent of A such that

3.2) FA(H(DYTH(A), AL fa(Hi(D)=2 CAf 1(H (D).

in the form sence.
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In order to show Lemma 3.4, we need the following lemma.
LEMMA 3.5. Let ue HY(R"). Then, we have

|Tyultz@n-1,= $2ReSQiumx.

PrROOF. Let u=S(R"). Noting that

S uazua’x:ig Stm ud,udzdy,
Q2. R"-1]) o (y)

we have by integrating by parts

ududx=+\ |T,ul*dy—\ 0d.undx
Q. Rn-1 Q.

Thus we have

SB"—I [T ul Zdy:¢2ReSg uo,udx

x

This implies lemma because S(R") is dense in H'(R"). &

PrROOF OF LEMMA 3.4. We simply write f, instead of f;(H,(4)). For ue
L?, we have (for detail, see the proof of Lemma 2.2 of Kadowaki [3])

(3.3)  SFalHWA), Alfau, up=2<Vfu, Vfu>+AKFf u, fau)
A 0 TN ER—E)I T f auldy

We estimate the second and the third term respectively. (2.3) implies that

(3.4) [<F\fau, faudl], I[K(E\—Eo)fau, frud| =0, faulf,

where Eo(x)=az%(x=8.). Let r>0 small enough. We decompose the third
term as the following form

[ 0 D= )BT — B3I T f il dy
=[O T B —EONT,faul*dy
+] 0T @XER—EDIT  faul*dy
Repeating the argument in the proof of Lemma 2.1, we have

3.5) ]Slyw(y-V¢—¢)(ET°—EI°)IT¢fzuIzdyléCr("'l‘“””’(lszuiHU’zl%),

for some p, n—1<p<(n—1)/c.
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Noting that Xi,>-(3)(y-Vo—¢) is bounded, by Lemma 3.5, we have

], 0T @UER—ED)I Ty faul"dy | SCUfaul, 10.f2u)).
Moreover, let >0, small enough. Then we have

@6 || 0-Te—gNBI— BT, faultdy| Sel fauli+C/e|TS i

Using (3.3)~(3.6), we can estimate the following
falH(A), AL f au, up

z(z_czr(n—l-ap)/p_CX/T)|VquI3_2(50+cr(n—1—ﬂp)/p+z.)|fxugg
=2—Car==oP/2—CA/r)XH\(A)f au, fau)

+ 42— Cir PP — CA DBy —En ft, £ 300 +<(Ey=Df s, f30)
— By Cr 1P o) fuld

22— Carm =2~ CA/7)/3| fau|§—0,A2—CAr "1 P/P—Cl/7)| faul}

+A2—Car =122 _CQ/eX(Ey—1)f au, faiud—ABe+Cr® 1-0®/P 42| fu|
Noting 0<4, r, r, 6,1, we have (3.2).

2
0

Following Tamura [8], we consider cut off functions, X,(x)eC%(R") such
that X,(x) has support in {xeR": |x|<2} and X,=1 for |x|<1. For >0
small enough, we define

Ey (£)=Ex)+Xa(ex ) E(x)—Eo(x)),
Vi=Xy1>r(3)Xn_s(e¥)(3 -V (3)— () -
We further define an operator B(e; A) as
B(e; A=—24+F, . —THET—ETWIOT,
—(ROMET"—E)RE),
where Fy .=x-VE, (x)(x€2.), Ri=Xii<x(3)(¥ - Vy(3)—@yN"*T,.

We can consider B(e; 1) to be a bounded operator from H'(R") to H (R")
(for detail, see the proof of Lemma 2.2 of Kadowaki [3]). For ueH¥R™")N
D(A) satisfing AuesHYR"), we define the commutator /[ B(e; 1), A] as follows

G[B(e; D), Alu, up= é G[Bye; A, Alu, u
J=1

= 3V (CAu, Bye: Dud—(B(e; Du, Auy),
Jj=1
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where

B\(e; AH)=—2A+AF, .,

Bo(e; H)=—ATHEP—EWIT,,

By(e; D=—ARHNET—ET)R;.

