INJECTIVE DIMENSION OF GENERALIZED MATRIX RINGS

By

Kazunori Sakano

A Morita context $\langle M, N\rangle$ consists of two rings R and S with identity, two bimodules ${ }_{R} N_{S}$ and ${ }_{S} M_{R}$, and two bimodule homomorphisms called the pairings $(-,-): N \otimes_{S} M \rightarrow R$ and $[-,-]: M \otimes_{R} N \rightarrow S$ satisfying the associativity conditions $(n, m) n^{\prime}=n\left[m, n^{\prime}\right]$ and $[m, n] m^{\prime}=m\left(n, m^{\prime}\right)$. The images of the pairings are called the trace ideals of the context and are denoted by ${ }_{R} I_{R}$ and ${ }_{S} J_{S}$.

Let A be the generalized matrix ring defined by the Morita context $\langle M, N\rangle$, i.e.,

$$
\Lambda=\left[\begin{array}{cc}
R & N \\
M & S
\end{array}\right],
$$

where the addition is given by element-wise and the multiplication by

$$
\left.\left[\begin{array}{ll}
r & n \\
m & s
\end{array}\right]\left[\begin{array}{cc}
r^{\prime} & n^{\prime} \\
m^{\prime} & s^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
r r^{\prime}+\left(n, m^{\prime}\right) & r n^{\prime}+n s^{\prime} \\
m r^{\prime}+s m^{\prime} & {[m,} \\
n^{\prime}
\end{array}\right]+s s^{\prime}\right] .
$$

For a right R-module U, id- $U_{R}\left(\mathrm{fd}-U_{R}\right)$ denotes the injective (flat) dimension of U_{R}, respectively.

Let

$$
\Gamma=\left[\begin{array}{ll}
R & 0 \\
M & S
\end{array}\right]
$$

be the generalized matrix ring defined by the trivial context $\langle M, 0\rangle$. In a previous paper [9], we have established a theorem concerning the estimation of the injective dimension of Γ_{Γ} in terms of those of R_{R}, M_{R} and S_{S} as follows:

Theorem. Assume that ${ }_{s} M$ is fat. Then we have

$$
\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}, \mathrm{id}-S_{S}\right) \leqq \mathrm{id}-\Gamma_{\Gamma} \leqq \max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}, \text { id }-S_{S}-1\right)+1
$$

The main purpose of this paper is to extend a part of results in the previous paper [9] to Λ under some additional conditions on the Morita context $\langle M, N\rangle$. In Section 1, we decide a lower bound of id- Λ_{A} using id- R_{R}, id- M_{R}, id- S_{S}
and id- N_{S}. In Section 2, we investigate an upper bound of id- Λ_{A} as well as a lower bound of id- Λ_{A} in terms of id $-R_{R}$, id- M_{R}, id- S_{S} and id- N_{S} under the condition that $N=N J$, both ${ }_{S} M$ and ${ }_{R} N$ are flat, and the natural maps $I \otimes_{R} I$ $\rightarrow I^{2}$ and $J \otimes_{S} J \rightarrow J^{2}$ are isomorphisms. The estimation of id $-\Lambda_{A}$ is as follows:

Theorem 2.6. If $N=N J$, both ${ }_{S} M$ and ${ }_{R} N$ are flat, and the natural maps $I \otimes_{R} I \rightarrow I^{2}$ and $J \otimes_{S} J \rightarrow J^{2}$ are isomorphisms, then we have

$$
\begin{aligned}
& \max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}, \mathrm{id}-S_{S}, \mathrm{id}-N_{S}\right) \\
& \quad \leqq \mathrm{id}-\Lambda_{A} \leqq \max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}, \mathrm{id}-S_{S}, \mathrm{id}-N_{S}\right)+1 .
\end{aligned}
$$

In Section 3, we examine the condition for Λ to be a right self-injective ring. Section 4 is devoted to study id- Λ_{A} in case of the derived context. Furthermore, we show that id- $R_{R}=\mathrm{id}-\Lambda_{A}$, if M_{R} is finitely generated projective, which is the extension of the well-known fact that id- $\left[\begin{array}{ll}R & R \\ R & R\end{array}\right]=\mathrm{id}-R$, In the final Section 5 , we exhibit some example when the left-hand side or the right-hand side equality holds in Theorem 2.6.

Throughout this paper, uniess otherwise specified, Λ denotes the generalized matrix ring defined by the Morita context $\langle M, N\rangle$ with pairings (,--) and $[-,-]$, and the trace ideals ${ }_{R} I_{R}$ and ${ }_{S} J_{S}$. For a right R-module U, id- $U_{R}\left(\mathrm{fd}-U_{R}\right)$ denotes the injective (flat) dimension of U_{R}, respectively. Moreover, we set $e=$ $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \in \Lambda$ and $e^{\prime}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \in \Lambda$.

The author wishes to express his hearty thanks to Professor T. Kato for his useful suggestions and remarks.

1. General cases.

The following lemma is essentially in [3, p. 346].
Lemma 1.1. Let $A_{R},{ }_{R} B_{A}$ and C_{A} be modules such that $\operatorname{Ext}_{A}^{i}(B, C)=0(i>0)$ and $\operatorname{Tor}_{i}^{R}(A, B)=0(i>0)$. Then there holds

$$
\operatorname{Ext}_{R}^{n}\left(A, \operatorname{Hom}_{A}(B, C)\right) \cong \operatorname{Ext}_{A}^{n}\left(A \otimes_{R} B, C\right)
$$

Theorem 1.2. Assume that $\mathrm{fd}-{ }_{s} M$ and $\mathrm{fd}_{{ }_{R}} N$ are finite. Then we have

$$
\begin{aligned}
& \max \left(\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}\right)-\mathrm{fd}-{ }_{R} N, \max \left(\mathrm{id}-S_{S}, \mathrm{id}-N_{S}\right)-\mathrm{fd}-{ }_{-S} M\right) \\
& \quad \leqq \mathrm{id}-\Lambda_{\Lambda} .
\end{aligned}
$$

Proof. Let L be a right ideal of R. Since

$$
\begin{aligned}
\operatorname{Hom}_{\Lambda}\left(R / L \otimes_{R} e \Lambda, \Lambda\right) & \cong \operatorname{Hom}_{R}\left(R / L, \operatorname{Hom}_{A}(e \Lambda, A)\right) \\
& \cong \operatorname{Hom}_{R}(R / L, \Lambda e) \\
& \cong \operatorname{Hom}_{R}(R / L, R \oplus M)
\end{aligned}
$$

and $\operatorname{Ext}_{\Lambda}^{i}(e \Lambda, \Lambda)=0(i>0)$, the resulting spectral sequence is

$$
\mathrm{E}_{2}^{p, q}=\operatorname{Ext}_{A}^{q}\left(\operatorname{Tor}_{p}^{R}(R / L, e \Lambda), \Lambda\right) \underset{q}{\Longrightarrow} \operatorname{Ext}_{R}^{n}(R / L, R \oplus M)
$$

Since $\mathrm{E}_{2}^{p, q}=0$ for either $q>\mathrm{id}-\Lambda_{A}$ or $p>\mathrm{fd}_{-R} N$, we have $\operatorname{Ext}_{R}^{n}(R / L, R \oplus M)=0$ for $n>\mathrm{id}-\Lambda_{A}+\mathrm{fd}{ }_{-R} N$. Thus we have $\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}\right)$-fd ${ }_{R} N \leqq \mathrm{id}-\Lambda_{A}$. In the similar manner, we also obtain $\max \left(\mathrm{id}-S_{S}\right.$, id $\left.-N_{S}\right)-\mathrm{fd}-s M \leqq \mathrm{id}-\Lambda_{A}$, completing the proof.

