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§1. Introduction

The concept of ideal boundary of Hadamard manifolds was firstintroduced by

Eberlein and O'Neill [3], and then their Tits metrics were defined by Gromov [2]

in the following manner.

Let M be a Hadamard manifold, that is, a simply connected complete

Riemannian manifold of nonpositive curvature. In what follows, geodesies are

always assumed to be parametrized by arc length. Two geodesic rays

7,, 72 :[0, °°)―≫M are said to be asymptotic if the distance function

t ―≫dM(yx(t), /2(0) is bounded from above for all t > 0. Then the ideal boundary

M(°°) of M is defined to be the set of all asymptotic classes of geodesic rays in

M. For Z＼,z2£ M(°°) and p e M, let /,, 7, be rays from p to z,, z2
■
The function

t ―> d(yt(t), 72(O)/1 is then monotone non-decreasing and is bounded from above

by 2. Thus we can define a metric / on M(°°) by

/(z,,z2):=lim
/―>oo

d(Yx(t),y2(t))

t

It is easy to see that the definition of / is independent of the choice of p and that /

is indeed a metric on M(°°). The Tits metric Td(-,-)is then the interior metric li

induced from this metric.

Subsequently, the concept of ideal boundary was also defined for other classes

of Riemannian manifolds in a similar fashion. Among them, Kasue [5] defined it

on asymptotically nonnegatively curved manifolds, and Shioya [8], [9] on

complete open surfaces admitting total curvature.

On the other hand, we know the concepts of rough isometry and Hausdorff

approximation between two metric spaces, which preserve certain asymptotic

properties, in the following way (cf. Kanai [41).
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Let X and Y be metric spaces. A map 0 : X ―≫Y (not necessarily continuous)

is said to be an (a, A)-rough isometry for some constants a is 1 and A^O if (j)

satisfiesthe following two conditions:

(1)

(2)

a

d

BA((j)(X)):={yGY＼d(y,(j)(X))^A} = Y,

x (x,, x2) - A ^ dY (</>(xx),(j)(x2)) ^ a ■dx (x{, x2) + A,

for all jc,,jc2g X. If a = 1 in particular,we call0 a A-Hausdorjf approximation.

It is then an interesting problem to study relationships between Hausdorff

approximations and ideal boundaries. Recently, in this direction,Kubo [6] and the

author [7] prove the following result.

Let M, N be either Hadamard manifolds, asymptotically nonnegatively curved

manifolds or complete open surfaces admitting total curvature. Assume that their

ideal boundaries are compact with respect to the Tits-topology. If there exists a

Hausdorff approximation between M and N, then their ideal boundaries are

isometric with respect to the Tits metric.

In this paper, we shall be concerned with the same problem in the case where

given ideal boundaries are noncompact. Our firstobject is to prove the following

theorem, which gives an extension of Theorem A in [7].

THEOREM 1. // there exists a Hausdorjf approximation between two

Hadamard manifolds, then theirideal boundaries are isometric with respect to the

Tits metric.

It should be remarked that recently another definition of ideal boundaries of

complete metric spaces is given by Adachi [1], which coincides with Af(≪>)when

M is a Hadamard manifold. Then he proves the same result as Theorem 1 with

respect to a metric d^ equivalent to /: //2 ^ d^ I.

It will be also remarkable thatitis difficultto construct a map between ideal

boundaries from a rough isometry which is not a Hausdorff approximation.

In general the converse is not true; for two Hadamard manifolds whose ideal

boundaries are isometric, they need not be roughly isometric. Our second object is

to consider the converse problem more precisely. Namely we shallinvestigate the

converse problem under some additional condition (E), which is concerned with

the expanding growth rate and defined precisely in Section 3. In fact, we prove

the following

THEOREM 2. Let M, N be Hadamard manifolds satisfyingthe condition(E).
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// (Af(°o),Td) is isometric to (N(°°),Td), then for any £>0, there exists a

{＼+ £,Te)-rough isometry between M and N, where Te is a constant depending on

We here note that there is an example of a pair of two Hadamard manifolds

satisfyingthe condition (E) but no Hausdorff approximation exists between them

(see [7]).