Following Appendix of Kadowaki [3], we show that ;[B(e; A), A] is extended
to a bounded oparator H*R") to H*(R"). By a straightforward calculation,
the form i[B,(e; 2), A] is extended to a bounded operator from H'(R®) to
H~'(R"™). Moreover we have that

i[Bi(e; D), Al'=—4A+A(Fy, . x V4+V*-xF, +nF, ).

Lemma 2.3 implies that /[ B,(e; ), A] is extended to a bounded operator from
H™S(R™) to H'"%(R"), where s>1/2. We also have

i[By(e; ), AI°
=—ATHEY—ET?WIy TN, +(T NV )*y(EY'—ETWIT NV,
+THET—ET)p0VIT 0, +(T 0MET—ET)eVIT,
+nTHEYF—ETWIT,).
We define operator P; as
Pou=x i< (9 -Vyp(0)—(y)Dp(y)"*T yu,

for ucS(R"). Then we can show that P/ is extended to a bounded operator
from H'(R") to L*R"') (see Appendix of Kadowaki [3]). Thus we have that
i[Bs(e; 2), A]° is extended to a bounded operator from H2*R") to H *(R").
Moreover we have

i[By(e; A, AI'=—A(RPHET—E")y Ry, +(RIV* y(EYP'—ET)R]
+POHEY—ET)P 0, +(P Lo EY"—E)P;
+n(POXEP—ETOPE)
We define an operator [ B(e; 1), A]° as
iTB(e; 2, A= 2ilBye; 1), AT,
=
Thus the form [ B(e; 2), A" is extended to a bounded operator from H?*R")

to HR").

LEMMA 3.6. Let M(e; 2) = f2(HQ)B(e; A f1(H(A). Then [M(e; 2), A]
defined as a form on D(A) is extended to a bounded operator on L* which is
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denoted by [M(e; 2), AJ°.

Proor. The lemma is proved in exactly the same way as in the proof of
Lemma 3.3 of Kadowaki [3]. We here give a brief sketch of the proof.

We write f; for fi(H(2). Since A(gp) sends H*(R") into H*(R™)(k=0,
+1, +2), we have

@7 i[M(e; 4), A(p)]

=f1[B(e; A, Awfai+fiBe; Dlf 2, AI+172 A)IB(e; Dfa.
Again, noting that A(x) sends H*(R"™) into H*(R")(k=0, +1, +2), we have
(3.8)  filB(e; b, Aw1fi=Faip(A+ip) ' [B(e; 1), Alip(A+ip)"f;
as an operator on L% (3.1) and (3.8) imply that

3.9 s—ljigquz[B(e; A, Awlf=71alB(e; A, A1°f3
for all A=(0, 1), as an operator on L% We also prove that
(3.10) s—)lilm (—A+D"[f 3, A())(—A+1)"?

fl—>too

=(—A+1MLf5, AJ(—A+1P"

for all (0, 1), as an operator on L? (for detail, see Lemma 2.4 of Weder [9]).
(3.9) and (3.10) imply that

311 s= lim [M(e; D), Alg)]

|- +oe
=fi[B(e; 2, AIf2+[:B(e; Alf2, A1+ [f2, AI'B(e; Dfa

for all 2&(0, 1), as an operator on L2 We define [M(e; A), A]° by the right
side of (3.11).
Finally, for u, veD(A), we have

(IM(e; A, Alu, U>IKBIEM(<A(#)% M(e; Dvd>—<M(e; Du, A(pvd)
={Au, M(s; Dvy—{M(s; Du, Av). B

We can prove the following lemma by a straightforward calculation.