2. Trace accessible cases.

We prepare some lemmas needed after.
Lemma 2.1. Every right ideal of Λ has the form of $[X Y]$ with X_{R} a submodule of $\left[\begin{array}{l}R \\ M\end{array}\right]_{R}$ and Y_{S} a submodule of $\left[\begin{array}{c}N \\ S\end{array}\right]_{S}$ satisfying $\left\{\left[\begin{array}{c}(n, m) \\ s m\end{array}\right]\left[\begin{array}{c}n \\ s\end{array}\right] \in Y, m \in\right.$ $M\} \subseteq X$ and $\left\{\left.\left[\begin{array}{c}r n \\ {[m, n]}\end{array}\right] \right\rvert\,\left[\begin{array}{c}r \\ m\end{array}\right] \in X, n \in N\right\} \subseteq Y$.

Proof. Let P be a right ideal of Λ. Put $X=\left\{\left[\begin{array}{c}r \\ m\end{array}\right]\left[\begin{array}{cc}r & 0 \\ m & 0\end{array}\right] \in P\right\}$ and $Y=$ $\left\{\left[\begin{array}{c}n \\ s\end{array}\right] \left\lvert\,\left[\begin{array}{cc}0 & n \\ 0 & s\end{array}\right] \in P\right.\right\}$. Then X and Y satisfy the above conditions. The converse part is obvious.

The following lemmas are well-known.
Lemma 2.2.
(1) $I \operatorname{Ker}(-,-)=\operatorname{Ker}(-,-) I=0$.
(2) $J \operatorname{Ker}[-,-]=\operatorname{Ker}[-,-] J=0$.

Lemma 2.3. Assume that $N=N J$. Then
(1) $N J=I N=N$.
(2) $I=I^{2}$ and $J=J^{2}$.

Following [10], a right R-module W is called L-accessible for an ideal L of R if $W=W L$.

Lemma 2.4. Assume that $N=N J$ and that ${ }_{R} N$ are flat. Then the following are equivalent:
(1) The natural maps $I \otimes_{R} I \rightarrow I^{2}$ and $J \otimes_{S} J \rightarrow J^{2}$ are isomorphisms.
(2) The pairings $(-,-)$ and $[-,-]$ are monic.

Proof. $(1) \Rightarrow(2)$. The exact sequences
and

$$
0 \longrightarrow \operatorname{Ker}(-,-)_{R} \xrightarrow{\nu_{1}} N \otimes_{s} M_{R} \xrightarrow{(-,-)} I_{R} \longrightarrow 0
$$

$$
0 \longrightarrow \operatorname{Ker}[-,-]_{s} \xrightarrow{\nu_{2}} M \otimes_{R} N_{S} \xrightarrow{[-,-]} J_{S} \longrightarrow 0
$$

induce the following commutative diagrams with exact rows and columns

and

where α_{i}, β_{i} and $\gamma_{i}(i=1,2)$ are the natural maps, $\delta_{1}=(-,-) \mid I\left(N \otimes_{S} M\right)$, and $\grave{\delta}_{2}=[-,-] \mid\left(M \otimes_{R} N\right) J$. Since γ_{i} is an isomorphism by assumption, α_{i} is epic by the 5 -lemma. Since $\operatorname{Im} \alpha_{1}=I \operatorname{Ker}(-,-)=0$ and $\operatorname{Im} \alpha_{2}=\operatorname{Ker}[-,-] J=0$ by Lemma 2.2, δ_{1} and δ_{2} are monic. Since $N=I N=N J$ by Lemma 2.3, it is easy to see that $\delta_{1}=(-,-)$ and $\delta_{2}=[-,-]$. Hence the pairings $(-,-)$ and $[-,-]$ are monic.
$(2) \Rightarrow(1)$. Since ${ }_{R} N$ is flat, $N=I N$ and $(-,-)$ is monic, it is easily verified that γ_{1} is an isomorphism in view of the commutative diagram (*). Moreover, since $(-,-)$ and $[-,-]$ are monic and $N=N J$, it is easily checked that β_{2} is the following comdosition of maps

$$
M \otimes_{R} I \otimes_{R} N \simeq M \otimes_{R} I N=M \otimes_{R} N
$$

It follows from the commutative diagram (**) that γ_{2} is an isomorphism.

In the remainder of this section, we assume that both ${ }_{s} M$ and ${ }_{R} N$ are flat and that the natural maps $I \otimes_{R} I \rightarrow I^{2}$ and $J \otimes_{S} J \rightarrow J^{2}$ are isomorphisms.

Lemma 2.5. Assume further that $N=$ NJ. Let $\left[X_{0} Y_{0}\right]$ be a right ideal of Λ and put $X_{i}=\left\{\left.\sum_{j}\left[\begin{array}{c}\left(n_{j}, m_{j}\right) \\ s_{j} m_{j}\end{array}\right] \right\rvert\,\left[\begin{array}{c}n_{j} \\ s_{j}\end{array}\right] \in Y_{i-1}, m_{j} \in M\right\}$ and $Y_{i}=\left\{\left.\sum_{k}\left[\begin{array}{c}r_{k} n_{k} \\ {\left[m_{k}, n_{k}\right.}\end{array}\right] \right\rvert\,\left[\begin{array}{c}r_{k} \\ m_{k}\end{array}\right] \in\right.$ $\left.X_{i-1}, n_{k} \in N\right\}(i=1,2,3)$. Then
(1) $Y_{i-1} \otimes_{S} M \cong X_{i}$ as a right R-module and $X_{i-1} \otimes_{R} N \cong Y_{i}$ as a right S module
(2) $\left[X_{i-1} 0\right] \otimes_{R} e \Lambda \cong\left[X_{i-1} Y_{i}\right]$ and $\left[0 Y_{i-1}\right] \otimes_{s} e^{\prime} \Lambda \cong\left[X_{i} Y_{i-1}\right]$ as right Λ modules.

Proof. (1) Since ${ }_{S} M$ is flat, and (-, -) is monic by Lemma 2.4, the homomorphism $Y_{i-1} \otimes_{s} M \rightarrow X_{i}$ defined by $\left[\begin{array}{c}n \\ s\end{array}\right] \otimes m \rightarrow\left[\begin{array}{c}(n, m) \\ s m\end{array}\right]$ for $\left[\begin{array}{l}n \\ s\end{array}\right] \in Y_{i-1}, m \in M$, is an isomorphism. Similarly, we can show that $X_{i-1} \otimes_{R} N \cong Y_{i}$.
(2) It is easily seen that $\left[X_{i-1} Y_{i}\right]$ and $\left[X_{i} Y_{i-1}\right]$ are right ideals of Λ. Since $X_{i-1} \otimes_{R} N \cong Y_{i}$ by (1), the homomorphism [$\left.X_{i-1} 0\right] \otimes_{R} e \Lambda \rightarrow\left[X_{i-1} Y_{i}\right]$ defined via

$$
\left[\begin{array}{ll}
r & 0 \\
m & 0
\end{array}\right] \otimes\left[\begin{array}{ll}
r^{\prime} & n \\
0 & 0
\end{array}\right] \longmapsto\left[\begin{array}{cc}
r r^{\prime} & r n \\
m r^{\prime} & {[m, n]}
\end{array}\right] \quad \text { for }\left[\begin{array}{c}
r \\
m
\end{array}\right] \in X_{i},\left[\begin{array}{ll}
r & n \\
0 & 0
\end{array}\right] \in e \Lambda,
$$

is an isomorphism. By the similar manner as above, we obtain $\left[0 Y_{i-1}\right] \otimes_{s} e^{\prime} A$ $\cong\left[X_{i} Y_{i-1}\right]$.

