# THE HOCHSCHILD COCYCLE CORRESPONDING TO A LONG EXACT SEQUENCE 

Dedicated to Hiroyuki Tachikawa on his 60th birthday

## By

Vlastimil Dlab and Claus Michael Ringel

1. Let $k$ be a field, and $A$ an associative $k$-algebra with 1 . Let $M, N$ be right $A$-modules. We denote by $H^{\cdot}$ the Hochschild cohomology of $A$. It is well-known that there is a natural isomorphism

$$
\eta_{M N}: \operatorname{Ext}_{A}^{t}(M, N) \longrightarrow H^{t}\left(A, \operatorname{Hom}_{k}(M, N)\right)
$$

see Cartan-Eilenberg [CE], Corollary IX. 4.4. For $t \geqq 1$, the elements of $\operatorname{Ext}_{A}^{t}(M, N)$ may be considered as equivalence classes of long exact sequences, see Mac Lane [M], chapter III. Let

$$
E=\left(0 \longleftarrow M \stackrel{g_{0}}{\longleftarrow} Y_{1} \stackrel{g_{1}}{\longleftarrow} Y_{2} \longleftarrow \cdots \longleftarrow Y_{t} \stackrel{g_{t}}{\leftarrow} N \longleftarrow 0\right)
$$

be an exact sequence. We want to derive a recipe for obtaining a corresponding cocycle $A^{\otimes(t+2)} \rightarrow \operatorname{Hom}_{k}(M, N)$.

For $0 \leqq i \leqq t+1$, let $Z_{i}$ be right $A$-modules, and for $0 \leqq i \leqq t$, let $\beta_{i}: Z_{i} \rightarrow Z_{i+1}$ be $k$-linear maps. With $\beta=\left(\beta_{0}, \cdots, \beta_{t}\right)$ we associate a map

$$
\Omega_{\beta}: A^{\otimes(t+2)} \longrightarrow \operatorname{Hom}_{k}\left(Z_{0}, Z_{t+1}\right)
$$

defined by

$$
\left(a_{0}, \cdots, a_{t+1}\right) \Omega_{\beta}=\bar{a}_{0} \beta_{0} \bar{a}_{1} \beta_{1} \cdots \bar{a}_{t} \beta_{t} \bar{a}_{t+1}
$$

for $a_{0}, \cdots, a_{t+1} \in A$, where $\bar{a}_{i}$ denotes the scalar multiplication by $a_{i}$ (on $Z_{i}$ ); note that all maps will be written on the right of the argument, thus the composition of $\beta_{0}: Z_{0} \rightarrow Z_{1}$, and $\beta_{1}: Z_{1} \rightarrow Z_{2}$ is denoted by $\beta_{0} \beta_{1}$.

Given the exact sequence $E$ exhibited above, it clearly splits as a sequence of $k$-spaces, thus there are $k$-linear maps

$$
M \xrightarrow{\gamma_{0}} Y_{1} \xrightarrow{\gamma_{1}} Y_{2} \longrightarrow \cdots \longrightarrow Y_{t} \xrightarrow{\gamma_{t}} N
$$

such that

$$
\gamma_{i-1} \gamma_{i}=0, \quad g_{i-1} \gamma_{i-1}+\gamma_{i} g_{i}=1_{Y_{i}}, \quad \text { for } 1 \leqq i \leqq t
$$

Received December 4, 1989.
and

$$
\gamma_{0} g_{0}=1_{M}, \quad g_{t} \gamma_{t}=1_{N},
$$

(see section 2).
Theorem. The map $\Omega_{\gamma}: A^{\otimes(t+2)} \rightarrow \operatorname{Hom}_{k}(M, N)$ is a cocycle, and the cohomology classes $\left[\Omega_{\gamma}\right]$ and $\eta([E])$ in $H^{t}\left(A, \operatorname{Hom}_{k}(M, N)\right)$ are equal up to sign.