The author would like to express her thanks to Prof. K. Hatsuse and Dr. T.
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§2. Proof of Theorem 1

In this section, we shall prove Theorem 1. First the following lemma

concerning trianglesin a Euclidean plane is proved.

LEMMA 1. For a triangleA(p,q,r) in R2, let a,j3 and y be the lengths of

the opposite sides of p, q and r, respectively.If there is a constant c^O

satisfyinga + B-y=kc, then the followingineaualitieshold:

(1)

(2)

cos Zrpq ^ 1 -
c_
p*

where h denotes the distance between r and the foot of a perpendicular from r to

Proof. Let 6 Zrpq and 9q = Zpqr. From the assumption, we have

= ficos6p + a cos6q+c

^Bcos9n +a + c,

which gives the firstinequality.

Since /?= /?sin0/; = J5^＼-cos2 9p , the first inequality implies the second one

in the case that (3^c .If not, it is clear. ■

Now we are going to prove Theorem 1.

Proof of Theorem 1. Assume that a A -Hausdorff approximation/is given.

First we define a mao t＼:M(oo) ―> Moo) induced from f.
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Let p be an arbitrarilyfixed point in M. For any z e M(°°),there is a unique

ray 7 emanating from/? to z. Denote by y(t) the curve f(y(t)) and let 7, be a

geodesic segment from 7(0) - f(p) to y(t). Then 7, converges to a ray 7^ as t

tends to 00.

In fact, look at the geodesic triangle A(f(0), f(s), y(t)) for s > t > 0. Then,

concerning the lengths of the sides, we have

k(7(0), 7(0) + d(y(t), y(s)) - d(y(0), y(s))＼

^ ＼d(f(O), f(t)) -t＼ + ＼d(f(t), f(s)) -(s-1)＼ + ＼d(y(O), f(s)) - s

^3A.

Hence, applying thelemma above and Toponogov's comparison Theorem, it holds

thatfor t> A

cos Z(f ;(0),y;(0))^ 1-
3A

^1-
3A

d(f(O),f(t)) t-A

Therefore we have lim,^ Z(y'(Q),y'(Q)) = 0 ,proving the assertion.

Now define a map df: M(°°)―≫N(°°)by

#(z) = y-(~).

Note that thisdefinitionis independent of the choice of the reference point/?.

We will prove that df is surjective and is an isometry. First we prove the

surjectivity.For any weN(oo), let (7 be a ray emanating from q :=/(/?) to w.

Then for any f^O there is a point xt eMwith d{f(xt),<7(f))^ A . Then it is

easily checked that for s > t> 0

＼d(p,x,) + d(x,,xs) - d(p, xs)|̂ 7A,

which implies, similarly to the argument above, thatthe geodesic segment from p

to x converges to a ray r as t―>°°.It suffices to show that the image of the

asymptotic class of 7 is w = cr(°°).

For any x, there exists t'^ 0 satisfying d(x,,7(O) = ^(*/>7)- Then, applying

Lemma 1 and Toponogov's comparison Theorem for a geodesic triangle

A(p,xnxx)(s> t), we have that the distance between xt and the ray emanating

from p through xs is not greater than ^＼4Alr , where /,:=d(p,xt). Since these

rays converge to the ray 7 , it follows

d(xt,y{t'))^^UMt.

Note that t'^lt^t + 2A. Hence

d(o(t),f{y{t')))̂ d(a(t),f(x,))+ d(f(x,), f(v(f')))̂ -Jl4A(/ + 2A) + 2A.
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Let o be a ray emanating from q determined by /(/), namely <7(°°)= df(Y(°°))
■

Then it also holds that

d(f(Y(t')＼G)^J6Am.,

where m,

Hence

:= d(a. f(r(t')))^t' + A^t + 3A. Therefore we have

d(a(t), d) ^ d(o{t), f(r(t'))) + d(f(y(t')), g)

^ Vl4A(r + 2A) + V6A(f + 3A) + 2A .

limd(a(tia1 = (j
;->oo t

which means that a = a, thatis, w = (7(°°).

