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INJECTIVE DIMENSION OF GENERALIZED MATRIX RINGS

By

Kazunori Sakano

A Morita context <M, N) consists of two rings R and S with identity,two

bimodules RNS and SMR, and two bimodule homomorphisms called the pairings

(―, ―):N<g>sM->R and [―, ―]:M<g)RN->S satisfying the associativitycondi-

tions{n, m)nr
~

n[in, n'~＼and [m, n＼m' ― m(n, m'). The images of the pairings are

called the trace ideals of the context and are denoted by RIR and sJs-

Let A be the generalized matrix ring defined by the Morita context <M, 7V>,

i.e.,

A=＼

where the addition is given by element-wise and the multiplicationby

r i

＼m s＼

＼rr/Jr{n, m') rn'-＼-ns'~＼

Lmr'+sm' [m, n'~]-＼-ssf＼

For a right i?-module U, id-UR(fd-UR) denotes the injective (flat) dimension

of UR, respectively.

Let

H
be the generalized matrix ring defined by the trivialcontext <M, 0>. In a pre-

vious paper [9], we have established a theorem concerning the estimation of the

injective dimension of Fr in terms of those of RR, MR and Ss as follows:

Theorem. Assume thatsM is flat. Then we have

max(id-i?p,id-MR, id-Ss)<id-rr<maxad-RR, id-MR, id-Ss-l)+l.

The main purpose of this paper is to extend a part of resultsin the previous

paper [9] to A under some additional conditions on the Morita context <M, A7}.

In Section 1, we decide a lower bound of id-A a using id-RR, id-M^, id-S5
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and id-Ns. In Section2, we investigatean upper bound of id-yl^ as well as

a lower bound of id-Aa in terms of id~RR,id-MR, id-Ss and id-iVsunder the

conditionthat N=NJ, both SM and RN are flat,and the natural maps I<g>RI

-^P and JRsJ->P are isomorphisms. The estimationof id-^ is as follows:

Theorem 2.6. If N = NJ, both SM and RN are flat,and the natural maps

I Rr I-*P and J <S)s/―>/2ore isomorphisms, then we have

max (id-J?,?,id-MR, id-Ss, id-Ns)

^id-yl^max(id-i?R, id-MR, id-Ss, id-Ns)+l.

In Section 3, we examine the condition for A to be a right self-injectivering.

Section 4 is devoted to study id-A ain case of the derived context. Furthermore,

we show that id-RR-=id-AA, if MR is finitelygenerated projective, which is

the extension of the well-known fact that id- p =id-i?, In the final Sec-

tion 5, we exhibit some example when the left-hand side or the right-hand side

equality holds in Theorem 2.6.

Throughout this paper, uniess otherwise specified, A denotes the generalized

matrix ring defined by the Morita context <M, iV> with pairings (―, ―) and

[―, ―], and the traceideals RIR and sJs- For a right i?-module U, id-UR(fd-UR)

denotes the injective (flat)dimension of UR, respectively. Moreover, we set e=

n <=A and &'=■
G

The author wishes

a

to express his hearty thanks to Professor T. Kato for his

useful suggestions and remarks.

1. General cases.

The following lemma is essentiallyin [3, p. 346].

Lemma 1.1. Let AR, RBA and CA be modules such that ExtA{B, C)=0 (/>0)

and Tor?(i4, B)=0 (≪>0). Then there holds

ExtjKA HomA(B, C))^Ext3(4<g>≪£, C).

Theorem 1.2. Assume thatid-sM and fd-RN are finite. Then we have

max (max (id-/?*,id-M*)―fd-aiV, max(id-S5, id-Ns)―fd-sM)

Proof. Let L be a right ideal of R. Since
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llomA{R/LRReA, A)=EomR(R/L, UomA(eA, A))

^llomR(R/L, Ae)

^HomR(R/L, J?cM)

and ExVA(eA, A)―0 (i>0), the resulting spectral sequence is

E§-≪=Ext3,(Tor≪(fl/L,eA), A)=^ ExtUR/L, R c M).

