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ON THE GAUSS MAP OF SURFACES OF REVOLUTION

IN A 3-DIMENSIONAL MINKOWSKI SPACE

By

Soon Meen Choi

§1. Introduction.

For the Gauss map of a surface of revolutionin Rs the following theorem

is proved by Dillen,Pas and Verstraelen[31.

Theorem A. The only surfaces of revolution in Rz whose Gauss map £

satisfies

(1.1) A£=i4£, Ace Mat (3, R)

are locally the plane, the sphere and the circular cylinder.

In the case of a Minkowski space, a Gauss map is defined as follows. Let

i??+1 be an (n-fl)-dimensional Minkowski space with standard coordinate system

{xA} whose line element ds2 is given by dsz=―(<ixo)2+S?=i {dxty. Let S?(c)

(resp. Hn(c)) be an n-dimensional de Sitter space (resp. a hyperbolic space) of

constant curvature c in R7l+1. We denote by Mn(e) a de Sitter space S?(l) or a

hyperbolic space Hn(―l), according as s―1 or ―1. Let M be a n-dimensional

space-like or time-like hypersurface in Ri+1 and £a unit vector field normal to

M. Then, for any point p in M, we can regard $(p) as a point in //"(―I) or

Si(l) by translating parallelly to the origin in the ambient space /2?+1, accord-

ing as the surface M is space-like or time-like. The map £ of M into Mn(e)

is called a Gauss map of M into I2"+1.

As a Lorentz version of Baikoussis and Blair's result [1], the author [2]

proves the following

Theorem B. The only space-like or time-like ruled surfaces in R＼ whose

Gauss map £:M-+M＼s) satisfies(1.1) are locally the following spaces:
i

Rl SlxR1 and RlxS1 if s= l

R* and H'XR1 if s = -l.
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Similarly,it seems to be interesting to investigate the Lorentz version of

Theorem A. The purpose of this paper is to prove the following

Theorem. The only space-like or time-like surfaces of revolution in R＼

whose Gauss map £:M~^M＼e) satisfies(1.1) are locally the following spaces:

i. R＼,S＼,S＼xRl and RlxS1 if e= l,

ii. R＼ H2 and H'xR1 if e = -l.

In §2 we define non-degenerate surfaces of revolutionin R＼. Roughly-

speaking,non-degenerate surfaces of revolutionin R＼ are divided into four

types by the axes and the planes containingthe axis. The main theorem is

proved for each case in§3 and §4.

The author would like to express her gratitude to Professor Hisao Naka-

gawa for his usefuladvice.

§2. Preliminaries.

In this section we will give a definition of a surface of revolution in a 3-

dimensional Minkowski space R＼and some examples which satisfy the condition

(1.1). Throughout this paper, we assume that all objects are smooth and all

surfaces are connected, unless otherwise mentioned.

For an open interval /, let a: J-^TI be a curve in a plane IT in R＼ and

let / be a straight line in IT which does not intersect the curve a. A surface

of revolution M in Rl is defined as a non-degenerate surface revolving a profile

curve a around the axis I. In other words, a surface M of revolution with axis

/ in R＼ is invariant under the action of the group of motions in Rl which fix

each point of the line /.

From definition, we can derive four types of the surfaces of revolution in

R＼. When the axis / is space-like (resp. time-like),there is a Lorentz transfor-

mation by which the axis / is transformed to the x2-axis (resp. the xo-axis).

So we may suppose that the axis is the x2-axis(resp. the xo-axis). First of all,

we consider that the axis of revolution is space-like. Since the surface M is

non-degenerate, it sufficesto consider the case that the plane II is space-like or

time-like. So we may suppose that IT is the xxx2-plane or the x0x2-plane with-

out loss of generality. Then the profilecurve a is parametrized as

a(K)=(0, f(u), g{u)), or (f(u), 0, g(u)),

where / is a positive function and g is a function on /. In the rest of this

paper we shall identify a vector (a, b, c) with a transpose ＼a, b, c) of {a, b, c).
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On the other hand, a subgroup of the Lorentz group which fixes the vector

(0, 0, 1) is given by

cosh v sinh v

sinh v cosh v

0 0

0

0

1

for any veR. Hence the surface M of revolution can be written as

)

)

cosh v sinh v 0

sinh v cosh v 0

0 0 1

That is,M can be parametrizedby

(2.2) x(u,v)―(f(u)sinhv,f(u)coshv,g(u))

g(u)l

(2.2) x(u, v)=(f(u) smhv, /(u)coshv, g{u)),

or

(2.3) x(u, v)=(f(u) cosh v, f(u) s'mhv, g(u)),

which is called a surface of revolution of type I or //.

