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A CRITERION FOR ISOMORPHIC TILED ORDERS OVER

A LOCAL DEDEKIND DOMAIN

By

Hisaaki Fujita and Hiroshi Yoshimura

Throughout this note R will denote a local Dedekind domain with a unique

maximal ideal zR and the quotient ring K.

Let n(^2) be an integer. As usual, an i?-order A in the full nXn matrix

ring (K)n over K is an i?-subalgebra of (K)n such that A is finitely generated

as an i?-module and AK=(K)n. An i?-orderin (K)n is called tiledif it contains

n orthogonal idempotents. If A is a tiled Z?-order in (K)n then up to conjuga-

tion we may assume that it contains the idempotents en (l^z^n), where

{etj＼l<Li,j^n} is the family of usual matrix units in (K)n, and hence that it

is of the form {izXiiR) for some integers Xtj with Xij^Xik+Xkj and /tu=0 for

all l^z, j, k<Ln (cf. [2], [3]). Since each euAeu^R is a local ring, A is a

semiperfect ring. For a basic tiledi?-order A, the quiver Q(A) of A is defined

as follows: The vertices of Q(A) are {1, ･･･, n); there exists an arrow from

i to / in Q{A) if ejjjeii%ejjpen, where J is the Jacobson radical of A (cf. [5]).

In [1, Theorem] we have shown that two basic tiled i?-orders between

{KR)n and (R)n are isomorphic as rings if and only if their quivers are equal

except for the numbering of the vertices, and in this case, one order is con-

jugate to the other one with a regular element in (R)n> which is constructed

from their graph theoretic properties. In this note we shall remove the hypo-

thesis "between (xR)n and (/?)," and prove the following

Theorem. Let A and F be tiled R-orders in (K)n. If A and F are iso-

morphic as rings then there exist a diagonal matrix v and a permutation matrix

w in (R)n such that F=vwAw~lv~1.

Remark. In the proof of Theorem we shalldefine the matrix v by using

given A and F and a permutation matrix w. Thus it turnsout that by a finite

number of procedures of taking conjugationswe can determine whether given

two tileditNordersare isomorphic, or not.
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We shall also show that in the case A and F are basic tiled i?-orders be-

tween (nR)n and (R)n> the diagonal matrix v in the above theorem coincides

with the diagonal matrix u in the proof of [1, Theorem] (Proposition).

In order to prove Theorem, we need the following two lemmas.

Lemma 1 (c.f. [4, p. 77, Proposition 3]). Let S be a semiperfect ring. If

{et}iLiand {/.,}?=iare complete sets of orthogonal primitive idempotents of S

then m=n, and there exist a unit u of S and a permutation a of {1, ■･･, n＼ such

that ueiWl= fara for all i―1, ･･･, n.

Lemma 2. Let A=(nxuR) and r={nnJR) be tiledR-orders in (K)n, and

assume that<pis a ring isomorphism from A to F such that <p(eu)=eu for all

i=l, ■■･, n. Then

(1) <p(itlts*kReii)=icWReiJfor all 1^*",j^n and k^O.

(2) lij+Xji^u+rji for alll^i, j£n.

Proof. First observe that for alli and /, we have (pieuAej^euFeij, that

is, ip(nXiJReij)=7criiReij.

For each i=l, ･■･, n, we define a mapping <pt:R^R by a^>a'',where <p(aeu)

= a 'an. Then each <ptis a ring automorphism of R, so <pi(xkR)=nkR. Hence

we have (p(KkReu)=7tk Reu. This shows that (p{nXii+kReij)=<p{Kk Reu)<p{nXiiReii)

=(xkReii)(xriiReij)=7zriJ+kRen, which completes the proof of (1).

Since Xij+Xji^Xii=O, we see from (1) that(p(TtXi^xiiReii)-izxii+Xi}Reii.On

the other hand, <p{KXi}+xJiReu)= <p(7iXiJReiJ)(p(nxiiReji)= {itniRei}){KnjReji)=

―Tt!i^"!nReii. Hence, 7tXii+xJiReii―7t:riJ+riiReii)from which we obtain Atj+Xji=

Tij+hi.

