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1. . Introduction.

The aim of this paper is to give a simple proof of the existence of a smooth

solution to the semilinear parabolic equation with fourth order elliptic operator:

(1) Ut = ―s2Azu-＼-f(t, x, u, ux, ≪,)=; L{t, x, u),

x^QdR71, Q is a bounded domain, fe[0, Tmax), Tmax^ + oo, where A2=A°A,

ux is a vector of partial derivatives (uXl, ■■■, uXjl) and uxx stands for the Hessian

matrix [uXiXj~＼,i, /=1, ･･･, n. We consider (1) together with initial-boundary

conditions

(2)

(3)

dn

k(0, x)

8(Au)

=uo(x), x<=Q,

=0 when x<=di2
dn

Schematically we may write (3) as B1u=B?,u=Q.

In recent years a rapidly growing interest has been evinced in special

problems such as the Cahn-Hilliard or the Kuramoto-Sivashinsky equations

covered by our general form (1). Recently weak solutions for these special

problems were considered in Temam's monograph [12]. The methods used

here are an extension of those in previous papers [5, 6] devoted to the study

of second order equations. General scheme of our proof of local existence

(construction of the set X, considerations following (19))is similar to the classical

proof of the Picard theorem for solutions of ordinary differentialequations.

2. Motivation.

We have two tasks in this paper. In Part I we prove local in time classical

solvabilityof (l)-(3). We cannot expect global (that is in an arbitrarilylarge

time interval) solvabilityof (l)-(3)under the weak assumption of local Lipschitz

continuity of the nonlinear term f only (because of the possible rapid growth
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of / with respect to u, ux or uxx). However, the technique and estimates

developed in reaching our firsttask allow immediate verificationin Part II for

a special problem (Cahn-Hilliard or Kuramoto-Sivashinsky equations) of global

Lipschitz continuity of its specific nonlinearities, which in turn guarantees

global solvability of this problem. Using our technique it is possible (see e.g.

[6]) to find effective estimates of the life time of solutions to various problems

with blowing-up solutions, blowing-up derivatives, etc.. The last may be of

specialinterest for the numerical calculations as an indication of how long the

solution of the approximated problem exists.

3. Assumptions.

Let us assume that 3£?eC4+/! with some //e(0, 1), the function / is locally

Lipschitz continuous with respect to its arguments t, u, uX{, uXiXj (i, j = l, ■■■, n)

and locally Holder continuous with respect to x (exponent pt) in the set

[0, T]XJ2Xi?1+n+"2. When n>3, for existence of the Holder solution to (l)-(3)

we need additionally to assume that the partial derivatives ft, fu, fUx, fuXiX . ful-

fill the assumptions just mentioned for / (here and in what follows we use

the simplified notation for partial derivatives, e.g. ft denotes df/dt). By

"Holder solution" of (l)-(3) we mean the classical solution of the problem being

Holder continuous together with all the derivatives appearing in (1). The initial

function uo^Ci+l'(Q) fulfillsthe compatibility conditions required for a smooth

solution:

du0

dn

moreover, when n>3

9L(0, x, Mo)

dn

S(Am0)
=0 for xELdQ

dn

_d(AL(Q, jc,a,,))

dn
=0 for xceBQ

4. Basic estimates and inequalities.

It is well known that a system (A2, {Bu B2}, Q) defines a "regular elliptic

boundary value problem" in the sense of [7], p. 76 also [11], pp. 165, 221, 273.