Next, if the axis is time-like, then we may suppose that II is the xoxi-

plane without loss of generality. Then the profile curve a is parametrized as

a{u)={g{u), /(≪),0),

where / is a positive function and g is a function on /. On the other hand,

a subgroup of the Lorentz group which fixes the vector (1, 0, 0) is given by

1

0

0

0

cos v ― sin

sin v cos v

0

v

for any v^R. Hence the surface M of revolution can be written as

1 0 0 g(u)

x(u, v)― 0 cosy ―sin y f(u) .

0 sin v cos v 0

That is, M is parametrized by

(2.4) xiu, v)=(g(u), f(u) cos v, f(u) sin v),

which is called a surface of revolution of type III.

Last of all,if the axis / is light-like, then we may suppose that it is the
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line spanned by the vector (1, 1, 0). Since the surface M is non-degenerate, it

sufficesto consider the case that the plane U is time-like. So we may suppose

that II is the xoxi-plane without loss of generality. Then the profile curve a

is parametrized as

a(tt)=(/(w),*(u),0),

where / and g are functions such that fi^g on /. We notice here that a sub-

group of the Lorentz group which fixes the vector (1, 1, 0) is given by

1+2

2

v

2

1
V*

―v

V

V

1

for any v^R. Hence the surface M of revolutioncan be written as

x(u, v)

That is, M is parametrized by

(2.5) x(u, v)=

1+J

V2

2

v

1

2

v2

2

― V

V

V

1

g(u)

0

(f+^v^h, g + ―v2h,hvj

where we put h = f―g. This surface is called a surface of revolution of type

IV.

Now, let M be a space-like or time-like hypersurface in J£?+1with locally

coordinate system {xt}. For the components ga of the Riemannian metric g

on M we denote (gij)(resp. g) the inverse matrix (resp. the determinant) of the

matrix (gij). Then the Laplacian A on M is given by

(2.6) ^ ■"≪&,)

Next we considersome examples mentioned in the theorem which satisfy

the condition(1.1).

Example 2.1. A Euclidean plane

R2={(x0, xu x2)^Ri＼xo=O＼

is the totally geodesic space-like surface and the Gauss map £is constant. So,

the Laplacian J£ of the Gauss map <? vanishes. Hence the Euclidean plane
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A=＼0
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On the other hand, a Minkowski plane

R＼={(x0, xu x2)<=Rl＼x2=Q}

is the totallygeodesic time-like surface and the Gauss map £is constant. So,

the Laplacian J£ of the Gauss map £ vanishes. Hence the Minkowski plane

satisfies(1.1) with

*

4 = *

Example 2.2. A hyperbolic space

H＼c)=＼x―{x0> xu x2)^Rl＼― x＼-＼-x＼-＼-x＼

1

_

c
r1 r>0l

is a totally umbilic space-like surface and the Gauss map £is given by x/r.

The mean curvature vector field H of H＼c) is given by f/r. Since we have

Ax =―2H, the Laplacian d£ of the Gauss map £ satisfies

J£=-
2

£

r

Hence the hyperbolic space satisfies(1.1) with

_1_

r2

0 0

A = o-4-o
r

0

On the other hand, a de Sitter space

o -i
r2

S＼(c)=＼x=(x0,xltx2)<ERl＼-x20+xt+xl=-=r＼ r>o|

is a totallyumbilic time-likesurface and the Gauss map £is given by x/r

The mean curvature vector fieldH of S＼(c)is given by ―t-/r.From Ax~―2H

the Laplacian J£of the Gauss map £satisfies
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Hence the de Sitter space satisfies(1.1) with