One reason for our interest in this problem is the following: Consider the case $t=2$. Given any bimodule ${ }_{A} T_{A}$, the elements of $H^{2}(A, T)$ index the various "Hochschild extensions" $\tilde{A}$ of $A$ by $T$ (here, $\tilde{A}$ is a $k$-algebra with a square zero ideal $I$ such that $\tilde{A} / I=A$, and such that $I$, as an $A-A$-bimodule, is isomorphic to $T$; note that the multiplication of $\tilde{A}$ can be recovered from $A$ and $T$ using the corresponding 2-cocycle, see [H] or [CE], XIV. 2). There is a recursive construction for quasi-hereditary algebras due to Parshall and Scott ([PS], Theorem 4.6) which uses Hochschild extensions of quasi-hereditary algebras $A$ by bimodules of the form $\operatorname{Hom}_{k}(M, N)$, so we have to deal with 2cocycles $A^{\otimes(4)} \rightarrow \operatorname{Hom}_{k}(M, N)$. Our presentation of such 2 -cocycles using long exact sequences should help to understand these algebras. Also, we remark that the Hochschild cohomology groups with values in $\operatorname{Hom}_{k}(D A, A)$, where $D A=\operatorname{Hom}_{k}(A, k)$, play a prominent role in Tachikawa's discussion of the Nakayama conjecture [T].
2. The splitting for $E$ over $k$. In order to work with the sequence $E$, it will be convenient to use the notation: $Y_{-1}=0, Y_{0}=M, Y_{t+1}=N, Y_{t+2}=0$, and to deal also with the zero maps $g_{-1}: Y_{0} \rightarrow Y_{-1}, \gamma_{-1}: Y_{-1} \rightarrow Y_{0}, g_{t+1}: Y_{t+2} \rightarrow Y_{t+1}$, $\gamma_{t+1}: Y_{t+1} \rightarrow Y_{t+2}$; so that the conditions mentioned above can be rewritten in the form

$$
\gamma_{i-1} \gamma_{i}=0, \quad g_{i-1} \gamma_{i-1}+\gamma_{i} g_{i}=1_{Y_{i}}, \quad \text { for } 0 \leqq i \leqq t+1
$$

Let $X_{i}$ be the image of $g_{i}$, thus we have short exact sequences

$$
0 \longleftarrow X_{i-1} \stackrel{h_{i-1}}{\longleftarrow} Y_{i} \stackrel{f_{i}}{\longleftarrow} X_{i} \longleftarrow 0
$$

for $1 \leqq i \leqq t$, with $g_{0}=h_{0}, g_{i}=h_{i} f_{i}$ for $1 \leqq i \leqq t-1$, and $g_{t}=f_{t}$. These sequences split over $k$, thus we obtain $k$-linear maps $\varphi_{i}: Y_{i} \rightarrow X_{i}, \eta_{i-1}: X_{i-1} \rightarrow Y_{i}$ such that $\eta_{i-1} \varphi_{i}=0, f_{i} \varphi_{i}=1_{X_{i}}, \quad \eta_{i-1} h_{i-1}=1_{X_{i-1}}$ and $h_{i-1} \eta_{i-1}+\varphi_{i} f_{i}=1_{Y_{i}}$ for all $i$. Now, take $\gamma_{i}=\varphi_{i} \eta_{i}: Y_{i} \rightarrow Y_{i+1}$, in this way we obtain a splitting of $E$ over $k$.
3. Preparation for the proof. Let $A^{e}=A^{o p} \underset{k}{\otimes} A$ be the enveloping algebra
of $A$, where $A^{o p}$ is the opposite algebra of $A$. The $A-A$-bimodules are just the (right) $A^{e}$-modules, in particular, $A$ itself is in a canonical way an $A^{e}$ module. For $n \geqq 0$, let $S_{n}=A^{\otimes(n+2)}$, and let $\nabla_{n}: S_{n+1} \rightarrow S_{n}$ be defined by

$$
\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n+2}\right) \nabla_{n}=\sum_{i=0}^{n+1}(-1)^{i} a_{0} \otimes \cdots \otimes\left(a_{i} a_{i+1}\right) \otimes \cdots \otimes a_{n+2}
$$