Proof of Theorem. Let A―{nXiiR) and F={nrijR) be tiledi?-orders in

(/On, and assume that <p is a ring isomorphism from A to Z7. According to

Lemma 1, there exist a unit u in A and a permutation a of {1, ･･･,n＼ such

that u(p~1{eu)u~l=ea(≫o(.i-)for all z". Choose a permutation matrix u; in (R)n

such that weaWaWw~1=eu for all /, and put wAw'1=(^XiiR). Put r=

min{r'Uii―Tij+r'^O for all ; = 1, ･･･, n}. Let v=(vij)e(R)n such that y^=

xx'n-rij+rand y^.^0 whenever /=£/. Then we put vwAw1v1=(KzijR). We

shall show that l"ij=Yu for all /,y, which will complete the proof. First observe

that kij=Xij+Zu―TH―^ij+Tij for i, j. Hence, in particular, X"j=Yij- Since v

is a diagonal matrix, veiiv~1=eu for all i. Define a mapping <p: vwAw~1v~1-*F

by vwxw~1v~l^Kp{u~lxu), where x^A. Then <pis a ring isomorphism fixing

each <?,-v.Now let l<i, j<n be fixed. By Lemma 2(2),it sufficesto show that
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either I'ls―tn or X'/t=7ji- Without loss of generality, we may assume that X'h

£ti'j. Put k^tfj-Xi'i. Then 7u-7n=k^Q. Note that *%=(&+Xij)-Xj+7ij

―7it^Xij―X[i+7ij―71i=k^0. It then follows from Lemma 2(1) that TZ^^^iRe^

=<p(nk'ij+k'ijRe1j)=<p(xxii+kReli)<p(7Zx"ijReij) = (iz^+k Reli)(7triJReij) - ic^i+n}Relh

from which we conclude that 7u+Xi}=7ij+7ij- Therefore, we obtain X"j=7ij,

as desired.

Let A=(TCXiiR) be a tiled i?-order in (K)n. For each nonnegative integer

k, we denote the number of i such that Xij+X]i=k for some l^j^i^n by

tk{A), and call the sequence (U(A), t^A), U(A), ･･･) the depth type of A. Since

it is immediate that the depth type of tiledorders are invariant under conjugat-

ing with permutation matrices and diagonal matrices, we obtain

Corollary. Isomorphic tiled R-orders in (K)n have the same depth type.

We shall now clarify the relationship between the diagonal matrix v in

the Theorem and the diagonal matrix u in the proof of [1, Theorem].

We set the following assumption and notation. Assume that A―{KXiiR) and

r={nriiR) are distinctbasic tiledZ?-ordersbetween (7tR)n and (R)n such that Q(A)

=Q(F). Let S be as in the proof of [1, Theorem]. Put u―{ui3), where Uu=l

if i£S, uu=k if i^S and wo=0 otherwise (as in the proof of [1, Theorem]),

and put T―mlniT'l^j―Tu+T'^0 for all /} and v=(vtJ), where vjj=7cilJ~rv+r

and Vij=0 otherwise (as in the proof of Theorem). Then we can make the

following observation.

Proposition. In the above setting,it holds that u=v.

Proof. We use [1, Lemmas 3,4 and 6], which says,in other words, that

forl^i, jt^n, it holds that;

(1) i,j^S or i,j^S&Xij^Tij,

(2) i£S, ye=<S=^w=l, Tij=O,

(3) i(=S, j^S^Xij^Q, r≪=l.

If le<S and Xij―Tu f°ra*l J then (1) implies that XtJ=Tij for all z,/, which

contradicts to A=tF. Hence it holds that either l(£S or Xu^Tu for some 7.

Case 1. 1^<5: Then, if f=l, that is, ylu=0 and Tu=l for some j then

this contradicts to (1) and (2). Hence we have y=0. Using (1) and (2) again,

we have Xu^Tu^j^S^Xlj=l, Tu=0. This, combined with T―0s shows that

71=11.
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Case 2. lej and Xt^Ttj for some j: Then, a similar argument as in

Case 1, using (1) and (3), implies that l―l, and lxi^fxj&j<£.S&lij―§, Jij―l.

This shows that u―v.

Therefore, in both cases, we obtain u―v.

Remark. Let A and F be basic tiledi?-orders between (nR)n and (/?),

such that their quivers are equal except for the numbering of the vertices.

Let w be a permutation matrix in (R)n such that Q(wAw~l)―Q{F). Then it

follows from Proposition and [1, Theorem] that vwAw~lv~l=F. However, in

general, the quivers of tiledi?-orders do not determine the permutation matrix

w of Theorem.

I R R R＼ I R R R ＼

Example. Let A=lx3R R nR and F-＼zzR R n*Rl Then A

WR kzR Rl WR xR R
I

and F have the same quiver

Q

Ar ＼^, . If the permutation matrix w

were determined by the quivers as in [1, Theorem] then we would obtain w=

v=

1

0

0

with

0

1

0

＼o

0

0

1

0

0

1

, but vwAw~lv~li^r. On the other hand, F is conjugate to A

0/
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