Theorem 2.6. Assume further that $N=N J$. Then we have $\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}, \mathrm{id}-S_{S}, \mathrm{id}-N_{S}\right)$
$\leqq \mathrm{id}-\Lambda_{A} \leqq \max \left(\mathrm{id}-R_{R}\right.$, id $-M_{R}$, id $-S_{S}$, id- $\left.N_{S}\right)+1$.
Proof. Let $\left[X_{0} Y_{0}\right]$ be a right ideal of Λ and put $X_{i}=\left\{\begin{array}{c}\Sigma \\ j\end{array}\left[\begin{array}{c}\left(n_{j}, m_{j}\right) \\ s_{j} m_{j}\end{array}\right]\left[\begin{array}{c}n_{j} \\ s_{j}\end{array}\right]\right.$ $\left.\in Y_{i-1}, m_{j} \in M\right\}$ and $\left.Y_{i}=\left\{\sum_{k}\left[\begin{array}{c}r_{k} n_{k} \\ {\left[m_{k}, n_{k}\right.}\end{array}\right]\right]\left[\begin{array}{c}r_{k} \\ n_{k}\end{array}\right] \in X_{i-1}, n_{k} \in N\right\}(i=1,2,3)$. Then we consider the following exact sequence of right Λ-modules:

$$
\begin{equation*}
0 \longrightarrow\left[X_{1} Y_{0}\right] \longrightarrow\left[X_{0} Y_{0}\right] \longrightarrow\left[X_{0} Y_{0}\right] /\left[X_{1} Y_{0}\right] \longrightarrow 0 \tag{*}
\end{equation*}
$$

Since $N=N J$, it is easy to see that $Y_{1}=Y_{1} J$, from which it follows that $Y_{1}=Y_{2}$ $=Y_{3}$. Therefore, we have $\left[X_{0} Y_{0}\right] /\left[X_{1} Y_{0}\right] \cong\left[X_{0} Y_{1}\right] /\left[X_{1} Y_{1}\right]=\left[X_{0} Y_{1}\right] /\left[X_{1} Y_{2}\right]$. Moreover, since both ${ }_{R} N$ and ${ }_{S} M$ are flat, and both $(-,-)$ and $[-,-]$ are monic by Lemma 2.4, we have $\left[X_{1} Y_{0}\right] \cong\left[0 Y_{0}\right] \otimes_{s} e^{\prime} \Lambda$ and $\left[X_{0} Y_{0}\right] /\left[X_{1} Y_{0}\right] \cong\left[X_{0} Y_{1}\right] /$ $\left[X_{1} Y_{2}\right] \cong\left(\left[X_{0} 0\right] /\left[X_{1} 0\right]\right) \otimes_{R} e \Lambda$ by Lemma 2.5. Now, we put $\max \left(\right.$ id- R_{R}, id- M_{R}, id $-S_{S}$, id $\left.-N_{S}\right)=t$. The exact sequence ($*$) yields the following exact sequence

$$
\operatorname{Ext}_{A}^{t+1}\left(\left[X_{0} Y_{0}\right] /\left[X_{1} Y_{0}\right], \Lambda\right) \longrightarrow \operatorname{Ext}_{A}^{t+1}\left(\left[X_{0} Y_{0}\right], \Lambda\right) \longrightarrow \operatorname{Ext}_{A}^{t+1}\left(\left[X_{1} Y_{0}\right], \Lambda\right),
$$

from which it follows that $\operatorname{Ext}_{A}^{t+1}\left(\left[X_{0} Y_{0}\right], A\right)=0$ together with the fact that

$$
\begin{aligned}
\operatorname{Ext}_{A}^{t+1}\left(\left[X_{0} Y_{0}\right] /\left[X_{1} Y_{0}\right], \Lambda\right) & \cong \operatorname{Ext}_{A}^{t+1}\left(\left[X_{0} Y_{1}\right] /\left[X_{1} Y_{1}\right], \Lambda\right) \\
& \cong \operatorname{Ext}_{\Lambda}^{t+1}\left(\left[X_{0} Y_{1}\right] /\left[X_{1} Y_{2}\right], \Lambda\right) \\
& \cong \operatorname{Ext}_{\Lambda}^{t+1}\left(\left(X_{0} / X_{1}\right) \otimes_{R} e \Lambda, \Lambda\right) \\
& \cong \operatorname{Ext}_{R}^{t+1}\left(X_{0} / X_{1}, \operatorname{Hom}_{\Lambda}(e \Lambda, \Lambda)\right) \\
& \cong \operatorname{Ext}_{R}^{t+1}\left(X_{0} / X_{1}, \Lambda e\right)=0
\end{aligned}
$$

and that

$$
\begin{aligned}
\operatorname{Ext}_{A}^{t+1}\left(\left[X_{1} Y_{0}\right], A\right) & \cong \operatorname{Ext}_{A}^{t+1}\left(\left[0 Y_{0}\right] \otimes_{s} e^{\prime} \Lambda, \Lambda\right) \\
& \cong \operatorname{Ext}_{S}^{t+1}\left(Y_{0}, \operatorname{Hom}_{A}\left(e^{\prime} \Lambda, \Lambda\right)\right) \\
& \cong \operatorname{Ext}_{S}^{t+1}\left(Y_{0}, \Lambda e^{\prime}\right)=0
\end{aligned}
$$

in view of Lemma 1.1. Hence we have $t \leqq i d-\Lambda_{\Lambda} \leqq t+1$ together with Theorem 1.2 .

Remark. If we assume that $M=M I$ instead of $N=N J$ in Lemma 2.5 and Theorem 2.6, we obtain the same results by the symmetry of the Morita context $\langle M, N\rangle$.

Theorem 2.7. Assume further that $N J=N$.
(1) If $\max \left(\mathrm{id}-R_{R}\right.$, id $\left.-M_{R}\right)<\max \left(\mathrm{id}-S_{S}\right.$, id- $\left.N_{S}\right)=i \neq 0$, then $\mathrm{id}-\Lambda_{A}=i$ if and only if $\operatorname{Ext}_{S}^{i}(N, S \oplus N)=0$.
(2) If $\max \left(\mathrm{id}-S_{S}\right.$, id $\left.-N_{S}\right)<\max \left(\mathrm{id}-R_{R}\right.$, id $\left.-M_{R}\right)=i \neq 0$ and if $\operatorname{Ext}_{R}^{i}(M / J M$, $R \oplus M) \neq 0$, then id $-\Lambda_{A}=i+1$.
(3) Suppose that $\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}\right)=\max \left(\mathrm{id}-S_{S}, \mathrm{id}-N_{S}\right)=i \neq 0$.
(i) If $\operatorname{Ext}_{R}^{i}(X, R \oplus M) \neq 0$ for some $X_{R} \subseteq(R \oplus M)_{R}$, then id- $\Lambda_{A}=i+1$.
(ii) If id- $S_{S}>$ id $-N_{S}$ and if $\operatorname{Ext}_{R}^{i}(M / J M, R) \neq 0$, then id- $\Lambda_{\Lambda}=i+1$.
(iii) If $\mathrm{id}-N_{S}>\mathrm{id}-S_{S}$ and if $\operatorname{Ext}_{R}^{i}(M / J M, M) \neq 0$, then $\mathrm{id}-\Lambda_{A}=i+1$.