Also, let $\nabla_{-1}: S_{0} \rightarrow A$ be defined by

$$
\left(a_{0} \otimes a_{1}\right) \nabla_{-1}=a_{0} a_{1}
$$

The $S_{n}$ are $A-A$-bimodules, or, equivalently $A^{e}$-modules, the scalar multiplication of $a_{0} \otimes a_{1} \otimes \cdots a_{n+1} \in S_{n}$ by $a \otimes a^{\prime} \in A^{\circ p} \otimes_{k} A=A^{e}$ yields $\left(a a_{0}\right) \otimes a_{1} \otimes \cdots \otimes\left(a_{n+1} a^{\prime}\right)$. Note that for all $n \geqq-1$, the maps $\nabla_{i}$ are $A^{e}$-linear, in fact

$$
A \stackrel{\nabla_{-1}}{\longleftarrow} S_{0} \longleftarrow \nabla_{0} S_{1} \longleftarrow \cdots
$$

is a projective resolution of $A$ as a right $A^{e}$-module, it is called the standard resolution of $A$, see [CE], IX. 6. We can use this resolution in order to calculate $H^{t}\left(A, \operatorname{Hom}_{k}(M, N)\right)=\operatorname{Ext}_{A \rho}^{t}\left(A, \operatorname{Hom}_{k}(M, N)\right)$.
4. Besides $\gamma=\left(\gamma_{0}, \cdots, \gamma_{t}\right)$, we also will need for $0 \leqq r \leqq t$, the sequences $\gamma(r)$ $=\left(\gamma_{0}, \cdots, \gamma_{r}\right)$, so that $\gamma(0)=\left(\gamma_{0}\right), \gamma(t)=\gamma$. According to section 1, there is defined $\Omega_{\gamma(r)}: S_{\tau} \rightarrow \operatorname{Hom}_{k}\left(Y_{0}, Y_{r+1}\right)$. In addition, by abuse of language, we also define $\Omega_{\gamma(-1)}: A \rightarrow \operatorname{Hom}_{k}\left(Y_{0}, Y_{0}\right)$ by $a \Omega_{\gamma(-1)}=\bar{a}$, for $a \in A$.

Lemma. For $0 \leqq r \leqq t$, we have $\nabla_{r-1} \Omega_{\gamma(r-1)}=(-1)^{r} \Omega_{\gamma(r)} \operatorname{Hom}\left(1, g_{r}\right)$.
Proof. We introduce the following notation: let $\sigma_{i}=\gamma_{i} \bar{a}_{i}, \tau_{i}=\bar{a}_{i} \gamma_{i}: Y_{i} \rightarrow Y_{i+1}$ for $0 \leqq i \leqq t-1$, and let $\sigma_{i j}=\sigma_{i} \sigma_{i+1} \cdots \sigma_{j}, \tau_{i j}=\tau_{i} \tau_{i+1} \cdots \tau_{j}$ for $0 \leqq i \leqq j \leqq t-1$; by abuse of language, let $\sigma_{i+1, i}=1_{Y_{i}}$, and $\tau_{i+1, i}=1_{Y_{i+1}}$. Recall that

$$
\left(a_{-1} \otimes \cdots \otimes a_{r}\right) \nabla_{r-1}=\sum_{i=0}^{r}(-1)^{i} a_{-1} \otimes \cdots \otimes\left(a_{i-1} a_{i}\right) \otimes \cdots \otimes a_{r}
$$

thus

$$
\begin{aligned}
\left(a_{-1} \otimes \cdots \otimes a_{r}\right) \nabla_{r-1} \Omega_{\gamma(r-1)} & =\sum_{i=0}^{r}(-1)^{i} \bar{a}_{-1} \sigma_{0, i-1} \tau_{i, r-1} \bar{a}_{r} \\
& =\sum_{i=0}^{r}(-1)^{i} \bar{a}_{-1} \sigma_{0, i-1}\left(g_{i-1} \gamma_{i-1}+\gamma_{i} g_{i}\right) \tau_{i, r-1} \bar{a}_{r}
\end{aligned}
$$

where we have inserted $1_{Y_{i}}=g_{i-1} \gamma_{i-1}+\gamma_{i} g_{i}$. Note that for $0 \leqq i \leqq r-1$, we have