Since E2p-2=0 for either ?>id-^ or p>id-RN, we have Ext£(i?/L3i?cM)=0

for n>id-AA+fd-RN. Thus we have max(id-i?ij,id-M^-fd-ijiV^id-^. In the

similar manner,^we also obtain max(id-Ss, id-A^s)―-fd-sM^id-^, completing the

proof.

2. Trace accessible cases.

We prepare some lemmas needed after.

Lemma 2.1. Every right ideal of A has the form of ＼_XY] with XR a sub

module of . , and Ys a submodule of o satisfying ＼
lMjr LoJs IL

m}<=X and ＼＼rrn J|[rleX, neA^lczF.

Proof. Let P be a rightidealof A. Put Z=j[r]
]

(n,m)

sm i: g7, me

＼r °l<=p}
and Y=

Lm OJ J

ePk Then X and Y satisfythe above conditions.The converse
LO s J I

part is obvious.

The following lemmas are well-known.

Lemma 2.2.

(1) JKer(-,-) = Ker(-, -)/ = 0.

(2) /Ker[-, -] = Ker [-,-]/ = 0.

Lemma 2.3. Assume that N = NJ. Then

(1) NJ=IN = N.

(2) I=P and J = J＼

Following [10], a right i?-module W is called L-accessible for an ideal L of

RiiW- WL.

Lemma 2.4. Assume that N = NJ and that RN are flat. Then the following

are equivalent:
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The natural maps I<S>RI-^P and JRsJ~*J2 are isomorphisms.

The pairings(―,―)and [―, ―] are monic.

Proof. (1)=H2). The exact sequences

0 ―> Ker (-, -)≪ ―> N <g>sMR
(~~>~)

Ir―^O

0-->Ker[-, -]S
*'

>M(g)RNs――i Js ―^0

induce the followingcommutative diagrams with exact rows and columns

/<g)≪Ker(- -)
/<g>Vl

r >1q9r1 -

*
/･=/

> IRRN(g)SM '―1*/R*/― 0

[-, -]<g>/§rN(3sJ * JR

(MRRN)J *P
1

0

1-

Q-≫Ker(-, -)r＼I(NRsM)

and

i

0

.
1*

>I(N0sM)
I

0

Ker [-, -] (g)s/-^4 MRRNRSJ
[

'
]0/>

JRSJ -* 0

0 ―* Ker [-, ~-]r＼{MRRN)J―≫(MRRN)J ≫/2=/,

MRMg)[-, -]"1

where au fitand jt (i = 1, 2) are the natural maps, ^ = (―, ―)＼I(N<g>sM), and

d2 = [―, ―]|(MRzjAOy. Since ft is an isomorphism by assumption, at is epic

by the 5-lemma. Since Im ax = / Ker (―, ―) = 0 and Im a2 = Ker [―, ―]/ = 0

by Lemma 2.2, 5X and <52are monic. Since N ■=IN ―NJ by Lemma 2.3, it is

easy to see that 51 = (―, ―) and d2 = [―, ―]. Hence the pairings (―, ―) and

[―, ―] are monic.

(2)=H1). Since RN is flat,N = IN and (―, ―) is monic, it is easily verified

that Yx is an isomorphism in view of the commutative diagram (*). Moreover,

since (―, ―) and [―, ―] are monic and ./V= NJ, it is easily checked that /32

is the following comdosition of maps

MRRNRSJ

1

0

M(g>(-, -)RN

MRRNRSMRRN """"~^^ *

MRaI<g)RN ^=^ M0RIN=M0RN.

It follows from the commutative diagram (**) that r2 is an isomorphism.
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In the remainder of this section, we assume that both SM and
RN are flat

and that the natural maps / Rfl /-≫/2and / <S>sJ-*P are isomorphisms.