Proof. (1) Let $\left[X_{0} Y_{0}\right]$ be a right ideal of Λ and put $X_{i}=\left\{\left.\sum_{k}\left[\begin{array}{c}\left(n_{k}, m_{k}\right) \\ s_{k} m_{k}\end{array}\right] \right\rvert\,\right.$ $\left.\left[\begin{array}{c}n_{k} \\ s_{k}\end{array}\right] \in Y_{i-1}, m_{k} \in M\right\}$ and $Y_{i}=\left\{\sum_{j}\left[\begin{array}{c}r_{j} n_{j} \\ {\left[m_{j}, n_{j}\right]}\end{array}\right]\left[\left[\begin{array}{c}r_{j} \\ m_{j}\end{array}\right] \in X_{i-1}, n_{j} \in N\right\} \quad(i=1,2,3)\right.$.
Since $N J=N$, it is easy to see that $Y_{1}=Y_{2}$. Moreover, since

$$
\begin{aligned}
\operatorname{Ext}_{A}^{i}\left(\left[X_{0} Y_{0}\right] /\left[X_{1} Y_{0}\right], \Lambda\right) & \cong \operatorname{Ext}_{A}^{i}\left(\left[X_{0} Y_{1}\right] /\left[X_{1} Y_{1}\right], \Lambda\right) \\
& =\operatorname{Ext}_{A}^{i}\left(\left[X_{0} Y_{1}\right] /\left[X_{1} Y_{2}\right], \Lambda\right) \\
& \cong \operatorname{Ext}_{A}^{i}\left(\left(\left[X_{0} 0\right] \otimes_{R} e \Lambda\right) /\left(\left[X_{1} 0\right] \otimes_{R} e \Lambda\right), \Lambda\right) \\
& \cong \operatorname{Ext}_{A}^{i}\left(X_{0} / X_{1} \otimes_{R} e \Lambda, \Lambda\right)
\end{aligned}
$$

$$
\cong \operatorname{Ext}_{R}^{i}\left(X_{0} / X_{1}, R \oplus M\right)=0
$$

and

$$
\begin{aligned}
\operatorname{Ext}_{A}^{i}\left(\left[X_{1} Y_{0}\right], A\right) & \cong \operatorname{Ext}_{A}^{i}\left(\left[0 Y_{0}\right] \otimes_{S} e^{\prime} \Lambda, A\right) \\
& \cong \operatorname{Ext}_{S}^{i}\left(Y_{0}, S \oplus N\right)
\end{aligned}
$$

by Lemmas 1.1 and 2.5, we have $\operatorname{Ext}_{\Lambda}^{i}\left(\left[X_{0} Y_{0}\right], \Lambda\right) \cong \operatorname{Ext}_{S}^{i}\left(Y_{0}, S \oplus N\right)$ from the following exact sequence

$$
\begin{aligned}
0=\operatorname{Ext}_{A}^{i}\left(\left[X_{0} Y_{0}\right] /\left[X_{1} Y_{0}\right], A\right) & \longrightarrow \operatorname{Ext}_{A}^{i}\left(\left[X_{0} Y_{0}\right], \Lambda\right) \longrightarrow \operatorname{Ext}_{A}^{i}\left(\left[X_{1} Y_{0}\right], \Lambda\right) \\
& \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(\left[X_{0} Y_{0}\right] /\left[X_{1} Y_{0}\right], \Lambda\right)=0 .
\end{aligned}
$$

It follows that id- $\Lambda_{A}=i$ if and only if $\operatorname{Ext}_{A}^{i}\left(\left[X_{0} Y_{0}\right], \Lambda\right) \cong \operatorname{Ext}_{S}^{i}\left(Y_{0}, N \oplus S\right)=0$ for every right ideal $\left[X_{0} Y_{0}\right]$ of Λ if and only if $\operatorname{Ext}_{s}^{i}(N, S \ominus N)=0$ from the following exact sequence

$$
\begin{aligned}
\operatorname{Ext}_{s}^{i}(N, S \oplus N)= & \operatorname{Ext}_{S}^{i}(S \oplus N, S \oplus N) \longrightarrow \operatorname{Ext}_{s}^{i}\left(Y_{0}, S \oplus N\right) \\
& \longrightarrow \operatorname{Ext}_{s}^{i+1}\left((S \oplus N) / Y_{0}, S \oplus N\right)=0
\end{aligned}
$$

(2) The exact sequence of right A-modules

$$
0 \longrightarrow\left[\begin{array}{cc}
0 & 0 \\
J M & J
\end{array}\right] \rightarrow\left[\begin{array}{cc}
0 & 0 \\
M & J
\end{array}\right] \rightarrow\left[\begin{array}{cc}
0 & 0 \\
M & J
\end{array}\right] /\left[\begin{array}{cc}
0 & 0 \\
J M & J
\end{array}\right] \longrightarrow 0
$$

yields the following exact sequence

$$
\begin{aligned}
\operatorname{Ext}_{A}^{i-1}\left(\left[\begin{array}{cc}
0 & 0 \\
J M & J
\end{array}\right], \Lambda\right) & \rightarrow \operatorname{Ext}_{\Lambda}^{i}\left(\left[\begin{array}{ll}
0 & 0 \\
M & J
\end{array}\right] /\left[\begin{array}{cc}
0 & 0 \\
J M & J
\end{array}\right], \Lambda\right) \\
& \rightarrow \operatorname{Ext}_{\Lambda}^{i}\left(\left[\begin{array}{ll}
0 & 0 \\
M & J
\end{array}\right], \Lambda\right) \longrightarrow \operatorname{Ext}_{A} /\left(\left[\begin{array}{cc}
0 & 0 \\
J M & J
\end{array}\right], \Lambda\right)
\end{aligned}
$$

Since $J=J^{2}$ by Lemma 2.3, we have $\left[\begin{array}{cc}0 & 0 \\ J M & J\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ J M & J^{2}\end{array}\right]$. Since

$$
\begin{aligned}
\operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
0 & 0 \\
M & J
\end{array}\right] /\left[\begin{array}{cc}
0 & 0 \\
J M & J
\end{array}\right], \Lambda\right) & =\operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
0 & 0 \\
M & J
\end{array}\right] /\left[\begin{array}{cc}
0 & 0 \\
J M & J^{2}
\end{array}\right], A\right) \\
& \cong \operatorname{Ext}_{A}^{i}\left(\left(\left[\begin{array}{cc}
0 & 0 \\
M & 0
\end{array}\right] \otimes_{R} e \Lambda\right) /\left(\left[\begin{array}{cc}
0 & 0 \\
J M & 0
\end{array}\right] \otimes_{R} e \Lambda\right), A\right) \\
& \cong \operatorname{Ext}_{A}^{i}\left(M / J M \otimes_{R} e \Lambda, \Lambda\right) \\
& \cong \operatorname{Ext}_{R}^{i}(M / J M, R \oplus M) \neq 0
\end{aligned}
$$

and

$$
\operatorname{Ext}_{\Lambda}^{k}\left(\left[\begin{array}{cc}
0 & 0 \\
J M & J
\end{array}\right], \Lambda\right) \cong \operatorname{Ext}_{A}^{k}\left(J \otimes_{S} e^{\prime} \Lambda, \Lambda\right)
$$