$$
\begin{aligned}
\sigma_{0, i-1} \gamma_{i} g_{i} \tau_{i, r-1} & =\sigma_{0, i-1} \gamma_{i} g_{i} \bar{a}_{i} \gamma_{i} \tau_{i+1, r-1} \\
& =\sigma_{0, i-1} \gamma_{i} \bar{a}_{i} g_{i} \gamma_{i} \tau_{i+1, r-1} \\
& =\sigma_{0, i} g_{i} \gamma_{i} \tau_{i+1, r-1},
\end{aligned}
$$

since $g_{i}$ is $A$-linear. As a consequence, the last term of the summand with index $i$ and the first term of the summand with index $i+1$ are equal up to sign, so they cancel. In addition, the first term of the summand with index $i=0$ involves $g_{-1}=0$, thus vanishes. It remains

$$
\begin{aligned}
\left(a_{-1} \otimes \cdots \otimes a_{r}\right) \nabla_{r-1} \Omega_{\gamma(r-1)} & =(-1)^{r} \bar{a}_{-1} \sigma_{0, r-1} \gamma_{r} g_{r} \bar{a}_{r} \\
& =(-1)^{r} \bar{a}_{-1} \sigma_{0}, r g_{r} \\
& =(-1)^{r}\left(a_{-1} \otimes \cdots \otimes a_{r}\right) \Omega_{\gamma(r)}-g_{r} \\
& =(-1)^{r}\left(a_{-1} \otimes \cdots \otimes a_{r}\right) \Omega_{\gamma(r)} \operatorname{Hom}\left(1, g_{r}\right) .
\end{aligned}
$$

This finishes the proof.
5. An injective coresolution of the $A-A$-bimodule $\operatorname{Hom}_{k}(M, N)$. We choose a projective resolution

$$
0 \longleftarrow M \lessdot \stackrel{p_{-1}}{\longleftarrow} P_{0} \longleftarrow p_{1} \longleftarrow \ldots
$$

of the $A$-module $M$, and an injective coresolution

$$
0 \longrightarrow N \xrightarrow{q^{-1}} Q^{0} \xrightarrow{q^{0}} Q^{1} \longrightarrow \cdots
$$

of the $A$-module $N$. For $t \geqq 0$, let $L^{t}=\bigoplus_{i=0}^{t} \operatorname{Hom}_{k}\left(P_{i}, Q^{t-i}\right)$, this is an $A-A$ bimodule, or, equivalently a right $A^{e}$-module. For $t \geqq 0$, define an $A^{e}$-linear map $\Delta^{t}: L^{t} \rightarrow L^{t+1}$ by

$$
\left(\varphi_{0}, \cdots, \varphi_{t}\right) \Delta^{t}=\left(\varphi_{0} q^{t},(-1)^{t+1} p_{0} \varphi_{0}+\varphi_{1} q^{t-1}, \cdots,(-1)^{t+1} p_{t-1} \varphi_{t-1}+\varphi_{t} q^{0},(-1)^{t+1} p_{t} \varphi_{t}\right),
$$

where $\varphi_{i} \in \operatorname{Hom}_{k}\left(P_{i}, Q^{t-i}\right)$, and define $\Delta^{-1}: \operatorname{Hom}_{k}(M, N) \rightarrow L^{0}$ by $\Delta^{-1}=\operatorname{Hom}\left(p_{-1}, q^{-1}\right)$. We obtain a sequence

$$
0 \longrightarrow \operatorname{Hom}_{k}(M, N) \xrightarrow{\Delta^{-1}} L^{0} \xrightarrow{\Delta^{0}} L^{1} \longrightarrow \cdots,
$$

which is an injective coresolution, see [CE], IX, Cor. 2.7a.
In order to relate the given sequence $E$ with the injective coresolution $Q^{\cdot}=$ $\left(Q^{\cdot}, q^{\cdot}\right)$, we define $u_{-1}=1_{N}$, and, inductively, we find $u_{i}: Y_{t-i} \rightarrow Q^{i}$ such that $g_{t-i} u_{i}=u_{i-1} q^{i-1}$, for $0 \leqq i \leqq t$.