Lemma 2.5. Assume further thatN ― NJ. Let [_X0 70] be a rightideal of A

and put Xt = js|"(n> mj)] fHjl£rHl m,eM} and Yt = fe

^t-i,nk^NJ (i= 1, 2,3). T/zen

r rknk 1

L[≫U, nk~]＼

r* >

(1) Yi-^s M=Xi as a right R-module and Xi-1(g)RN^Yi as a right S-

module

(2) [^i-iO]0fleyi^[Zi_1 FJ and [0 Yt.i-]Rse'A^＼_Xi F^J as right A-

Proof. (1) Since SM is flat,and (-

morphism IV, 6§sM->X defined by m
) is monic by Lemma 2.4, the homo-

~
f(n, m)~|

L sm J
for

L s

is an isomorphism. Similarly, we can show that X_i £x)piV~F;.

*<-!

JeJV!, meM

(2) It is easily seen that ＼_Xi-xYi~]and ＼_XtYi-{＼ are right ideals of A. Since

RRN=Yi by (1), the homomorphism [X^ 0] RR eA-^＼_Xi-^ F*] defined via

[r 01 fr'nl ＼rr' rn 1 Yr~＼ T r n]

0 ･― for e4 e≪/i,

m 0 0 0 mr' ＼m. nil ＼m＼ 0 0

is an isomorphism. By the similar manner as above, we obtain [0 IV J (g)se'A

Theorem 2.6. Assume further that N = NJ. Then we have

max(id-RR, id-MR, id-Ss> id-Ns)

^id-AA^max(id-RR, ＼d-MR,id-Ss, id-AM+1.

Proof. Let IXO Fo] be a right ideal of A and put Xt = fe[(nj' ^1 I""'1
_ I y L s,m,- J L s,-J

eVV,, m^u) and F, = {?[[m^ ,*J |[^j-^-., ≫.^} <i= 1,2, 3). The

we considerthe followingexact sequence of right J-modules:

n

o ―* ＼_xlr0] ―> ix, r0] ―> [z0 YoVix, r0] ― o. (*)

Since N = NJ, it is easy to see that Yx ■=■Y＼J, from which it follows that Yx ― Y2

= Y3. Therefore, we have [*0 YO]/IX1 F0]s[Z0 FJ/EZ, Y{＼ = [Zo Y1VlXl r2].

Moreover, since both ^TVand sMare flat, and both (―, ―) and [―, ―] are monic

by Lemma 2.4, we have [^ Fo]s[0 Yo] 0S eM and [Z0 ro]/[^ F0]s[Z0 FJ/

[Zi F2]s([Z0 0]/[Z! 0]) R* e^l by Lemma 2.5. Now, we put max(id-i?iJ, id-MR,

id-Ss, id-A^s) = t. The exact sequence (*) yields the following exact sequence

Ext<,+1([X, Kl/rX Yo＼ A)―^Extt/1(lX0 Yo＼ A)―>ExttIl{＼Xl Yol, A),
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from which it follows that Ext^+1([Z0 Yo], A) = 0 together with the fact that

Ext',+I([A'OYoVIX, Yo], A^Ext^dXo Y^/IX, Y{], A)

sExtj,+i([*ori]/[*ira], A)

=ExttfH(X(i/X1)(3neA, A)

^Ext^iXo/X,, llomA(eA, A))

^Ext^iXo/Xu Ae) = 0

and that

Ext'/HlX, Yo], A^ExtTdO yo]RseM, A)

^Ext%+1(Y0,UomA(e'A, /!))

=Ext^+1(F0, Ae')=0

in view of Lemma 1.1. Hence we have f^id-^^+l together with Theorem

1.2.

Remark, If we assume that M ― MI instead of N
~

ArJ in Lemma 2.5 and

Theorem 2.6, we obtain the same results by the symmetry of the Morita con-

text <Af,N>:

Theorem 2.7. Assume further that NJ = N.