$$
\cong \operatorname{Ext}_{S}^{k}(J, S \oplus N)=0 \quad(k=i-1, i)
$$

by Lemmas 1.1 and 2.5 , we have $\operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}0 & 0 \\ M & J\end{array}\right], \Lambda\right) \cong \operatorname{Ext}_{R}^{i}(M / J M, R \oplus M) \neq 0$. Hence $\operatorname{id}-\Lambda_{A}=i+1$ together with Theorem 2.6.
(3) (i) Let X_{R} be a submodule of $(R \oplus M)_{R}$ such that $\operatorname{Ext}_{R}^{i}(X, R \oplus M) \neq 0$ and $Y_{1}=\left\{\left.\sum_{j}\left[\begin{array}{c}r_{j} n_{j} \\ {\left[m_{j}, n_{j}\right]}\end{array}\right] \right\rvert\,\left[\begin{array}{c}r_{j} \\ m_{j}\end{array}\right] \in X, n_{j} \in N\right\} . \quad$ Since $\left[X Y_{1}\right]$ is a right ideal of Λ and

$$
\begin{aligned}
\operatorname{Ext}_{A}^{i}\left(\left[X Y_{1}\right], \Lambda\right) & \cong \operatorname{Ext}_{A}^{i}\left(\left[X 0 \otimes_{R}\right] e \Lambda, \Lambda\right) \\
& \cong \operatorname{Ext}_{R}^{i}(X, R \oplus M) \neq 0
\end{aligned}
$$

by Lemmas 1.1 and 2.5 , we have id $-\Lambda_{\Lambda}=i+1$ by Theorem 2.6.
(ii) Let

$$
\begin{aligned}
& h_{i}^{\#}: \operatorname{Ext}_{A}^{i}\left(\Lambda /\left[\begin{array}{cc}
R & N \\
J M & J
\end{array}\right], e \Lambda\right) \oplus \operatorname{Ext}_{A}^{i}\left(\Lambda /\left[\begin{array}{cc}
R & N \\
J M & J
\end{array}\right], e^{\prime} \Lambda\right) \\
& \longrightarrow \operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
R & N \\
M & J
\end{array}\right] /\left[\begin{array}{cc}
R & N \\
J M & J
\end{array}\right], e \Lambda\right) \oplus \operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
R & N \\
M & J
\end{array}\right] /\left[\begin{array}{cc}
R & N \\
J M & J
\end{array}\right], e^{\prime} \Lambda\right)
\end{aligned}
$$

be the induced map by the inclusion map

$$
h:\left[\begin{array}{cc}
R & N \\
M & J
\end{array}\right] /\left[\begin{array}{cc}
R & N \\
J M & J
\end{array}\right] \multimap \Lambda /\left[\begin{array}{cc}
R & N \\
J M & J
\end{array}\right]
$$

Since

$$
\begin{aligned}
\operatorname{Ext}_{\Lambda}^{i}\left(\Lambda /\left[\begin{array}{cc}
R & N \\
J M & J
\end{array}\right], e \Lambda\right) & \cong \operatorname{Ext}_{A}^{i}\left(S / J \otimes_{S} e^{\prime} \Lambda, e \Lambda\right) \\
& \cong \operatorname{Ext}_{S}^{i}(S / J, N)=0
\end{aligned}
$$

by Lemma 1.1, we have $\operatorname{Im} h_{i}^{\#} \subseteq \operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}R & N \\ M & J\end{array}\right] /\left[\begin{array}{cc}R & N \\ J M & J\end{array}\right], e^{\prime} \Lambda\right)$. Since $N J=N$, we have $J=J^{2}$ by Lemma 2.3. Therefore, if

$$
\begin{aligned}
\operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
R & N \\
M & J
\end{array}\right] /\left[\begin{array}{cc}
R & N \\
J M & J
\end{array}\right], e \Lambda\right) & =\operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
R & N \\
M & J
\end{array}\right] /\left[\begin{array}{cc}
R & N \\
J M & J^{2}
\end{array}\right], e \Lambda\right) \\
& \cong \operatorname{Ext}_{A}^{i}\left(\left(\left[\begin{array}{cc}
R & 0 \\
M & 0
\end{array}\right] \otimes_{R} e \Lambda\right) /\left(\left[\begin{array}{cc}
R & 0 \\
J M & 0
\end{array}\right] \otimes_{R} e \Lambda\right), e \Lambda\right) \\
& \cong \operatorname{Ext}_{A}^{i}\left(M / J M \otimes_{R} e \Lambda, e \Lambda\right) \\
& \cong \operatorname{Ext}_{R}^{i}(M / J M, R) \neq 0
\end{aligned}
$$

then $h_{i}^{\#}$ is not epic. It follows that $\operatorname{Ext}_{A}^{i+1}\left(\Lambda /\left[\begin{array}{cc}R & N \\ M & J\end{array}\right], \Lambda\right) \neq 0$ from the exactness of the following sequence

$$
\begin{aligned}
& \operatorname{Ext}_{\Lambda}^{i}\left(\Lambda /\left[\begin{array}{cc}
R & N \\
J M & J
\end{array}\right], \Lambda\right) \xrightarrow{h_{i}^{*}} \operatorname{Ext}_{A}^{i}\left(\left[\begin{array}{cc}
R & N \\
M & J
\end{array}\right] /\left[\begin{array}{cc}
R & N \\
J M & J
\end{array}\right], \Lambda\right) \\
& \quad \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
R & N \\
M & J
\end{array}\right], \Lambda\right) \longrightarrow \operatorname{Ext}_{A}^{i+1}\left(\Lambda /\left[\begin{array}{cc}
R & N \\
J M & J
\end{array}\right], \Lambda\right)=0
\end{aligned}
$$

hence $\operatorname{id}-\Lambda_{A}=i+1$ together with Theorem 2.6.
(iii) This can be proved by the similar manner as in (ii).

If we assume that $M I=M$ instead of $N J=N$, Theorem 2.7 can be rewrited as follows:

Theorem 2.8. Assume further that $M I=M$.
(1) If $\max \left(\mathrm{id}-S_{S}\right.$, id $\left.-N_{S}\right)<\max \left(\mathrm{id}-R_{R}\right.$, id $\left.-M_{R}\right)=i \neq 0$, then $\mathrm{id}-\Lambda_{A}=i$ if and only if $\operatorname{Ext}_{R}^{i}(M, R \oplus M)=0$.
(2) If $\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}\right)<\max \left(\mathrm{id}-S_{S}, \mathrm{id}-N_{S}\right)=i \neq 0$ and if $\operatorname{Ext}_{S}^{i}(N / I N, S \oplus N)$ $\neq 0$, then id- $\Lambda_{A}=i+1$.
(3) Suppose that $\max \left(\mathrm{id}-S_{S}\right.$, id- $\left.N_{S}\right)=\max \left(\mathrm{id}-R_{R}\right.$, id $\left.-M_{R}\right)=i \neq 0$.
(i) If $\operatorname{Ext}_{S}^{i}(Y, S \oplus N) \neq 0$ for some $Y_{S} \subseteq(S \oplus N)_{S}$, then id- $\Lambda_{A}=i+1$.
(ii) If id- $R_{R}>\mathrm{id}-M_{R}$ and if $\operatorname{Ext}_{S}^{i}(N / I N, S) \neq 0$, then id- $\Lambda_{A}=i+1$.
(iii) If id $-M_{R}>\mathrm{id}-R_{R}$ and if $\operatorname{Ext}_{S}^{i}(N / I N, N) \neq 0$, then id- $\Lambda_{A}=i+1$.