Moreover, our considerations will remain valid for boundary conditions other

than (3); e.g. for the Dirichlet condition:

(?/) B',u = u =0 B '2U =
du _
dn

on dQ

The system (A2, ＼B[, B'2＼,Q) also defines a regular elliptic boundary value
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problem. It is known ([7], p. 75), that for such problems the Calderon-Zygmund

estimates are valid i.e.:

(4) V 3 ＼＼v＼＼w*.piQ>£c(＼＼Aivhpa}>+ ＼＼v＼＼Lpa≫),

where v is an arbitrary C＼Q) function satisfying homogeneous boundary con-

ditions; 51f=52y=0 on dQ. We need a version of such an estimate valid for

second order ellipticoperators (known also [9] as "the second fundamental in-

equality for ellipticoperators"):

(5) ＼＼v＼＼w*-PCQ^Cp_ r(HAl>lkpC0)+ IMiLrCfl)),

where qT^l, p>l, vgW2-p{Q) and dv/dn―0 on dQ. The second terms on the

right sides of (4), (5) will be replaced by ＼v＼=|i2|~M v(x)dx .

Further, we need a version of the interpolation inequality for intermediate

derivatives [1], p. 75: For QdRn having the uniform cone property, so>0

fixed, there exists a constant K=K(e0, m, Q) for every v^Wm'＼Q), such that

(6) V V ＼v＼).l^r＼v＼im.p+ Cs.＼v＼lv

where ＼v]Ji2 1 2 [ ＼D≪v＼*dxY12

claim an estimate ([1], p. 108);

(7)
3 V

c>o vewh p(£)

e'=2K*s* and Cs.=2Kae~w'm-^. We also

＼＼vh°°iQ>£C＼＼v＼＼Wi.PCQ->, pl>n,

where QcRn has the cone property. Finally([8], p.37), when dQ^Cm, then

(8) Mwk.pcO^Cqvlllrn.wML'r'lQ,,

with p^g, p>r, (K#^l and k-n/p£8(m-n/q)-(l-d)n/r.

Part I. General theorv.

5. Local solvability of the problem (l)-(3).

Let us note that, due to Lipschitz continuity of /, uniqueness of the Holder

(and weaker) solution of (l)-(3)is guaranteed. The proof, in which we con-

sider the difference of two solutions,is very similar to that of Lemma 2 and

will be omitted.

We define the range of arguments of the nonlinear function /; let t^O,

x EJ2, ye/?, t=(i)u ･･･, tn)<BRn. a=rtf,-,lEi?"2 and set
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= ＼{t,x,v, p,q);t<=＼$, T], x^Q, (＼v＼2+ S ＼piV+^＼qiJ＼i)m<R＼

where T and R are fixed positive numbers. The expression bounded in (9) by

R corresponds, for the composite function f(t, x, u, ux, uxx) in (1), to Wit<x>(Q)

norm of u. Let us denote the Lipschitz constants, inside X, for / with respect

to t, v, pi, Qij (i, y=l, ･･･, n) by Lu Ls, L4, LB respectively (e.g. L5 is suitable

for each qih i, y=l, ･･･, n). Also let ＼f(t,x, 0, 0, 0)|^A^ for £ e[0, T], xefl.

We shallstartwith the formulation of Lemma 1 necessary to present the

main result of Part I; Theorem 1. Because the proof of thislemma is very

technical,it willbe leftuntilthe Appendix.

Lemma 1. As long as the Holder solution of (l)-(3) remains in X, the fol

lowing estimates hold; when the dimension n^3, then

(10)

also

(ID

＼＼u{t,.)＼＼U-(0^＼Q≪idx+N*＼Q＼)+c]Qu'dx,

＼＼u(t,.Ww2AZn/n^CQ^v(＼Quldx+N*＼Q＼) + C≫＼QU>dx

for the space dimension n^4. Here vg(O, v0] (^o given in (55)), d, increases

when v decreases and ＼Q＼denotes the Lebessue measure of Q.

We are now ready to formulate:

Theorem 1. For two arbitrary positive numbers r, R and initial function

u0 satisfvine the condition

(12) ≫[LL2(0,x, uo)dx+N2＼Q＼]+ cS ut(x)dx^r2<R2

(the constants v and Cv were chosen in Lemma 1) there is a time To, 0<T0^T,

such that the Holder solution of (l)-(3) corresponding to u0 exists at least until

the time To.