We are going to reformulate the previous lemma using the maps $\Delta^{i}$ and $u_{i}$. For $0 \leqq r \leqq t-1$, let

$$
\Omega_{r}^{\prime}: S_{r} \longrightarrow L^{t-r-1}
$$

be defined by

$$
\left(a_{0} \otimes \cdots \otimes a_{r+1}\right) \Omega_{r}^{\prime}=\left(p _ { - 1 } \cdot \left(a_{0} \otimes \cdots \otimes a_{r+1}\left(\Omega_{\gamma(r)} \cdot u_{t-r-1}, 0, \cdots, 0\right),\right.\right.
$$

and similarly, let

$$
\Omega_{-1}^{\prime}: A \longrightarrow L^{t}
$$

be defined by

$$
\text { (a) } \Omega_{-1}^{\prime}=\left(p_{-1} \bar{a} u_{t}, 0, \cdots, 0\right) .
$$

Proposition. For $0 \leqq r \leqq t-1$, we have $\nabla_{r-1} \Omega_{r-1}^{\prime}=(-1)^{r} \Omega_{r}^{\prime} \Delta^{t-r-1}$. For $r=t$, we have $\nabla_{t-1} \Omega_{r-1}^{\prime}=(-1)^{t} \Omega_{\gamma} \Delta^{-1}$.

Proof. For $0 \leqq r \leqq t$, and $a_{0}, \cdots, a_{r+1} \in A$, we have

$$
\begin{aligned}
\left(a_{0} \otimes \cdots\right. & \left.\otimes a_{r+1}\right) \nabla_{r-1} \Omega_{r-1}^{\prime}=\left(p_{-1}\left(a_{0} \otimes \cdots \otimes a_{r+1}\right) \nabla_{r-1} \Omega_{\gamma(r-1)} u_{t-r}, 0, \cdots, 0\right) \\
& =(-1)^{r}\left(p_{-1}\left(a_{0} \otimes \cdots \otimes a_{r+1}\right) \Omega_{\gamma(r)} g_{r} u_{t-r}, 0^{\prime}, \cdots, 0\right) \\
& =(-1)^{r}\left(p_{-1}\left(a_{0} \otimes \cdots \otimes a_{r+1}\right) \Omega_{\gamma(r)} u_{t-r-1} q^{t-r-1}, 0, \cdots, 0\right)
\end{aligned}
$$

using the definition of $\Omega_{r-1}^{\prime}$, the lemma, and the defining condition for $u_{t-r}$. On the other hand, for $0 \leqq r \leqq t-1$, we have

$$
\begin{aligned}
\left(a_{0} \otimes \cdots \otimes a_{r+1}\right) \Omega_{r}^{\prime} \Delta^{t-r-1} & =\left(p_{-1}\left(a_{0} \otimes \cdots \otimes a_{r+1}\right) \Omega_{r} u_{t-r-1}, 0, \cdots, 0\right) \Delta^{t-r-1} \\
& =\left(p_{-1}\left(a_{0} \otimes \cdots \otimes a_{r+1}\right) \Omega_{r} u_{t-r-1} q^{t-r-1}, 0, \cdots, 0\right)
\end{aligned}
$$

using the definitions of $\Omega_{r}^{\prime}, \Delta^{t-r-1}$, and the fact that $p_{0} p_{-1}=0$. Similarly, for $r=t$, we have

$$
\begin{aligned}
\left(a_{0} \otimes \cdots \otimes a_{t+1}\right) \Omega_{r} \Delta^{-1} & =p_{-1}\left(a_{0} \otimes \cdots \otimes a_{t+1}\right) \Omega_{r} q^{-1} \\
& =p_{-1}\left(a_{0} \otimes \cdots \otimes a_{t+1}\right) \Omega_{\gamma(t)} u_{-1} q^{-1}
\end{aligned}
$$