r2

0 0

A= 0 ＼ 0

r2

0 0
＼

Example 2.3. A hyperboliccylinder

H＼c)xR=＼(x0, xu x2)(ERl＼-x2o+xl=- = -r＼ r>o＼
y C J

is a space-like surface and the Gauss map £is given by (£,,0), where £0denotes

a Gauss map of the hyperbolic space H＼c). Since the Laplacian of £,is to be

―%o/rz by Example 2.2, the Laplacian J£ of the Gauss map $ can be expressed as

Hence the hyperbolic cylinder satisfies(1.1) with

A=
0

0

Next, a Lorentz hyperbolic cylinder

0

1

r2

0

*

*

*

S＼(c)xR=kx0, xu x2)<ER＼＼-xl+x＼=-=r＼ r>ol
I c I

is a time-like surface and the Gauss map £is given by (£0>0), where £0denotes

a Gauss map of the de Sitter space S＼(c). Since the Laplacian of £0is to be

£0/V2by Example 2.2, the Laplacian J£of the Gauss map £ can be expressed as

Hence the Lorentz hyperbolic cylinder satisfies(1.1) with
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1

_

r2

0 *

A= 1
0 z? *

0 0 *

On the other hand, a Lorentz circular cylinder

R＼XS＼c)=i(x0,xu x2)^m＼xl+xt=-=r2, r>ol
I c I
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is a time-like surface and the Gauss map £is given by (0,£,,),where £0denotes

a Gauss map of the circle S＼c). Since the Laplacian of £0is to be %0/r2, the

Laplacian J£ of Gauss map £ can be expressed as

Hence the Lorentz circular cylinder satisfies(1.1) with

4=

*

*

0

1

r2

* 0

0

0

1

^r2

Remark. Other examples about surfacesof revolutionwith constant mean

curvaturein R＼are seen by Hano and Nomizu [51.

§3. Surfaces of revolution of type /, // and ///.

In this section we are concerned with non-degenerate surfaces of revolution

of type /, // and /// in the 3-dimensional Minkowski space R＼. First of all,

let M be a surface of revolution of type / with axis x2-one. Then the profile

curve a=a(u) is given by ≪(w)=(0, f(u), g(u)), where />0. Suppose that it is

parametrized by arc-length, i.e.,it satisfiesfn-＼-gn=l. The surface of revolu-

tion of type / in R＼ is parametrized by

(3.1) x=x(u,v)=(f(u)smh.v, f(u)coshv, g(u))

Then we have the natural frame {xu, xv} given by

(3.2)

Accordingly we see

Xu =(/'(≪)sinhv, f'(u)coshv, g'(u))

xv=(f(u) coshv, f(u)s'mhv, 0)
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＼xu,xu/=l, ＼XU,xvy=＼J, ＼XV)x8)―― / ,

which implies that the surface M is time-like. Let $ be a unit normal to M.

It is defined by f~lxuXxv, where X denotes the Lorentz cross product in R＼.

Then we get

(3.3) %={g'{u) sinh v, g'(u) cosh v, -f'(u)).

Accordingly £is the space-like unit normal to M and hence it can be regarded

as a Gauss map of M into the 2-dimensional de Sitter space S＼{1).

Theorem 3.1. The only surfaces of revolution of type I in R＼ whose Gauss

map satisfies

(3.4) A$=AS, A(EMat{3, R)

are locally the Minkowski plane R＼, the de Sitter space S＼and the Lorentz hyper-

bolic cylinder S＼xR.

Proof Let M be a surface of revolution of type / parametrized by

x=x(u, v)=(f(u)sinhv, f(u)coshv, g(u)).

From the natural frame (3.2) the induced Riemannian metric (g^) of the

surface M is given by gn=l, gii=g<n=Q and g^――p. It is easy to show

that the Laplacian J of M can be expressed as

{6-b)
a~
f du du*+fW

For the Gauss map ^(^(w)sinhv, g＼u)zo&＼iv,―f'iu)),we get

^
|-=(^(m)sinhv, g"(u)coshv, -f"(u)),

~ =(g'"(u)sinh v, g'"{u)cosh v, - f'"(u)),

-j-=(g'(u)coshv, g'(u)sinhv, 0),

Q-t=(g'(u)sinhv,
gf(u)coshv, o).