Comment. Condition (12) defines certain neighbourhood of the zero func-

tion in W2-°°(Q)to which u0 should belong. When u0 has too large norm we

shall transform the problem (l)-(3)onto equivalent one for the new unknown

function v:= u―u0;

(10 vt= -s2A2v+f(t, x, v, vx, vxx)
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with f{t, x, v, vx, vxx): ― ―s2A2uo+f(t, x, v + u0, (v + uo)x, (v+uo)xx) and homo-

geneous (zero) initial and boundary conditions corresponding to (2), (3). The

estimate (12) for the transformed oroblem reads

(120
v{( [-£2A2u0+/(0, x, uo> u0x, uOxx)Ydx+N2＼Q＼＼^rz<R＼

and is evidently fulfilled, provided v>0 is chosen sufficiently small. All the

results obtained for u and (l)-(3) stay valid for v and the transformed problem.

The proof of Theorem 1 is divided into several steps. We start with two

simple a priori estimates for ＼＼u(t,Oll^cO) and ＼＼ut(t,Ollz^cfl)valid while u re-

mains in X.

Lemma 2 (First a priori estimate). As long as u remains in X, we have an

neiiwinin

(13)
＼

Qu＼t,
x)dx<ect＼ lul(x)dx+3fi{l-.e-<t)＼

c= c(L3, Li} L5, N, a) being a constant.

Proof. Multiplying (1) by u and integrating over Q, we get:

r
u2dx = ― £2＼&iuudx +

Integreting by parts, noting (3)

― £

( fudx

2( d2uudx = -£2[ {Aufdx

from the Lipschitz continuity of / inside X and the Cauchy inequality we find:

(14)
r
＼f{t, x, u, ux, uxx)udx
JiJ

= ＼oU(t, x, u, ux, uxx)―f{t, x, 0, ux, uxx)+f{t,
x, 0, ux, uxx)

-fit, x, 0, 0, uxx)+ ■■■+f(t, x, 0, 0, Q)~]udx

Estimating the first term on the right side of (14) through (5) with p=r=2

and r.hoosino17=7n snffic.ientlvsmall that
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cl.2r0 max {L4, L5＼=e2

we finallyget

1 d[u*dx<＼l +- + -^ +

(15) ＼u＼(t,x)dx^L

JiJ

2 dt)

+/l

-2J

[L

aL'ix+h＼o

"if /V

＼

Q^ulXiXjdx

+ L＼＼Q＼＼

2r0

which is equivalent to (13). The proof is completed.

We proceed to the next a priori estimate:

Lemma 3 (Second a priori estimate). As long as the solution u remains

in X:

L2(0, x, uo)dx+C^-(l-e-^t)＼e^t

where c1=c1(L3, L4> Lb, e) and c2=c2(Li, e) is proportional to dl.

Proof. The difference quotient uh(t, x)=h-＼u(t-{-h, x)―u(t, x)) (/z>0 is

fixed) solves the equation:

(16) Mht = ―68A2Kft+ /r1[/|t=t+ft-/|t=t] ･

Multiplying (16) by uh, integrating over Q and by parts, we find that:

uldx = -£2＼(Auh)2dx

~＼[f(t+h, x, u(t+h, x), ux(t+h, x), uxx(t+h, x))

f(t,x, u(t+h, x), ux{t+h, x), uxx(t+h, x))+ ･■･

fit,x, utt, x), uxit, x), uxM, x))~]uhdx

^-£2( (Aunydx +
ULS-Zul^dx + L,

+
^-a
+ L3 + Li + Ls)^Quldx,

making use of the Lipschitz conditions and Cauchy inequality and, in particular,

an estimate:

h'1] U(t+h, x, u(t+h, x),ux(t+h, x),uxx(t+h, x))