(1) //max (id-i?fl,id-MisXmax (id-Ss,id-AT^)=2^=0, then id-Ayi = i if and

only ifExtUN, SciV)-0.

(2) // max(id-Ss,id-Ns)<m&x(id-RR,id-MR) = i^O and if ExtR(M/JM,

i?cM)^0, then id-AA = i+h

(3) Suppose that max(id-RR, id-MR) = max(id-Ss, id-A^s)―i^O.

(!) // ExtftiX, Rc M)^0 /or sme Z^gCi?c M)R, ^en id-/fj = z+ 1.

(ii) // id-S5>id-A7s and if ExtR(M/JM, i?)#0, then id-AA = z+1.

(iii) // id-Ar5>id-S5 and if ExtlR(M/JM, M)±0, then id-AA = i+i.

Proof. (1) Let [_X0 Fo] be a right ideal of A and put X< =
js[(n*'m&)]

1 MIK
[

Sk
W,.,, mk^M) and Yt = {s[r '*"'J

i * L s*ro* J
r' ＼<=Xt-u

nj^N＼ (i = l, 2, 3)

Since NJ
~

N, it is easy to see that Yx ― Y2. Moreover., since

ExtMC^o Y.VIX, Yol, A)^ExVA(lX0 Y1V＼.X1 FJ, A)

=ExtKC^o Y1VIX1 Y2l A)

-Exti (([Zo 0] 0R eA)/{lXx 0] RR e.A), A)

z&xtiiXJXi&BeA. A)
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= Extk(X0/X1} RRM) = 0

and

ExtKCl'a Yol, /f)= ExtH[0 Fo] Rs efA, A)

^Ext|(r0, SRN)

by Lemmas 1.1 and 2.5, we have Exti([Z0 Fo], ^)=Ext|(F0, 5ciV) from the

following exact sequence

0 = Ext3([A'o YO]/[XX Yol A) ―* Exti([Z0 Fo], A) ―> Ext/,([^ r0], ^)

―> ExtJTJ(C^o Fol/CZ, r0], -'i)= 0 .

It follows that id-AA = f if and only if Ext^([Z0 Yo~],A)=ExVs{Y0, NRS) = Q

for every right ideal [Zo Fo] of ^ if and only if Ext£(Ar,S 9 N) = 0 from the

following exact sequence

Exa (AT,SRN) = Extl (S c A^, S c N) -^ Ext| (1%, S c JV)

―> Ext^1 ((S c N)/Yo, S c AO = 0 .

(2) The exact sequence of right /1-modules

r o 01 ro 01 ro oi
/r

yieldsthe followingexact sequence

ExtH ＼,A ―>ExtU
＼m

/ro

―≫ExtM
＼＼m

Since / = J2 by Lemma 2.3,we have

Extf(

and

ro 01 ,r o oi
[m

jYijm j＼

ExtJj
0

JM

･'

)

=Ext*

= Ext^

°1

0

JM

,' 0 0"

'

-JM
J_

;h-
r o 01

L/M j＼

(f°T

-r °

" IJM

f°

IJM

(([ ＼RReA

＼＼I_Moj

-■

)

01

Extj
ii"

°1

Pi

;h

0 01 ＼

JM J＼ I

Since

)/(f°

)' ＼[jM

=ExtlA(M/JM0ReA, A)

= Exti(M/JM, i?cM)^O

°1 ＼
, A＼~ExtkAURse'A, A)
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= Ext|(/, SRN) = 0 (k

by Lemmas 1.1 and 2.5, we have ExtM ,,
' V M

°

j

]

= /-l, i)

j) = Ext£(M/JM, R c M) * 0.

Hence id-AA = i+l together with Theorem 2.6.