3. Self-injective rings.

In this section, we consider the condition for Λ to be right self-injective.
Let $\alpha: N \rightarrow \operatorname{Hom}_{R}(M, R)$ be a map defined by $n \mapsto(m \mapsto(n, m))$ for $n \in N, m \in M$ and $\sigma: S \rightarrow \operatorname{End}\left(M_{R}\right)$ the canonical map. Then we have the following theorem:

Theorem 3.1. If
(1) $R_{R}, M_{R}, N_{S}^{\prime}$ and $\boldsymbol{l}_{S}(M)_{S}$ are injective, where $N^{\prime}=\operatorname{Ker} \alpha$ and $\boldsymbol{l}_{S}(M)=$ $\{s \in S \mid s m=0$ for every $m \in M\}$,
(2) α and σ are epic,
(3) $\operatorname{Hom}_{S}\left(N, N^{\prime} \oplus \boldsymbol{l}_{S}(M)\right)=0$
are satisfied, then Λ_{A} is injective.
Proof. Let $[X Y$] be a right ideal of Λ. The exact seqence of right Λ modules

$$
0 \longrightarrow\left[\begin{array}{cc}
0 & N^{\prime} \\
0 & \boldsymbol{l}_{S}(M)
\end{array}\right] \longrightarrow \Lambda \longrightarrow\left[\begin{array}{cc}
R & M^{*} \\
M & \operatorname{End}\left(M_{R}\right)
\end{array}\right] \longrightarrow 0
$$

where $M^{*}=\operatorname{Hom}_{R}(M, R)$, induces the following exact sequence

$$
\begin{aligned}
\operatorname{Ext}_{\Lambda}^{1}\left(\Lambda /[X Y],\left[\begin{array}{cc}
0 & N^{\prime} \\
0 & l_{S}(M)
\end{array}\right]\right) & \longrightarrow \operatorname{Ext}_{A}^{1}(\Lambda /[X Y], \Lambda) \\
& \longrightarrow \operatorname{Ext}_{\Lambda}^{1}\left(\Lambda /[X Y],\left[\begin{array}{cc}
R & M^{*} \\
M & \operatorname{End}\left(M_{R}\right)
\end{array}\right]\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
\operatorname{Ext}_{\Lambda}^{(}\left(\Lambda /[X Y],\left[\begin{array}{cc}
0 & N^{\prime} \\
0 & \boldsymbol{l}_{S}(M)
\end{array}\right]\right) & \cong \operatorname{Ext}_{\Lambda}^{1}\left(\Lambda /[X Y], \operatorname{Hom}_{S}\left(\Lambda e^{\prime}, N^{\prime} \oplus \boldsymbol{l}_{S}(M)\right)\right) \\
& \cong \operatorname{Ext}_{(}^{1}\left(\Lambda /[X Y] \otimes_{\Lambda} \Lambda e^{\prime}, N^{\prime} \oplus \boldsymbol{l}_{S}(M)\right)=0
\end{aligned}
$$

and

$$
\operatorname{Ext}_{\Lambda}^{1}\left(\Lambda /[X Y],\left[\begin{array}{cc}
R & M^{*} \\
M & \operatorname{End}\left(M_{R}\right)
\end{array}\right]\right) \cong \operatorname{Ext}_{R}^{1}\left(\Lambda /[X Y] \otimes_{\Lambda} \Lambda e, \Lambda e\right)=0,
$$

we have $\operatorname{Ext}_{\Lambda}^{1}(\Lambda /[X Y], \Lambda)=0$, that is, Λ_{Λ} is injective.
Theorem 3.2. If
(1) ${ }_{s} M$ and ${ }_{R} N$ are fat,
(2) The natural maps $I \otimes_{R} I \rightarrow I^{2}$ and $J \otimes_{S} J \rightarrow J^{2}$ are isomorphisms,
(3) $N=J N$,
(4) $s(S / J)$ is fat,
then the converse of Theorem 3.1 holds.
Proof. The exact sequence of right Λ-modules

$$
0 \rightarrow\left[\begin{array}{cc}
I & N \\
0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc}
R & N \\
0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{cc}
R & N \\
0 & 0
\end{array}\right] /\left[\begin{array}{cc}
I & N \\
0 & 0
\end{array}\right] \longrightarrow 0
$$

yields the following exact sequence

$$
\begin{aligned}
\operatorname{Hom}_{A}\left(\left[\begin{array}{cc}
R & N \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & N^{\prime} \\
0 & \boldsymbol{l}_{S}(M)
\end{array}\right]\right) & \longrightarrow \operatorname{Hom}_{A}\left(\left[\begin{array}{cc}
I & N \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & N^{\prime} \\
0 & \boldsymbol{l}_{S}(M)
\end{array}\right]\right) \\
& \longrightarrow \operatorname{Ext}_{A}\left(\left[\begin{array}{cc}
R & N \\
0 & 0
\end{array}\right] /\left[\begin{array}{cc}
I & N \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & N^{\prime} \\
0 & \boldsymbol{l}_{S}(M)
\end{array}\right]\right)
\end{aligned}
$$

Since $\operatorname{Hom}_{A}\left(\left[\begin{array}{cc}R & N \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}0 & N^{\prime} \\ 0 & \boldsymbol{l}_{S}(M)\end{array}\right]\right) \cong\left[\begin{array}{cc}0 & N^{\prime} \\ 0 & \boldsymbol{l}_{S}(M)\end{array}\right] e=0$ and
$\operatorname{Ext}_{\Lambda}^{1}\left(\left[\begin{array}{ll}R & N \\ 0 & 0\end{array}\right] /\left[\begin{array}{cc}I & N \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}0 & N^{\prime} \\ 0 & \boldsymbol{l}_{S}(M)\end{array}\right]\right)=\operatorname{Ext}_{\Lambda}^{1}\left(\left[\begin{array}{cc}R & N \\ 0 & 0\end{array}\right] /\left[\begin{array}{cc}I & I N \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}0 & N^{\prime} \\ 0 & l_{S}(M)\end{array}\right]\right)$

$$
\begin{aligned}
& \cong \operatorname{Ext}_{A}\left(R / I \otimes_{R}\left[\begin{array}{cc}
R & N \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & N^{\prime} \\
0 & l_{S}(M)
\end{array}\right]\right) \\
& \cong \operatorname{Ext}_{R}\left(R / I, \operatorname{Hom}_{A}\left(\left[\begin{array}{cc}
R & N \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & N^{\prime} \\
0 & \boldsymbol{l}_{S}(M)
\end{array}\right]\right)=0,\right.
\end{aligned}
$$

we have $\operatorname{Hom}_{A}\left(\left[\begin{array}{cc}I & N \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}0 & N^{\prime} \\ 0 & \boldsymbol{l}_{S}(M)\end{array}\right]\right)=0$. Since $(-,-)$ is monic by Lemma 2.4, we obtain (3) of Theorem 3.1 by

$$
\begin{aligned}
\operatorname{Hom}_{S}\left(N, N^{\prime} \oplus \boldsymbol{l}_{S}(M)\right) & \cong \operatorname{Hom}_{S}\left(N, \operatorname{Hom}_{A}\left(\left[\begin{array}{ll}
0 & 0 \\
M & S
\end{array}\right],\left[\begin{array}{cc}
0 & N^{\prime} \\
0 & \boldsymbol{l}_{S}(M)
\end{array}\right]\right)\right. \\
& \cong \operatorname{Hom}_{A}\left(\left[\begin{array}{cc}
0 & N \\
0 & 0
\end{array}\right] \otimes_{S}\left[\begin{array}{cc}
0 & 0 \\
M & S
\end{array}\right],\left[\begin{array}{cc}
0 & N^{\prime} \\
0 & \boldsymbol{l}_{S}(M)
\end{array}\right]\right) \\
& \cong \operatorname{Hom}_{A}\left(\left[\begin{array}{cc}
I & N \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & N^{\prime} \\
0 & \boldsymbol{l}_{S}(M)
\end{array}\right]\right)=0 .
\end{aligned}
$$