since $\Omega_{\gamma}=\Omega_{\gamma(t)}$ and $u_{-1}=1$.
6. Some homological algebra. We will need some basic result of homological algebra which we want to review. We have chosen already a projective resolution of $M$, and an injective coresolution of $N$. In order to calculate $\operatorname{Ext}^{t}(M, N)$ we may use one of these sequences, or else the double complex $\operatorname{Hom}_{A}\left(P_{i}, Q^{j}\right)$. So let $R^{t}=\oplus_{i=0}^{t} \operatorname{Hom}_{A}\left(P_{i}, Q^{t-i}\right)$, this is a subset of $L^{t}=\stackrel{\dot{\oplus}}{i=0} \operatorname{Hom}_{k}\left(P_{i}, Q^{t-i}\right)$, and let $\delta^{t}: R^{t} \rightarrow R^{t+1}$ be the restriction of $\Delta^{t}$ to $R^{t}$, similarly, let $\delta^{-1}: \operatorname{Hom}_{A}(M, N) \rightarrow L^{0}$ be the restriction of $\Delta^{-1}=\operatorname{Hom}\left(p_{-1}, q^{-1}\right)$ to $\operatorname{Hom}_{A}(M, N)$. So we obtain a complex

$$
R=\left(R^{0} \xrightarrow{\delta^{0}} R^{1} \xrightarrow{\delta^{1}} R^{2} \longrightarrow \cdots\right),
$$

which we want to compare with the complexes

$$
\operatorname{Hom}_{A}(P ., N) \text { and } \operatorname{Hom}_{A}(M, Q)
$$

Note that there are maps

$$
\begin{aligned}
& \operatorname{Hom}\left(1, q^{-1}\right): \operatorname{Hom}_{A}(P ., N) \longrightarrow R^{\cdot} \\
& \operatorname{Hom}\left(p_{-1}, 1\right): \operatorname{Hom}_{A}\left(M, Q^{\cdot}\right) \longrightarrow R^{\cdot}
\end{aligned}
$$

and they are quasi-isomorphisms: they induce isomorphisms when passing to the cohomology ([B], §5.2).

Consider now the given exact sequence $E$. Its equivalence class [ $E$ ] in $\operatorname{Ext}_{A}^{t}(M, N)=H^{t}\left(\operatorname{Hom}_{A}(P ., N)\right)$ is given by the cocylce $u_{t}: M \rightarrow Q_{t}$. Under the map $\operatorname{Hom}\left(p_{-1}, 1\right): \operatorname{Hom}_{A}\left(M, Q^{*}\right) \rightarrow R$, the cocyle $u_{t}$ is mapped onto the cocycle $\left(p_{-1} u_{t}, 0, \cdots, 0\right) \in \underset{i=0}{\oplus} \operatorname{Hom}_{A}\left(P_{i}, Q^{t-i}\right)=R^{t}$.
7. Proof of the theorem. We apply the previous considerations to the ring $A^{e}$ (instead of $A$ ), and the $A^{e}$-modules $A$ and $\operatorname{Hom}_{k}(M, N)$. For $A$, we use the standard resolution $S .=(S ., \nabla$.$) , for \operatorname{Hom}_{k}(M, N)$, we use the injective coresolution $L^{\cdot}=\left(L^{\cdot}, \Delta^{\cdot}\right)$. We form $C^{t}=\oplus_{i=0}^{t} \operatorname{Hom}_{A e}\left(S_{i}, L^{t-i}\right)$, with differential $D^{t}: C^{t} \rightarrow$ $C^{t+1}$ given by

$$
\begin{aligned}
\left(\Phi_{0}, \cdots, \Phi_{t}\right) D^{t} & =\left(\Phi_{0} \Delta^{t},(-1)^{t+1} \nabla_{0} \Phi_{0}+\Phi_{1} \Delta^{t-1}, \cdots\right. \\
& \left.(-1)^{t+1} \nabla_{t-1} \Phi_{t-1}+\Phi_{t} \Delta^{0},(-1)^{t+1} \nabla_{t} \Phi_{t}\right),
\end{aligned}
$$