Accordingly we get by (3.5)



(3.6)
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＼-fJg"-g'"+J2gf)

^= (-Jg"-g'"+Jigr)

(flnS'+y

A =

+f"

sinhy

coshf
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f

By the assumption (3.4) and the above equation we get the following system of

differentialequations:

f'g"+gm-ytg/)s'mhv+altg'cashv-aiaf'=O

ang' smhv+(aZ2g'+-Tf'g"-＼-g"'-y2g'^co$hv-az3f' = 0

a31g' sinh v + a32g' cosh v ―aiSf'―yf'f" ― /'//=0

where atj (i,j=l, 2, 3) denote components of the matrix A.

In order to prove this theorem we may solve the above equation and deter-

mine the functions / and g. First we suppose that the function / is constant,

say r. Since the profilecurve a=(0, f(u), g(u)) is parametrized by arc-length,

we have g'=±l and hence x(u, v)=(rs＼nhv, rcoshv, ±u+b), b, r<BR. That

is, the surface M is contained in the Lorentz hyperbolic cylinder S＼(l/r2)xR.

Because the functions sinhv and coshy and the constant function are linearly

independent, by (3.6) we get a12=a2i=::a31= a32=0 and an = a22―r~2>0. How-

ever we have no informations about als, a2S and a33. Therefore the matrix A

satisfies

1

0

0

0 a18

1

0 as3

On the other hand, we suppose that the function g is constant. Then the sur-

face M is contained in the time-like plane parallel to xoxi-plane. In this case,

by (3.6) the matrix A satisfies

au an 0

A= c21 a22 0

asi as2 0

Next, we suppose that the functions / and g are not constant. Let .h be a set
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{mg/|/'(≪)^0} and let Jt be a set {u<=J＼g'(u)±Q). Then we know that /=

/1W/2 from fn+g'2=l and hence /in/2^0 by the connectedness of /. Since

the matrix A is constant, we may suppose that /1P1/2 is an interval. First of

all,we consider on J^rsjz. From (3.6) we get a12=a23=a21=a23:=fl3i=:<Z32=0.

Consequently the matrix A satisfies

au 0 0

A― 0 a22 0 ,

0 0 a3S

and the functions f and s satisfy

(3.7)

jf'g*+gm-jig'=- aixg',

jf'g'+g*-jig'=-aug',

jf'f"+f'"=~az%f'.

So we get an = a22. We put an=a22=X and ass―pt. By (3.7) we see

(3.8) figm+ff'g'r+(Xfi-l)gf=O,

(3.9) f'r+ffm+ftff'=O,

(3.10) f'2+g'2=l.

Differentiating(3.10) twice, we get

(3.11) /'/*+£'£*=(), f≫i+f'fm+g≫*+g'gm=0.

From these equations we eliminate the function g. Using (3.8),(3.10) and (3.11),

wp hnvp

(3.i2) /8r8+///(i-//8x//w+//r)-u/8-ix//2-i)8=o.

On the other hand, making use of (3.9), we have

(//7=-/i//'=-{M/2)'.

which implies by integration

(3.13) /.T=-y/i/2+a, a^R,

since a is constant. Solving this differentialequation, we get the solution

(3.14) //2=--^ftf2+2a log f+b, b^R
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Substituting (3.13) and (3.14) into (3.12) and using (3.9), we get the following

polynomial with variable f:

- {2afi(A-ft)log f+(b-l)fi(A-ft)}r

+ {Aa＼X-ft){＼ogfT+Aa{X-fi){b-l) log f+(b-l)＼X-fi)+aft}P

- {4a2(log f)2+4a(b-l) log f+(b-l)2+a2} =0 .

From the coefficientsof each term in the above equation we can get

a=0, 6=1, ft(X-ft)=O.

Here, we have that ft~O. In fact,if ^=0, then by (3.14) we get

//2=6=1,

which yields that f'―±l and g is constant, a contradiction. Hence we obtain

flr=0, 6=1, i=^.

From (3.14),we have

Since g'2

(3.15)

= 1―f/2=Af2/2, we get X>0. Integrating this equation, we have

[2
f=±J-y sin h(u)
V A

where h(u)=^/X[2(u + c), cgR. From (3.10) and (3.15), we obtain

(3.16) g=±
i

/
-r cos h(u)+d , d<=R
A

In this case, we have

Oc(k, v)-d, x(u, v)-d>=f(u＼+(g(u)-dy=j>0, d=(O, 0, d),

which means that the surface M is contained in the de Sitterspace S＼(X/2)cen-

tered at d with radius V2/X on JiC＼J% and A=XE, where E denotes the unit

matrix.