Let $\nu:\left[\begin{array}{ll}0 & 0 \\ M & J\end{array}\right] \subseteq\left[\begin{array}{cc}0 & 0 \\ M & S\end{array}\right]$ and put $g=\operatorname{Hom}_{A}(\nu, A)$. Then the diagram

commutes. Hence σ and α are epic. Let K be a right ideal of S. Since ${ }_{s}(S / J)$ is flat, $\left[\begin{array}{cc}0 & 0 \\ M & J\end{array}\right]$ is a pure submodule of $\left[\begin{array}{cc}0 & 0 \\ M & S\end{array}\right]$ (see, e.g., [11, Proposition 11.1, p. 37]). Therefore ν induces $\tilde{\nu}=S / K \otimes_{S} \nu: S / K \otimes_{S}\left[\begin{array}{cc}0 & 0 \\ M & J\end{array}\right] \subsetneq S / K \otimes_{S}\left[\begin{array}{cc}0 & 0 \\ M & S\end{array}\right]$. Since Λ_{A} is injective and ${ }_{S} M$ is flat, S_{S} and N_{S} are injective by Theorem 1.2. Consider the following commutative diagram

$$
\left.\begin{array}{rl}
\operatorname{Hom}_{A}\left(S / K \otimes \otimes_{S}\left[\begin{array}{ll}
0 & 0 \\
M & S
\end{array}\right], A\right) \xrightarrow{g_{1}} & \operatorname{Hom}_{A}\left(S / K \otimes_{S}\left[\begin{array}{ll}
0 & 0 \\
M & J
\end{array}\right], A\right) \rightarrow \operatorname{Ext}_{A}^{\prime}(\operatorname{Coker} \tilde{\Sigma}, A)=0 \\
\downarrow & \\
& \operatorname{Hom}_{S}\left(S / K, \operatorname{Hom}_{A}\left(\left[\begin{array}{ll}
0 & 0 \\
M & 0
\end{array}\right] \otimes_{R} e \Lambda, A\right)\right) \\
\downarrow
\end{array}\right)
$$

where $g_{1}=\operatorname{Hom}_{A}(\tilde{\Sigma}, \Lambda)$ and $g_{2}=\operatorname{Hom}_{S}(S / K, \sigma \oplus \alpha)$, from which it follows that $\operatorname{Ext}_{S}^{1}\left(S / K, \boldsymbol{l}_{S}(M) \oplus N^{\prime}\right)=0$. Hence N_{S}^{\prime} and $\boldsymbol{l}_{S}(M)_{S}$ are injective. Moreover, R_{R} and M_{R} are injective by Theorem 1.2.

4. Derived contexts.

In this section, we suppose that $\langle M, N\rangle$ is the derived context of M_{R}. Then we have the following theorem.

Theorem 4.1. If $\operatorname{Ext}_{R}^{l}(M, R \oplus M)=0(l>0)$, then id- $\Lambda_{A}=\max \left(\mathrm{id}-R_{R}\right.$, id- M_{R}). Furthermore, assuming that ${ }_{s} M$ is flat, then $\max \left(\mathrm{id}-S_{S}, \mathrm{id}-N_{S}\right)=$ $\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}\right)$.

Proof. If both M_{R} and R_{R} are injective, then $\Lambda \cong \operatorname{Hom}_{R}(\Lambda e, \Lambda e)$ is right self-injective, for ${ }_{A} A e$ is flat. Suppose that $\max \left(\mathrm{id}-R_{R}, \mathrm{id}-M_{R}\right)=i \neq 0$. Then there exists a right ideal L of R such that $\operatorname{Ext}_{R}^{i}(R / L, R \oplus M) \neq 0$. Now, let [$X Y$] be a right ideal of Λ. Since ${ }_{\Lambda} \Lambda e$ is flat and $\operatorname{Ext}_{R}^{l}(\Lambda e, \Lambda e)=0(l>0)$, we have

$$
\begin{aligned}
\operatorname{Ext}_{\Lambda}^{i+1}(\Lambda /[X Y], \Lambda) & \cong \operatorname{Ext}_{A}^{i+1}\left(\Lambda /[X Y], \operatorname{Hom}_{R}(\Lambda e, \Lambda e)\right) \\
& \cong \operatorname{Ext}_{R}^{i+1}\left(\Lambda /[X Y] \otimes_{\Lambda} \Lambda e, \Lambda e\right)=0
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Ext}_{\Lambda}^{i}\left(\Lambda /\left[\begin{array}{cc}
L & L N \\
M & S
\end{array}\right], \Lambda\right) & \cong \operatorname{Ext}_{R}^{i}\left(\Lambda /\left[\begin{array}{cc}
L & L N \\
M & S
\end{array}\right] \otimes_{\Lambda} \Lambda e, \Lambda e\right) \\
& \cong \operatorname{Ext}_{R}^{i}(R / L, R \oplus M) \neq 0
\end{aligned}
$$

by Lemma 1.1. Hence id $-\Lambda_{A}=i$. Let V be a right S-module. Since ${ }_{S} M$ is flat and $\operatorname{Ext}_{R}^{\prime}(M, R \oplus M)=0(l>0)$, we have

$$
\operatorname{Ext}_{S}^{i+1}(V, S)=\operatorname{Ext}_{S}^{i+1}\left(V, \operatorname{Hom}_{R}(M, M)\right) \cong \operatorname{Ext}_{R}^{i+1}\left(V \otimes_{S} M, M\right)=0
$$

and

$$
\operatorname{Ext}_{S}^{i+1}(V, N)=\operatorname{Ext}_{s}^{i+1}\left(V, \operatorname{Hom}_{R}(M, R)\right) \cong \operatorname{Ext}_{R}^{i+1}\left(V \otimes_{S} M, R\right)=0
$$

by Lemma 1.1. Hence $\max \left(\mathrm{id}-S_{S}, \mathrm{id}-N_{S}\right) \leqq i$. Let

$$
0 \longrightarrow R \oplus M \longrightarrow E_{0} \longrightarrow E_{1} \longrightarrow \cdots \longrightarrow E_{i} \longrightarrow 0
$$

be an injective resolution of $(R \oplus M)_{R}$. Then

$$
0 \longrightarrow \operatorname{Hom}_{R}(M, R \oplus M) \longrightarrow \operatorname{Hom}_{R}\left(M, E_{0}\right) \longrightarrow \cdots \longrightarrow \operatorname{Hom}_{R}\left(M, E_{i}\right) \longrightarrow 0
$$

is an injective resolution of $\operatorname{Hom}_{R}(M, R \oplus M)_{s}=(N \oplus S)_{s}$, for $s M$ is flat and $\operatorname{Ext}_{R}^{l}(M, R \oplus M)=0(l>0)$. Thus $\max \left(\mathrm{id}-S_{S}, \mathrm{id}-N_{S}\right)=i$.