(3) ( i) Let XR be a submodule of (R 0 M)R such that ExtACX R c M)^0

and Y1 = feL
rjUj J ＼Tj ]^X,

nj^N}. Since IX Y{] is a right ideal of A and

ExUdlXYj, A)=*ExtiA(＼:XO<g)R]eA,A)

= ExVR(X, i?0M)^O

by Lemmas 1.1 and 2.5,we have id-AA = i+1 by Theorem 2.6.

(ii) Let

hV.ExVA＼A/
＼ AH

, eA
Jl

I＼R AH
―>ExtU

/

]cExt<,l

R N~

JM J_

A/] ,e>A)
1 IJM J＼ I

eA

be the induced map by the inclusion map

Since

[R Nl
h:

M J,

/

＼ i＼R N^ i＼
0ExtU /

r R Nl ,＼R N]
c^>a/＼

JM J＼ I [JM J_

R N

JM J

ExtiM/ , eA)=*ExtiA{S/JRse/A, eA)

by Lemma 1.1,we have Im/if£Ext^

=Extl(S//, JV)= O

C NM
we have J = J2 by Lemma 2.3. Therefore,

Ext*,

[m jY l

R N~

JM J_

eA＼=ExtlA

= Ext^

if

H

JM

N

j
]
'e'A)'

SinCeA7

R Nl

JM
A

(I＼R 01
＼RReA

＼＼.M OJ

)/(

= ExtlA(M/JMRReA, eA)

= ExtlR(M/JM, R)i=O,

then hi is not epic. It follows that Ext^,+1[A

actness of the following sequence

/[

eA＼

= N.

r R °i ＼ ＼
RReA＼,eA＼

JM Oj / /

, A) =£0 from the ex-
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ExtdA/
R N~

JM J_

―* ExVA+1

･'

)

MR

h＼ I＼R N] ,＼ R AH ＼

Mm jy Yjm j＼ I

AA) -^ExtWyi/
R N] ＼

JM J＼ J

hence id-AA = iJrl together with Theorem 2.6.

(iii) This can be proved by the similar manner as in (ii)

347

If we assume that MI ―M instead of NJ = N, Theorem 2.7can be rewrited

as follows:

Theorem 2.8. Assume further that MI = M.

(1) // max(id-Ss, id--/Vs)<max(id-i?*, id-MR) = i^0, then id-AA = i if and

only if ExVR(M, R c M) = 0.

(2) // max (id-RR, ＼d-MR)< max (id-Ss,id-Ns)=i * 0 and if Extl (N/IN, SRN)

=£0,then id-AA = i+l.

(3) Suppose that max(id-S5, id-Ns) ― max (id-i?^id-MR) = f^0.

(i)

(ii)

(iii)

// Extls(Y,ScAO^0 for some YS^(S^N)S, thenid-AA-i-＼-l

If id-RR>id-MR and if Extls(N/IN, S)*0, thenid-AA = i+l.

If id-MR>id-RR and if Extls(N/IN, N)^0, thenid-AA = i+l.

3. Self-injectiverings.

In this section, we consider the condition for A to be right self-injective.

Let a:N^U.omR(M, R) be a map defined by n<->(m>-^(n,m)) for neAT, m^M

and a : 5-^End (Mr) the canonical map. Then we have the following theorem:

Theorem 3.1. If

(1) RR, MR, N's and ls(M)s are injective, where N'=Ker a and ls(M) =

{seS|sm=0 for every m^M],

(2) a and a are epic,

(3) Homs(N,N'Rls(M)) = 0

are satisfied,then A a is injective.

Proof. Let ＼_XF] be a right ideal of A. The exact seqence of right A

modules

TO TV' 1 [R M* 1
0 ―> ―> A ―> ―> 0

LO ls{M)＼ [M End(MR)
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where M* = Homfl(M, R), induces the followingexact sequence

Since

＼ Lo

/ r°

＼ Lo

1)

ls(M)＼J
ExVjUKXYIA)

―>Ext

N' 1)

/ ＼R M* 1＼

＼ IM End (MR)1)

~Extlj(A/[XY-],
Homs(Ae', N'RUM)))

and

ExtliU/lXYl

=Exth {A/＼X F] RA Aef, Nf 0 ls{M)) = 0

R M* ]＼
＼＼9*ExtkU/lXr]RAAe

M End(M^)J/

Ae) = 0

we have ExtjiA/lX Y~＼,A) = 0, thatis, AA is injective.