―fit, x, u(t-＼-h,x), ux(t-＼-h,x), uxx{t+h, x))~＼uhdx

uldx = ^L＼＼Q＼+
Huldx
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Noting that uh fulfilsthe same boundary conditions as u did, by (5), for J=yQ

wo fir>Hl-hof-

(17)
Jt

＼

Qu^'
x)dx£roia + L3+Li + L5+roe2)iul(t> x)dx + TtL＼＼Q＼

which leads to an estimate

(18)
f
u＼{t,x)dx^＼＼ u＼(Q, x)dx +

Ci J

with c1=ro1(l+ L3+ L4 + L5+ro£2), c2=7＼>£i|0|. Passing in (18) with /i to 0+,

noting that for the smooth solution we consider uh tends to ut when h―>Q+and

ut(0, x) will be found from (1) with t―0, we justify(15). The proof is com-

pleted.

For the time being we restrictour considerations to space dimension n^3,

higher dimensions will be treated in the Appendix. For n^3 we will now

specify the value To mentioned in the formulation of Theorem 1.

In the definition(9) of X we have introduced the time interval [0, T], for

which the Lipschitz constants for / were chosen. Next, from Lemmas 2, 3 we

have increasing with t estimates (13),(15), which together with (10) in Lemma

1 give:

(19) ＼＼u(t,■WW2,^Q,£V
^

Qu2tdx+N2＼Q＼~]
+ Cv[u*dx

^[(^L2(Q, x, Uo)dx + ^-a-e-eit))ee^+Ni＼Q＼j

+ Cvecl^Qul(x)dx+^^a-e^)j

The estimate (19) is valid as long as u remains in X. But the right side of

(19) increases with t, starting for t―0 from a value not exceeding r2 (compare

(12)). Defining To as equal to min {T, t}, where r is the time for which the

right side of (19) reaches the value R2, we are sure that u(t,･) remains in X

for t^T0 and n^3. Moreover, the composite function f(t,x, u, ux, uxx) is

uniformly Lipschitz continuous (constants Lu L3, L4, L5) and bounded in ^ro=

[0, To]xQ.

The remaining part of the proof of Theorem 1 for n<3 is based on esti-

mates of solutions of linear 2/?-parabolicequations (here b―2) in W -2bm(QTo)

space (see [10], Chapt. VII, §10). As a consequence of Theorem 10.4 reported

there (with m=l, b=2, t=A, s=0, 1=0; hence /-W=4), we have:

(20) uzeWI'XQt) with arbitrary qe(l, c≫),
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which means boundedness of the Wi-* norm of u

(21)
i=Q ir+s=j u

In particular ut<=L%QTo) and uXiXJXkXl^Lq(QTf) for any ge(l, oo).

To obtain a priori estimates for the Holder solution of (l)-(3) we shall use

the following:

Lemma 4. For n^3, under our basic assumption that f is locally Lipschitz

continuous with respect to t, u, uXi, uXiX. (i, j=l, ■■■, n) and Holder continuous

{exponent pt) with respect to x and that uoeC4+<"(42) satisfies compatibility con-

ditions

(22) --―= -^-―^=0 for x<=dQ,
on on

the solution u will be estimated a priori in the Holder space C1+C///4)'i+'i(Qr0)>

fl=mm{2/9, p.).

Outline of the proof. As a consequence of (20) with <?=2n+2 we find

that u, ut, uXi<=L2n+2(QrQ) which, with the use of the Sobolev theorem, ensures

that

(23) u^C^^Qr,).

Since as a consequence of (15) m^L^O, To; L＼Q)), then by (19) and (1)

£2A2m= -w£+ /(-, ･, u, ux> m≪)gL"°(0, To; L2(0))

and further, by the ellipticregularity [7, 11], ueL°°(0,To; ^4i2(i3)). Again by

the Sobolev theorem (in dimension n^3) W4-＼Q)CZC2+OI2＼Q), hence

(24) u(eL-(0,T0;C2+oi2＼Q)).