On the other hand, we know that /=/in/2. In fact,if J1―J2 is not empty,

where /2 denotes a closure of J2, then the surface M is contained in the time-

like plane parallel to the xoxa-plane on ]x―J2 and the de Sitter space S＼{X/2)

on /in/2. Since the matrix A is constant, X is zero, a contradiction. Similarly,

if J2―J1 is not empty, the surface M is contained in the Lorentz hyperbolic

cylinder S＼xR on J2―Ji and the de Sitter space S＼(X/2)on J^Jz. Since the
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matrix A is constant, we have X―r 2. This means that the profilecurve a is

not smooth, a contradiction.

This completes the proof. □

Next, for the case of surfaces of revolution of type // and ///, we can get

the following theorems.

Theorem 3.2. The only space-like(resp. time-like)surfaces of revolution of

type II in R＼ whose Gauss map satisfies(3.4) are locally the hyperbolic space H2

and the hyperbolic cylinder H1xR (resp. the Minkowski plane R＼ and the de

Sitter space S＼).

Theorem 3.3. The only space-like(resp. time-like)surfaces of revolution of

type III in R＼ whose Gauss map satisfies(3.4) are locally the plane R2 and the

hyperbolic space H2 (resp. the de Sitter space S＼and the Lorentz circular cylinder

RIXS1).

Above theorems are proved by similar discussion to that of Theorem 3.1.

§4. Surfaces of revolution of type IV.

Finally a surfaces of revolution of type IV in R＼ are characterized in this

section. Let M be a surface of revolution of type IV whose axis / is the light-

like straight line spanned by (1, 1, 0). Then the profile curve a=a(u) is given

by a(u)―(f(u), g(u), 0) where fi^g. Suppose that it is parametrized by arc-

length, i.e.,it satisfies―//2+g/2= ―e(=±l). The surface of revolution of

type IV in Rl is parametrized by

(4.1) x ―x{u, v) = (Ku)+~v2h(u), g(u)+jv*h(u), vh{u))

where h{u)―f{u)―g(u). Since the function h has no zero points, we may

assume that the function h is positive without loss of generality. The natural

frame {xu, xv＼given by

(4.2)

xu=(f'+jv*h', g'+^v*h', vh')

xv = ―(vh, vh, h)

Let $ be a unit normal to

(4.3) £= *h'-g'

M. It is defined by h~lxuy.xv. Then we get

l-o2h'-f',
vh') and Q, £>=e(=±l).

Accordingly £ can be regarded as a Gauss map of M into the 2-dimensional space
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form M＼e).

Theorem 4.1. The only space-like{resp. time-like)surface of revolution of

type IV in R＼ whose Gauss map satisfies

(4.4) J£=A£, A^Mat{3,K)

is locally the hyperbolic space H2 (resp. the de Sitter space S＼).

Proof. Let M be a surface of revolution of tvoe IV parametrized by

x{u,v)=(f(u)+^v2h(u), g(u)+jv2h(u), vh{u))

From the natural frame (4.2) the induced Riernannian metric(ga) of the

surface M is given by gn = ―e, gi2=gii=0 and g22=h2. It is easy to show

thatthe Laplacian A of M can be expressed as

h ou ou2 h2ov

For the Gauss map E=ai/2)vzh'-gf, (l/2)v2h'-~f, vh') we get

.3i=
du

du2

dv

(^
■v*h"-gH,

~v*h''-f≫,
vh"^

(
~v2h'"-g'")

＼v2h'"-f'",
vh'")

(vh', vh', h')

;-*- =(/i', hf, 0)
ov

Accordingly we get by (4.5)

Jf= £

£

j

&
>'h'-s")+<Tu'll'-g')-hh

h＼2V
h"v-f"^+e(^vih'"-f'")-^h

s(jh'h"v + h'"v}

By the assumption (4.4)and the above equation we get

(4.6)

--{(an + a12)/2/-£(
^-h'h"
+ hm)＼v2+aji'v

h n

+ {e(jh'g"+g≫)+±ili'-allg'-altf'}=Q
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2i+a22)h'―s
(