Theorem 3.2. //

(1) SM and RN are flat,

(2) The natural maps IRRI~^P and J(&sJ->J?'are isomorphisms,

(3) N = JN,

(4) S(S/J)is flat,

then the converseof Theorem 3.1 holds.

Proof. The exact sequence of right /f-modules

0_
jj jvi_r* N]-jR N]/Y N

LO Oj LO OJ Lo Oj7 LO 0

yields the following exact sequence

I＼R Nl [0
HomJ

Uo oj Lo

Since Horn,*

ExtJ

N' 1

(＼R N] r° N' ]＼
vLo oJ' Lo is(M)＼l

r iVi n n~＼ro

o or o oj
lo

]-

＼ III Nl [0 N' ]＼

/ ＼L0 OJ LO ls(M)＼)

(＼R N~] ,＼I ATI [0 N' ]＼

―>ExtU /
＼L0 Oj/ LO OJ .0 UM)＼

"Lo ls(M)＼e

N' 1

ls(M)

＼

= 0 and

＼ l＼R ^1

/ Uo oj

/['
IN＼ [°

1 .0 oj Lo
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= ExtA＼R/I,HornM
A =0

＼ VLo oj Lo is(M)＼

we have Honyf j , ,
S/fJ)

― 0. Since (―, ―) is monic by Lemma 2.4,

we obtain (3) of Theorem 3.1 by

Horn. (N, N' c IS(M)) = Horns

Let v
ro o-i ro on

Vm jrhd s＼

Horn,* ([

commutes.

is flat,

0 0 1

M S J

I

ro on

slM Ji

= Hom,f

/ /ro 01 ro N' ]＼＼

＼ ＼LM Sj [0 la(Af)J//

/ro An ro 01 ro Nf i＼

I
0 OJ IM Sj

lo
Za(Af)J/

= HomJ , =0
＼L0 0J LO 1S(M)J)

and put g = Horn,*(v, A). Then the diagram

A)
g

Hom,([^] A ) ExtJKCokerv, A)=Q

ReA, A )

Homp(M, M)cHom*(A/f R)

ro on

slU S＼
(see, e.g., [11, Proposition 1

ro oi
QS/KRS

Vm

oRa

Hence a and a are epic. Let K be a right ideal of 5. Since s(S/J)

is a pure submodule of

p. 37]). Therefore v induces v = S/KRs v: S/K<g)s

Since AA is injective and SM is flat,S^ and Ns are injective by Theorem 1.2.

Consider the following commutative diagram

Homs(S/K, SRN) ―^―> Homs(S/K, HomdM, M)RHomR(M, R)) ―

~* ExtKS/K, h(MWN') ―> ExVs(S/K, SRN)=Q,
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where gx ― Hom^(y, A) and g2 = Homs (S/K, a 0 a), from which it follows that

ExtJ;(S/K, ls(M) c N') = 0. Hence N's and ls(M)s are injective. Moreover, RR

and MR are injective by Theorem 1.2.

4. Derived contexts.

In this section, we suppose that <M, 7V> is the derived context of MR. Then

we have the following theorem.