LEMMA 3.7. As 1—0, one has

(i) I=A4+D%(B(e; H—BN—A+2)"|="0(1),

(i) I(—A+D72(d/de)B(e ; DN—A+2)|=e"10(D),

(i) (—A+[B(e; D), AJ(—A+D=¢e’'0AH+0Q™),
where B(2)=i[H.(4), AT".
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Lemma 3.4 and 3.7 (i) imply that
(3.12) M(e; D=71Af3

for ¢>0 small enough, where y>0 is independent of ¢, 2. It follows from (3.12)
that M(e; A1) is non-negative and hence we define an operator, GJe; A), on
L? by
Gle; A=HA)—A—ira ¥ (x)—ieM(e; )"
for £, 0<x<1 and ¢>0 small enough.
LEMMA 3.8. There exists &, 0<e,<1, independent of A such that for e, 0<

egaOy
[Ge; D=0, (4—0)

uniformly in &, 0<g<l.
For a proof of Lemma 3.8, see that of Lemma 5.3 of Kikuchi and Tamura
[4] or Lemma 3.2 of Tamura [7].

We write
Flc(s ; l)zXlG:(e ; Z)Xl »

where X;=(1+]x]|?)"V2,
Differentiating F,(¢; 2) in ¢, we have

(d/de)Fe; A=—iX\G:M(e; NG X:1—ieX\G(d/de)M(e; V)G X, .
We can show that
(3.13) G{e; HD(A)TD(ANHYR"),
(3.14) Range (f ;. X,)CD(A),

(see Weder [9]).

Let gi(p)=1—f:(p). We write in brief f; and g; for f;(H.(1) and
g(H,(2)) respectively. Using (3.13) and (3.14), we can decompose (d/de)Fe; 2)
as a form on L*

(3.15) (@d/de)Fde; D= B YLe; D,

where
Yi=—iXiGf2(B(e; D—B)f:G.Xy,

Vi=iX,G,g:1BA)f1G.X:,
Vi=iX,G,g:BAg.iG.X,,
Yi=iX\G.f:B(D)g:iG:X1,
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Vi=—iX,f 1G.LH(D)—A—ika(x)?—ieM(e; ), AIG.f1X,,
Vi=—iX.fiGB(AGg1 X1,

Vi=—iX,8:GBAGg2 X1,

Y8=—iX:2.:G.BAG.fX,,

Yi=kX,f:GLa(x)?, AlG.fiX,,
Y¥=—ieX,G(d/de)M(e ; D)GXi,

Yit=eXif21G[M(e; 2), A1G.fX.

We need the following two lemmas to estimate each term of the right side of
(3.15)

LEMMA 3.9. As 2—0, one has:
(1) llgsGee; D=0,
(i) [lg1Gele; A—A+D =01,
(i) (—A+2)*g1G(e; AN—A+D*|=0(),
Av) I(=A+DY2f21Ge; DXil=e 2| F]'20Q),
(V) I(—=A+2"2g:Gle; HX:I=0),
(vi) [[Fde; Dl=e70(1),
uniformly &, 0<k<l.

For a proof of Lemma 3.9 (i)~(iii), see that of Lemma 3.5 of Tamura {7]
or Lemma 5.4 of Kikuchi and Tamura [4]. Also, for a proof of (iv) and (v),
see that of Lemma 3.4 of Tamura [7] or Lemma 5.5 of Kikuchi and Tamura
[4]. In order to prove (vi), we need the well-known inequality

(3.16) S<x>'2\u(x)l"’dxg()Squ(x)lzdx.

(3.16), (iv) and (v) imply (vi).

Noting the definition of [M(s; 4), A]® (see (3.11)) and Lemma 3.7 (iii), we
can prove the following lemma in the same way as the proof of Lemma 3.5 of
Tamura [7] or Lemma 5.6 of Kikuchi and Tamura [4].

LEMMA 3.10. As A—0, one has;
IM(e; 2), A]|=¢""'0Q2).

Using Lemma 3.8, 3.9 and 3.10, we can evaluate the norm of Vi 1<;7<11,
and obtain the following differential inequality (see Tamura [8]).

@.17) I(d/de)F(e; DI<CA+e 2| F2+e I Fe]).
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Let &, 0<eo«1. Then by Lemma 3.9 (vi), we have
(3.18) [Feo; All=e5'0(1), (2—0).
(3.17) and (3.18) imply

1F0; All=01), (1—0),

uniformly &, 0<xk<<1. The proof of Lemma 2.2 is now complete.
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