Kjih'h''
+ h>≫)}v*+aiZh'v

+{£(chr'+f'")+lih'-a^S'-a^f'}=Q

j(azl + a32)h>v2+^33h'-S(jh'' + h>'>y[v-(ang' + aszf')=0

So we can regard the above equationsas polynomials with variablev and from

the coefficientswe set

(4.9)

(4.10)

(4.11)

> a13/z'=0,

ang' + altf'-e(jh'g"+g≫}-±-th

(atl + aiS)hf-6(jh'h" + h≫)=Q

atih'=Q ,

=0

atigf +a^f> -e(^.h'f"+f^~h'=Q

{an+azz)h'―Q

atah'-e(jh'h" + hm)=O

aslg'+a32f'=0

Suppose that the function h' has zero points. Then, at these points, we

get f'=gf, which implies /'2―g/2―0,a contradiction. So, h' has no zero points.

From (4.9) and (4.10) we get a13=a23:=0, and by (4.11) a31+ a32=0 and azlg'+

as2f'=0. Hence we get asl―a32=0. On the other hand, by the firstequation

of (4.9) and the second equation of (4.11),we have

(4.12) 011+ 012=033, O21+ O22:=O33･

Also, by the third equations of (4.9) and (4.10),we get

(alt-a2i)f'+(an-a21)g' + e(j-h'h" + h'")=0

from which together with the second equation of (4.11) and (4.12) it follows

that (an + a22―2aaa)h/=0, i.e.,

(4.13)

We put a,.

≪33 y(an + a22)

=A and a22=u. Then, by (4.13)and (4.12),we see
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flss=-2-U+ju) and a12= ―ati=―(pi―X)

Therefore the matrix A satisfies

A

X

0

r)

h
>-z>

0

0

0

ytf+ju)

Thus, by the firstequation of (4.9) and the last equation of (4.10), we get

(4.14)

(4.15)

■=r{X+[i)hh'-e{hfh"-＼-hh'")=<d ,

Li

2z(hh'f" + h2f">)+2h' + h2{{2.-a)h'-{A+u)f')=Q,

On the other hand, making use of (4.14),we have

which implies by integration
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(4.16) hh"=je(X-＼-fi)ht+a, a^R,

since e, 2. and p. are constant. Solving this differential equation, we get the

solution

(4.17) h/2= je(k+pi)h2+2a log h+b , b^R .

Because of f'2―g'2=$, we have

(4.18) 2f'h' = h'2+e.

Differentiating(4.18), we get

f"h'+f/h" = h'h" ,
(4.19)

f"lh'+2f"h"+f'h'"=h'h'"+h"2.

Eliminating the functions /, /', /* and f in (4.15), (4.18) and (4.19), and using

(4.16) and (4.17), we have the following polynomial with variable h :

+ ^eatf-jtOtf+ju) log h + sb{A-{i){X+[i)＼h4

+ {8a＼X-//)(Iog /z)2+8a&U-j≪) log h+2b2(l-fi)+2sa(Z+ft)} h2

+4(4a2(log hy+4ab log h + a2+b2)=0 .
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From the coefficientof he and the constant term in the above equation we get

(X―ftXJL+ft)=O and a=b=Q. Suppose that A+/i=0. Then by (4.17) the func-

tion h must be constant, a contradiction. So we have X=fi. From (4.17) we

obtain

(4.20) hn-^-sXh＼

and hence we get sk>0. Integrating (4.20), we can calculate

h = ek, where k(u)=± J ―(u + c), c^R .

From (4.18) and the definition of h, we obtain

and

f=＼?-h*-)+d

'-iWt
e~k)+d, d^R

Accordingly, we have

<x(u, v)-d, x(u, v)-d>=-(f-d)2+(g-d)2= ―, d=(d, d, 0).

First we consider that the surface M is space-like,i.e., £=―1. Then we have

/l<0, which means that M is contained in the hyperbolic space H＼XJ2) centered

at d with radius V―27/L On the other hand, if the surface M is time-like,

i.e., 6= 1, then we have />0, which means that M is contained in the de Sitter

space S＼{k/2)centered at d with radius V2/L

This completes the proof. □
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