Using Lemma 3.1, Chapt. II of [10] subsequently to ux. and then to uXiXi (i,j

n), in the presence of (23),(24) we find that uXi^Cll≪-l'＼QT(),more-

(25) uXiXj^C^'l'＼QT≪)

Finally, from the Lipschitz, Holder continuity of / inside X and (25) the com-

posite function f(t,x, u, ux> uxx) belongs to C1/18^'((Jr0)for //=min{l/2, fi＼.

From Theorem 10.1, Chapt. VII of T101 (with l-s-u, t+s=i and i+t=4+n):

M ECi+(^/4).4+^g ) - ･ i2 'I^=mlnY9"' ^ j

(here the letter C is used instead of H in [10]), and we have the required esti-
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mate of u in the Holder space. The proof of Lemma 4 is completed.

Until now a number of a priori estimates for the hypothetical solution of

(l)-(3)have been given. With these estimates, however, the proper proof of

existence of the Holder solution to (l)-(3) based on the Leray-Schauder Principle

("method of continuity") is standard and will be omitted here (compare e.g.

flO, 51). The proof of Theorem 1 for n<3 is thus finished.

Part II. Applications.

6. Global existence of solution for the Cahn-Hilliard equation.

It is simple to conclude from the considerations of Part I, that if we are

able to assure global in a time interval [0, 7＼] Lipschitz continuity of the

function f{t,x, u, ux, uxx) (and its derivatives when n>3), then the solution

(being as smooth as the data allow) exists at least for £e[0, 7＼]. Obviously

we cannot expect such global Lipschitz continuity for general / in (1) (perhaps

of a very complicated nature), but we may prove it for a number of special

problems such as the Cahn-Hilliard equation. Here we will follow the presenta-

tion of this equation in [12], p. 147. Let us consider;

(26) ut= -s2A2u+A(F(u)),

x^QdRn, n^3, together with conditions (2),(3). Here F is a polynomial of

the order 26―1 (moreover p―2 if n=3),

(27) F(u)=
2p-l
S ajuj, pEzN, p>2,

with positive leading coefficient; G2p-i>0. The prototype was F(u)―^u3―au

with /3,≪>0.

Since /A(F(u))=F＼u)Au + F"(u)＼lu |2 is locally Lipschitz continuous (F＼ F"

are locally bounded), then the assumptions of Part I are satisfied (provided that

u0, dQ are smooth and (22) is filfilled)and we have free local in time existence

of the Holder solution to (26), (2), (3). However, if we can justify, using a

priori estimates, Lipschitz continuity of

(28) f(t, x, u, ux, uxx)=A{F(u))=F'(u)Au+F≫(u)＼lu＼2

in [0, 7＼] (7＼>Q will be fixed from now on), we will have proved the exist-

ence of the global Holder solution to the Cahn-Hilliard equation. We need to

estimate a priori ＼＼u(t,Ollz^cfi) and ＼＼Au(t,-)IU°°c≪>for *^[0, 7＼]. These two

estimates are in order simple consequence of the one given in [12], p. 156:
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(29) IIA(F(m))||h,Q,'£k{l +1|A2u ＼＼%cm),

where k>0 and <re[0, 1) are constants independent of u (dependent on the

special form (27) of F, k also on ||Vuo|L2ci>)).We have:

Lemma 5. For a sufficientlyregular solution of the Cahn-Hilliard equation

(n^3) the two a priori estimates are valid:

(30) ＼＼u(t,･)-≪lk≫cfl>^c(||AM0||i2cfl)+m01/8,

with u―＼Q＼~l＼uo(x)dx, also

(31) ＼＼Au(t,Oll^cflj^CdlMoll^^cfl),Tt)

where C is a positive function increasing with respect to both arguments.