Corollary 4.2. If M_{R} is finitely generated projective, then id- $\Lambda_{\Lambda}=\mathrm{id}-R_{R}$.

Proof. This directly follows from Theorem 4.1.

5. Examples.

The following Examples are given to show the possibility that the equalities in both sides of Theorem 2.6 hold. In this section, \boldsymbol{Z} denotes the ring of rational integers and \boldsymbol{Q} the field of rational numbers.

Example 5.1. Let

$$
A=\left(\begin{array}{llll}
\boldsymbol{Q} & 0 & 0 & 0 \\
\boldsymbol{Q} & \boldsymbol{Q} & \boldsymbol{Q} & \boldsymbol{Q} \\
0 & 0 & \boldsymbol{Z} & 0 \\
\boldsymbol{Q} & \boldsymbol{Q} & \boldsymbol{Q} & \boldsymbol{Q}
\end{array}\right), R=\left[\begin{array}{ll}
\boldsymbol{Q} & 0 \\
\boldsymbol{Q} & \boldsymbol{Q}
\end{array}\right], S=\left[\begin{array}{ll}
\boldsymbol{Z} & 0 \\
\boldsymbol{Q} & \boldsymbol{Q}
\end{array}\right],{ }_{S} M_{R}=\left[\begin{array}{ll}
0 & 0 \\
\boldsymbol{Q} & \boldsymbol{Q}
\end{array}\right],{ }_{R} N_{S}=\left[\begin{array}{ll}
0 & 0 \\
\boldsymbol{Q} & \boldsymbol{Q}
\end{array}\right]
$$

We define the pairings $(-,-): N \otimes_{S} M \rightarrow R$ and $[-,-]: M \otimes_{R} N \rightarrow S$ via the multiplication in the ring R. Then the trace ideals are ${ }_{R} I_{R}=\left[\begin{array}{ll}0 & 0 \\ \boldsymbol{Q} & \boldsymbol{Q}\end{array}\right]$ and $s J_{S}$ $=\left[\begin{array}{ll}0 & 0 \\ \boldsymbol{Q} & \boldsymbol{Q}\end{array}\right]$, and the natural maps $I \otimes_{R} I \rightarrow I^{2}$ and $J \otimes_{S} J \rightarrow J^{2}$ are isomorphisms. Moreover, ${ }_{S} M$ and ${ }_{R} N$ are flat and $N J=N$. Since id- $S_{S}=2$ (cf. [9, Proposition 7]), we have $\max \left(\mathrm{id}-R_{R}\right.$, id $\left.-M_{R}\right)=1<\max \left(\mathrm{id}-S_{S}\right.$, id $\left.-N_{S}\right)=1$. Furthermore, since $\operatorname{Ext}_{\hat{\xi}}(N, S \oplus N)=0$, we have id- $\Lambda_{A}=2$ by Theorem 2.7(1).

Example 5.2. Let

$$
A=\left(\begin{array}{llll}
\boldsymbol{Z} & 0 & \boldsymbol{Z} & 0 \\
\boldsymbol{Q} & \boldsymbol{Z} & \boldsymbol{Q} & 0 \\
\boldsymbol{Z} & 0 & \boldsymbol{Z} & 0 \\
\boldsymbol{Q} & \boldsymbol{Q} & \boldsymbol{Q} & \boldsymbol{Q}
\end{array}\right), R=\left[\begin{array}{ll}
\boldsymbol{Z} & 0 \\
\boldsymbol{Q} & \boldsymbol{Z}
\end{array}\right], S=\left[\begin{array}{ll}
\boldsymbol{Z} & 0 \\
\boldsymbol{Q} & \boldsymbol{Q}
\end{array}\right],{ }_{s} M_{R}=\left[\begin{array}{ll}
\boldsymbol{Z} & 0 \\
\boldsymbol{Q} & \boldsymbol{Q}
\end{array}\right],{ }_{R} N_{S}=\left[\begin{array}{ll}
\boldsymbol{Z} & 0 \\
\boldsymbol{Q} & 0
\end{array}\right]
$$

We define the pairings $(-,-): N \otimes_{S} M \rightarrow R$ and $[-,-]: M \otimes_{R} N \rightarrow S$ via the multiplication in the ring S. Then the trace ideals are $\left.\right|_{R} I_{R}=\left[\begin{array}{ll}\boldsymbol{Z} & 0 \\ \boldsymbol{Q} & 0\end{array}\right]$ and $s J_{s}$ $=\left[\begin{array}{ll}\boldsymbol{Z} & 0 \\ \boldsymbol{Q} & 0\end{array}\right]$, and the natural maps $I \otimes_{R} I \rightarrow I^{2}$ and $J \otimes_{S} J \rightarrow J^{2}$ are isomorphisms. Moreover, ${ }_{S} M$ and ${ }_{R} N$ are flat and $N J=N$. Since id- $R_{R}=$ id- $S_{S}=2$ (cf. [9, Proposition 7]), we have $\max \left(\operatorname{id}-R_{R}\right.$, id $\left.-M_{R}\right)=\max \left(\operatorname{id}-S_{S}\right.$, id $\left.-N_{S}\right)=2$ and id- S_{S} $>\operatorname{id}-N_{S}=1$. Since

$$
\operatorname{Ext}_{R}^{\frac{2}{R}}(M / J M, R)=\operatorname{Ext}_{R}^{2}\left(\left[\begin{array}{ll}
\boldsymbol{Z} & 0 \\
\boldsymbol{Q} & \boldsymbol{Q}
\end{array}\right] /\left[\begin{array}{ll}
\boldsymbol{Z} & 0 \\
\boldsymbol{Q} & 0
\end{array}\right], R\right) \cong \operatorname{Ext}_{R}^{\circ}\left(\left[\begin{array}{ll}
0 & \boldsymbol{Q}
\end{array}\right], R\right) \neq 0
$$

we get id- $\Lambda_{\Lambda}=3$ by Theorem 2.7(3) (ii).

References

[1] Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules. Graduate Texts in Math., Vol. 13, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
[2] Bass, H., The Morita theorems. Mimeographed notes, 1962.
[3] Cartan, H. and Eilenberg, S., Homological Algebra. Princeton Univ. Press, Princeton, 1956.
[4] Fossum, R., Griffith, P. and Reiten, I., Trivial Extensions of Abelian Categories. Lecture Notes in Math., Vol. 456, Springer-Verlag, Berlin-Heidelberg.New York, 1975.
[5] Goodearl, K. R., Ring Theory. Marcel Dekker, New York, 1976.
[6] Kato, T., Duality between colocalization and localization. J. Algebra 55 (1978), 351-374.
[7] and Ohtake, K., Morita contexts and equivalences. J. Algebra 61 (1979), 360-366.
[8] Reiten, I., Trivial extensions and Gorenstein rings. Thesis, University of Illinois, Urbana, 1971.
[9] Sakano, K., Injective dimension of generalized triangular matrix. rings. Tsukuba J. Math. 4 (1980), 281-290.
[10] Sandomierski, F. L., Modules over the endomorphism ring of a finitely generated projedtive modules. Proc. Amer. Math. Soc. 31 (1972), 27-31.
[11] Stenström, B., Rings of Quotients, Grund. Math. Wiss. Bd. 217, Springer-Verlag, Berlin-Heidelberg-New York.

Institute of Mathematics
University of Tsukuba
Ibaraki, 305, Japan