It remains to show that df is an isometry. Let z,,z,eM(°o) be arbitrarily

fixed points.Denote by 7, a ray emanating from p to z,-and by aj that from q to

df(Zj)(i= 1,2),respectively. Then, for any s^O,

dN(cj,(s),a2 (s))- dM (7,(s),7,(s))＼

=g|^ (ex,(s＼a2(s))- dN (/(7,(s),f(y2 (s)))＼

+ ＼dN(/(7,(s)＼f(y2 (s)))-dM{yx (s),72(s))＼

^ dN (cj,(5), f{yx{s)))+ dN (cr2(5),/(72(s)))+ A

=§I {^ (CT,-(S),O,≪)) + ^yv(<7,(O. /(//(*≫)1+ A

^ 3A + 4^]6A(s + A) ,

where a^s') is the foot of a perpendicular from f{j,{s)) to a ray cr. Note that

r ―A /fiA/f-l-A"!< e'< c-UA Hpnrp

dN(a

s

dM(7i(s),72(s))

s
0

which means that /(cr,(≪), a2 (≪)) = /(7l (≪), 7l (°°)),hence Td(cr, (≪,),cr2(≪)) = Td

(7,(00),72(00)) I

§3. Proof of'Theorem 2

In this section, we shallintroduce the condition (E) and prove Theorem 2.

Let M be a Hadamard manifold and p e M be an arbitrarilyfixed point. From

now on, we denote a ray emanating from p&M to z e M(≪>) by y_. For

z{,z2£M(m),Z| ^ z2 and ?>0, we define two continuous maps al(zl,z2) and at

rpsnp.rtivp.lvhv
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a.{Z＼,z2):=

d(y: (t),y.Jt))

a, := inf

t-l(zvz2)

a.{zvz2).

Since M is a Hadamard manifold,it holds that 0< at{zvz2)= 1･ Furthermore

at{zvz2) is monotone non-decreasing with respect to variable t and converges to 1

as t―>°°.It then follows that 0 ^ at ^ 1 and a, is monotone non-decreasing.

Hence there is a constant a := lim,^ a, with 0 ^ a ^ 1. Note that this constant a

is independent of the choice of p, namely, a is a scalar expressing some global

property of M and we call a the E-constant.

Definition. If the E-constant a is equal to 1, we say that M satisfiesthe

condition (E).

The condition (E) implies that the expanding growth rate of any radial

direction is similar each other to some degree. For example, if M is a Euclidean

space then a = 1, and if M is a Hyperbolic space then a = 0. In the case that

M = RxH", it also follows that a = 0, but with respect to the points at infinity

S,NeR(°°) we have al{S,z)= al(N,z) = 1 for any ?>0 and zeM(°o). The next

proposition is useful to check the property concerning E-constant, which implies

thatif the sphere topology of an ideal boundary does not coincide with the Tits-

topology, then the E-constant is equal to 0.

PROPOSITION. Let M be a Hadamard manifold with a positive E-constant.

Then the ideal boundary (M(°°),Td)of M is compact.

Proof. For a fixed point peM, let S, be a geodesic sphere around p of

radius t. We define the natural bijection q>t:(St,dM It) ―>(M(°°),/)by (p,(j(t)

):= y(oo), where 7 is a ray emanating from p. Let a be the positive E-constant of

M. Then there is a large number 7 such that for any t > T and for any two

distinctpoints z,,z,gM(<≫)

1^
dM(rZl(t),r:jt))

t-Kz{,z2)

a

2

That is, for any points x,y e S,,it holds that /(<p,(x),<p,(y))d̂M(x,y)lt^{al2)1

((pt(x),(pl(y)).This means that <p,is a bi-Lipschitz homeomorphism. Hence the

compactness of S, implies that so are (M(°o),/)and (M(°°),Td).
□

Now we shallprepare some notationsand a lemma, and prove Theorem 2
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For any distinct points z,,z2 e M (<≫) and 5,f ^ 0, we define

y.. := 2 arcsin ――――,
H.2 2

e*M≫

~> 1

-d(Y 7 At))2

1st

]

･
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with a conditionthat O^O^tt. It is clear that lim,.,_>,,6 (s,t)= 6 and, by

Toponogov's comparison theorem, that 0(5,,?,) ^ d.r^(s2,t2)provided 5,^ s2

and r,^r,.