Proof. We start with the proof of (30). Because of (3), integrating (26)

over Q we find that

^[
u(t,x)dx=Q,

atJa

hence the mean value u is preserved in time. Multiplying (26) by Azu and inte-

grating over Q we get:

(32)
2 dt)
(Aufdx = -A (A2ufdx + { A{F{u))A*udx

<~°' + l[hAW*+^iwF(u))ydI

£--.
l＼

Q
(A*uydx+ £H. (A2M)2afx)""j

where (29) was also used. The right side of(32) is a function of z: =＼ (A2u)2dx

having the form (―e2z+(k/si)za +(k/&2)) and therefore must be bounded from

above, say by m, for z^O. Hence:

(33) ( (Aufdx£[ (Auofdx+2mt.

Since, for n^3, as a consequence of (7) and (5)

(34) ＼＼u(t,')-u＼＼L*>(Q)<c＼＼Au(t,Olkscfl),

we have (30). Note the slow growth of the right side of (30) of the order tllt.

To obtain (31) we shall consider firstut in L＼Q). Formally we proceed

as in the proof of Lemma 3, but now without using implicit Lipschitz constants.
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1 d[
2

~2dt)oUh
dx = -s2( (,Auhfdx+^

=-4(A

[A(F(tt))]ftKhfiU

u,l)2dx +
＼
(F(u))hAuhdx

^-s2t (Auk)*dx +
＼
F'(u)uhAuhdx

As a consequence of (30); ＼F'{u)＼^K, hence

and, for /i-≫0+

(35)
＼aul

Huldx^--A{kuhTdx+{K/eT＼uldx

(t,x)dx^[l-$iA2u0+A(F(u0))Ydx exp [(#/s)2f|

399

Finally, from (26)

(36) s2A2u = -ut + F'(u)Au + F"(u)＼Vu＼2,

where from (30), F＼u) and F"{u) are in L°°([0,TJXJ2), Aw is in

L°°(0,Tr, L＼Q)) as a result of (33), ut is in L°°(0,7＼; L2(i2)) as follows from

(35). Hence, as a consequence of the Sobolev inequality and (5)

l|VM||L4cfl>^const.(||AM||L8(fi)+|≪|), n£3,

also |7u|2geL°°(Q? T1; L＼Q)). We have now verified that the right side of (36)

belongs to L°°(Q,T1; L2(i2)), thus A2w eL~(0, T1; L2(i2)), which from (7), (4) for

n^3 means that AueL°°([0, T,]Xi3). Also |7k| is bounded in [0, T{]XQ.

The proof of Lemma 5 is completed.

For n^3 we have thus verified existence of the global Holder solution to

(26), (2), (3).

Remark 1. The polynomial form of Fin [12] is rather restricting. Under

a weak assumption only;

(37) 3 V -[F(z)dz£M,
M>o ?-e/jJo

evidently satisfiedby any F admitted by other authors [2, 3], we have the time

independent estimate

(38) ＼＼u(t,^-uWhca^Ctlluit, Olliscfl^const.

= cs{＼＼luo＼＼h+̂
＼[[＼UoOCX'F(z)dzdx+M＼Q＼'j}
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c3 being a constant in the Poincare inequality. Estimate (38) is a simple con-

sequence of (37) and the existence of a Liapunov functional for the solution of

(26), (2),(3);

(39)

(40)

dtl2}Qi
uin, *)<**+y F(z)dzdx＼^O.

0 J

7. Kuramoto-Sivashinsky equation.

Considering [12], p. 137, let us study the problem

ut = ―vuxxxx ― uxx――(ux)2

^0, xe[-L/2, L/2], equipped by the space-periodicboundary conditions

(41)

(42)

dju/ L＼ dju / L＼ .

u(0, x)=uo(x) forx(B[-^'J]

We note that as a consequence of (41) (all the unspecified integrals here are

taken over [-L/2, L/21):

f f
＼ux(t, x)dx = ＼

since, e.g

(43)

uxx(t, x)dx ―
＼uxxx{t,x)dx―＼uxxxx(t, x)dx=Q

J J

＼ux(t,x)dx ―u＼t,―)-u(t, ― ―j=0

With this observation it is easy to check that the expression

(44) [^k＼x)Tdx+^<p(x)dx
] 1/2

k = l, 2,3, 4

define equivalent norms in Hk(―L/2, L/2) for functions satisfying (41) (or first

k conditions in (41) when k<i). For space-periodic boundary conditions (41)

the last observation replaces the Calderon-Zygmund estimates (4),(5).