Theorem 4.1. // Extfc(M,R 0 M) = 0 (/>0),

id-MR). Furthermore, assuming that SM is flat,

max(id-i?p,id-MR).

then

then

id-Aji = max(id-i?/e,

max(id-S<?, id-iV5)=

Proof. If both MR and RR are injective, then A = UomR(Ae, Ae) is right

self-injective,for AAe is flat. Suppose that max(id-i?^ id-MR) ―i^O. Then

there exists a right ideal L of R such that ExtR(R/L, i?0M)^O. Now, let

＼_XY~]be a right ideal of A. Since AAe is flatand ExtlR(Ae, Ae) = 0 (/>0), we

have

Ext^+1(^/[Xr], A) = ExtA+1(A/[XY2, EomR(Ae, Ae))

= ExtR+1(A/[_X F] RA Ae, Ae) = 0

and

ExVaIa/ ＼,A =ExUM/ ＼RAAe,Ae＼
MS] ＼' IM S J /

= ExtR(R/L, /?cM)^0

by Lemma 1.1. Hence id-Ayi = i. Let V be a right S-module. Since sM is

flatand Extjj(M, i? c M) = 0 (/>0), we have

Extj;+1(F, 5) = Ext|+1(V, Hom*(M, M)) = Ext]j+1(y Rs M, M) - 0

and

Ext|+1(F, N) = Ext^+1(F, nomR(M, R)) = ExtlR+1(V Rs M, /?)= 0

by Lemma 1.1. Hence max(id-S5, id-A/"s)^/. Let

0 ^ i? c M ―> £0 ―> ^ ―> > Et ―■*0

be an injective resolution of (R c M)fl. Then

0 ―> RomR(M, R c M) ―> HomR(M, Eo) ―> > Homfl(M, Et) ―> 0

is an injective resolution of Hom^(M, R c M)s ―(N c S)s, for SM is flatand

Extjj(M, R c M) = 0 (/>0). Thus max(id-S5, id-A^s)= /.

Corollary 4.2. // Mr ?s finitelygenerated projedive, then id-AA = id-i?^.
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5. Examples.

The following Examples are given to show the possibilitythat the equalities

in both sides of Theorem 2.6 hold. In this section, Z denotes the ring of ra-

tionalintegers and Q the fieldof rational numbers.

Example 5.1. Let

A

Q 0 0 0

Q Q Q Q

0 0 Z 0

Q Q Q Q

[Q 01 ＼z 01 ro oi ro oi
,R= ＼,S= ,sMR= ＼,nNs= ＼

)

We define the pairings (―, ―): NRs M-^R and [ ―,―] : MR)RN^S via the

multiplicationin the ring R. Then the trace ideals are RIR ―

ro Oi

ro on
and sJs

and the natural maps I(/)RI^P and J^sJ-^J2 are isomorphisms.

Moreover, SM and RN are flatand NJ = N. Since id-Ss ― 2 (cf. [9, Proposi-

tion 7]), we have max(id-i?,j,id-MR) = Kmax(id-Ss, id-A^5) = 1. Furthermore,

since ExtUN, S Q N) = 0, we have ld-AA = 2 by Theorem 2.7(1).

Example 5.2. Let

/Z 0 Z 0＼

Q ZQ 0 ＼Z 01 fZ 01 [~Z 01 ＼Z 01
^= , /?= ＼,S= ＼ ＼,sMR= ＼,RNS = ＼

z o z o Lq zj Lq qJ lq qJ Lq oj

Iq q q q)

We define the pairings (―, ―): N(g)sM->R and [―, ―] : M<S)rN-^S via the

multiplication in the ring S. Then the trace ideals are ＼RIR― ＼rtri＼ and sJs

V Z 01

~
＼
n ' anc^ t'ie natural maps I(g)RI-+P and JRsJ~*J2 are isomorphisms.

Moreover, SM and RN are flat and NJ = N. Since id-/?* = id-Ss ― 2 (cf. [9,

Proposition 7]), we have ma.x(id-RR, id-MR) = ma.x(id-Ss,id-Ns)― 2 and id-S<?

>id-/Vc = l. Since

ExtUM/JM, R) = ExtU＼
＼

＼IQ QY IQ

we get id-AA = 3 by Theorem 2.7(3) (ii).

0"

0.

i?j=ExtM[OQ], R)*0,
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