LEMMA 2. Let M be a Hadamard manifold satisfying the condition (E).

Then for any small £> 0 there exists a large number Te such thatfor s,t>Te and

for two distinctpoints z,,z2 e M(<*>)

rf(yg,(j),y=2(O)

d((s,zl),(t,z,))> £'

where ^L(0, z,),(?,^)) := s2 +f -2stcos0

Proof. Since M satisfiesthe condition (E), for any e>0 there is a large

number TP such thatfor any t>T. and for two distinctpoints z,,z2e M{°°)

d(yZi(t),y_2(t))

t-l(zx,z2)
>!-£.

Furthermore, since M is a Hadamard manifold, for s^t>Te' and z, ^ z2 e M(°°)

1 - cos 0. ,(j,0

l~2

l-cos0

1-COS0 (t,t)

1 - cos 6,
^

_fd(7zi(t),rZ2(t))＼2

{ t-l(Zvz2) )

>(l-e)2.

Hence it follows that cosdZi.,(s,t)-(l- e)2 cos9,i:i<l-(l-e)2. Therefore we

>

d2

(1

(1

(yZ](s),yJt))-(l-e)2dl((s,zMt,z2))

- (1 - ef )(s2 + r) - 2st{ cos 6.^ (s,t)-(l- ef cos d.^}

-a-e)2)(s-t)2^0.
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which completes the proof.
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LJ

Now we are in a position to prove Theorem 2.

Proof of Theorem 2. Let y/ be an isometry from M(<x>)to N(°o).Then we

define a map f :M ―>N as follows.

Fix two points peM and ^eiV arbitrarily.For xg M(x* p), let t = d(p,x)

and let z e M(°°)be the asymptotic class of a ray emanating from p through x.

Then we define

where Jv(z) denotes a ray emanating from q to t//(z),and f(p) := g .

Now we shall see that/is a desired rough isometry. More precisely, for any

sufficientsmall £> 0 there are constants T£M> 0 such that (1-e) < a^(z{,z2)= 1

for any t > T£Mand z, ^ z2 e M(<≫), and 7^ > 0 satisfying the same condition for

N. Let Te := max {T£M,T£N}.Then f is a ((1-e)'1 4Te)-rough isometry.

In fact,since fis suriective,it sufficesto check the following inequality:

(*) (1 - e)d(x, y) - 4Te ^ d(f(x), f(y)) ^

<

d

d(x,y) + 4T,
1

(1-e)

for all x,yeM.

We express x,yeM as x = yv(s),y = 7,,(0 e M(v,w e Sp,s,t^ 0), where 5p

denotes a unit tangent sphere at p. If v = w then d(x,y) = d(f(x),f(y)) = ＼s-t＼

namely the inequality (*) holds. So we suppose v ^ w. In the case max(s,r) ^ Te

itholds that

d(x,y)-2T£^0^d(f(x),f(y))^2T£.

Next we consider the case min (s,t)= Te < max(s,t). We may suppose t =Te < s .

Let x' := yv(t).It is then verified that

d(f(x),f(y))^d(f(x＼f(x')) + d(f(x'),f(y))^d(x,y) + 2Te,

and conversely

d(f(x), /(y)) ^ rf(/(jf),/(*')) - rf(/(jf'),/(J)) ^ d(x, y) - 4T£.

In the case TE < min (s,t),let z, = y.C00) and z2 = 7H.(°°)･ By Lemma 2 it holds

d(f(x),f(y))_d(7viZi)(s),r＼{Z2)(t))

d(x,y) d(y.(s＼y,Jt)y

z,)),(f,y(z2)))
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_<U(j,z,),(f,z2))
c

d(y:i(s),y (t))

d(f{x＼ f{y))
^

d(y ,(s), y (t))

d(x,y)

which completes the proof
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