For the problem (40)-(42) the term / has the form:

(45) f(t,x, u, ux, uxx)― ―uxx ――{uXJ ,

hence, to show global existence of the solution, we shall find a global in time

L°°a priori estimate of ux. This estimate will be obtained in two steps.

r
First step. Estimate of Vu^dx.

J

Multiplying (40) by uxx and integrating over [―L/2, L/2] we find that:
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2
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i
t}iMdx=

r r if
v＼{uxxxfdx-＼(uxxfdx―-~ ＼(uxfuxxdx

＼(uxYuxxdx =
~

＼l(uxf]xdx=O

because of (41), hence applying (6) we obtain

―■＼(ux)2dx= -2v＼{uxxxydx-
＼{uxxfdx

atj J J

or

(46)

^{-2v+2v)[{uxxxfdx-＼-2Cv{{uxfdx

＼iux)＼t,
x)dx<＼iuox?dx exp(2C0

^＼(uox)2dxexp(2CJ＼)= : ml.

Second step. Estimate of
＼{uxxfdx

Multiplying (40) by uxxxx and integrating over [―L/2, L/2] we find:

(47)
^^-kuxxTdx

= -J＼{uxxxxrdx +
＼{uxxx)2dx-^

I dtJ J J z

next, using (46) and the Poincare inequality we have

i r
＼{Uxfuxxxxdx ^k＼＼ux＼＼L≪>＼＼ux＼＼Li＼＼uxxxx＼＼Lz

r

＼{uxfuxxxxdx

^mJ^―＼＼uxxxx＼＼2L2+-^.＼＼uxx＼＼uz)

401

Choosing mo(d/2)―v (hence (m0c3/28)=(vc3/8'i), and using (6) to estimate the

third derivative in (47), we obtain

^.^(-v-^ + DJ (uxxxxfdx-＼- [Cw+^i-jjCUxxN*

which together with (46) and the inequality following from (7) and (43)

(48) HUM, -)＼＼l≫<c＼(uxx)＼t,X)dx (72= 1)

justify the required L°°([0,7＼]X[― L/2, L/Z]) estimate of ux. From our general

result it is clear that there exists a global Holder solution of the problem (40)-

(42). Our considerations are completed.



402

(10)

Tomasz Dlotko

Part III. Appendix.

8. Proof of Lemma 1.

Since in fact the proof of (11) coincides with that of

＼＼u(t,-)＼＼W^o^v([qu＼dx+N*＼Q＼) + C^Q u2dx

we will present only the firstproof. For w: = uXiXj, as a consequence of (7)

with p=4, 1=1, n£3:

(49) IklU^^CNIUi^^^CC'llu/ll^.^lkll1/!^,

where the inequality (8) has also been used. Now, from the Young inequality

(50) Nlli≫cfl)^yll≪'ll^.2cfl)+ C(3)||u;|U2cfl)

(with C(d)=const. d"1), hence from (6) we may claim

(51) ＼＼uXiXj＼＼L^Qy£8＼＼u＼＼w4,2cQ}-JrCs＼＼u＼＼L2^(n^3).

As a consequence of (1), when u remains in X

(52)
＼
(Aiu)idx = e-*＼ [ut ―f(t, x, u, ux, uxx)Jdx

^3s-4Jg[m?4-/U x, 0, 0, 0)+(f(t, x, 0, 0, 0)-/(f, x, u, ux, utx)f＼dx

^3s~!
＼

Q
tul+N>-]dx + ci£-i＼＼u＼＼*W2, ,̂

where c4= c4(L3, Lit LB). As a result of (4),(51)

＼＼uXiXj＼＼l^a^282＼＼u＼＼lvi,^+2(C8y＼＼u＼＼hcQ,

^2c2d＼Wu＼＼L^ + ＼＼u＼＼^Q,Y+2{Csnu＼＼h^.

Next, from (52)

(53) ＼＼uXiXJ＼＼l^Q^l2s-4cW^Jiul+N2)dx+j＼＼urm,2cQ)j

+(icW+2(Cdf)＼＼u＼＼h^.

As a consequence of (7) with p = n + l and (5) with p―n+1, r=2, we may-

show that

＼＼u＼＼2wl,~cQ^c(＼＼Au＼＼ln+HQ> + ＼＼u＼＼h(Qd

^C6(||Au||!≪(fl)+ ||M||i2cfl)).
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Summing (53) with respect to i, j or with respect to i, i to get the bound for

SIlMxixJII-cfl) or ||Aw||£oo(flj,respectively, we finally have
i.j J

＼＼u＼＼2W2,~cQ^(n2+ c5n) ■(right side of (53))+c5!|u||i2(m, which, for

V

(54)

2i£-4c28＼n2+cbn)and d taken so small that

gives (10). Condition (54) defines the value v0 mentioned in Lemma 1 (i/g(0,v0])

in such a way, that

(55)
＼o＼
=1

The proof of (11) is similar to that of (10) with one exception, instead of

(49) our starting point is an estimate (valid for n^4);

(56) ll^lii2≫/n-2<fl)^C||u;|ki.2cfl>^CC/||M;||^i,1!cfi)lkir/i(fl),

used for w~uXiXj as previously. The proof of Lemma 1 is completed.

9. Space dimensiens n>3.

We have now complete information necessary to obtain the a priori esti-

mates of u in W2-°°(Q)for arbitrary n. To simplify notation we denote by T2

a positive time such that

(57) ||u||7^(0,r2;g'2,≫Cfl≫̂R,

which is equivalent to saying that u remains in X until a time T2 (such T2>0

exists due to continuity of the Holder solution and (12); we need to estimate

it). The key idea of our further proof is that estimates obtained for u will be

valid as well for ut solving the equation

UU = ―£2A2UtJrft+fuUt+'£fux.Ulxi+ S fuXiXUtxtxr

From (11) and Lemmas 2, 3 we have

(58) u eL°°(0,T2; W2-in'n-＼Q)),

and from an estimate similar to (11), valid for ut (we need our supplementary

assumptions on /, u0 to justifyit):

(59) ≪(gL"(0, T2; W2-lnln-＼Q)),

and, as a consequence of (1),(58) and (59)

s2A2w = -W£+/a, x, u, ux, ≪k)gL"(0, T2; L*n'≫-*(&)).
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Then from the ellipticregularity theory [7, 11]

(60) mgeL°°(O,T2; W*-2n'n-*(&)).

For n^5, as a consequence of (7)

W2'°a(Q)czW*'in"l-＼Q)>

thus using (60) we have verified(57). At this point we will fix the time To

(for n=A, 5) in a similar way as previously for n^3 in considerations follow-

ing (19).

Next, for u=6, ･■･, 9, using (60), the analogous estimate for ut;

(61) ut<=L (0, T2;W4-2n'n-＼Q))

(requiring new assumptions on /, u0) and (1) we justify that

ugeL~(0, T2; We-2n'n-2(Q))aL°°(0,T2; W2-°°(Q)).

We shall continue this procedure for larger n.

Remark 2. In spite of certain technical complications involved in our

proofs, the general idea of Theorem 1 is simple. It is based on Lemmas 1, 2, 3

giving a priori estimates and on the theory of linear problems known in litera-

ture. Moreover, our a priori estimates technique offers the possibilityof effec-

tive estimates (as in [6]) of the life time of solutions. As a competitive tech-

nique we should mention the semigroups theory and its generalizations; com-

pare e.g. T7. 4, 131.
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