for $\Phi_{i} \in \operatorname{Hom}_{A e}\left(S_{i}, L^{t-i}\right)$. The maps

$$
\operatorname{Hom}\left(1, \Delta^{-1}\right): \operatorname{Hom}_{A e}\left(S ., \operatorname{Hom}_{k}(M, N)\right) \rightarrow C .
$$

and

$$
\operatorname{Hom}\left(\nabla_{-1}, 1\right): \operatorname{Hom}_{A e}\left(A, L^{\cdot}\right) \longrightarrow C
$$

are quasi-isomorphisms. Clearly, we have an isomorphism

$$
\rho: \operatorname{Hom}_{A e}\left(A, L^{\cdot}\right) \longrightarrow R^{\cdot}
$$

since for $A$-modules $X, Y$, the bimodule maps $\Sigma: A \rightarrow \operatorname{Hom}_{k}(X, Y)$ correspond bijectively to the elements of $\operatorname{Hom}_{A}(X, Y)$, with $(\Sigma) \rho=(1) \Sigma$.

It remains to chase elements via the various quasi-isomorphisms

$$
\operatorname{Hom}_{A e}\left(S ., \operatorname{Hom}_{k}(M, N)\right) \xrightarrow{\operatorname{Hom}\left(1, \Delta^{-1}\right)} C \cdot \stackrel{\operatorname{Hom}\left(\nabla_{-1}, L\right)}{\longleftrightarrow} \operatorname{Hom}_{A e}\left(A, L^{\cdot}\right),
$$

and

$$
\operatorname{Hom}_{A}(M, Q \cdot) \xrightarrow{\operatorname{Hom}\left(p_{-1}, 1\right)} R \cong \cong \operatorname{Hom}_{A e}\left(A, L^{\cdot}\right) .
$$

The last map $\operatorname{Hom}\left(p_{-1}, 1\right)$ sends the cocycle $u_{t}$ onto the element ( $p_{-1} u_{t}, 0, \cdots, 0$ ) $\in R^{t}$, thus to $\Omega_{-1}^{\prime}$ in $\operatorname{Hom}_{A e}\left(A, L^{t}\right)$. So it remains to consider the elements

$$
\Omega_{r} \Delta^{-1}=\left(\Omega_{r}\right) \operatorname{Hom}\left(1, \Delta^{-1}\right) \text { and } \nabla_{-1} \Omega_{-1}^{\prime}=\left(\Omega_{-1}^{\prime}\right) \operatorname{Hom}\left(\nabla_{-1}, 1\right)
$$

in $C^{t}$. Let $\varepsilon_{2 i}=(-1)^{i}$, and $\varepsilon_{2 i+1}=(-1)^{t+i}$, thus $\varepsilon_{j}=(-1)^{t+j+1} \varepsilon_{j-1}$, for all $j$. Let $\Phi_{i}=\varepsilon_{i} \Omega_{i}^{\prime}$ for $0 \leqq i \leqq t-1$, and $\left(\Psi_{0}, \cdots, \Psi_{t}\right):=\left(\Phi_{0}, \cdots, \Phi_{t-1}\right) D^{t-1}$. Then

$$
\begin{aligned}
& \Psi_{0}=\Phi_{0} \Delta^{t-1}=\varepsilon_{0} \Omega_{0}^{\prime} \Delta^{t-1}=\nabla_{-1} \Omega_{-1}^{\prime} \\
& \Psi_{t}=\varepsilon_{t} \nabla_{t-1} \Phi_{t-1}=\varepsilon_{t}(-1)^{t} \Omega_{\gamma} \Delta^{-1}
\end{aligned}
$$

whereas, for $1 \leqq r \leqq t-1$,

$$
\begin{aligned}
\Psi_{r} & =(-1)^{t} \nabla_{r-1} \Phi_{r-1}+\Phi_{r} \Delta^{t-1-\tau} \\
& =(-1)^{t} \varepsilon_{r-1} \nabla_{r-1} \Omega_{r-1}^{\prime}+\varepsilon_{r} \Omega_{r}^{\prime} \Delta^{t-1-r} \\
& =(-1)^{t} \varepsilon_{r-1}(-1)^{r} \Omega_{t}^{\prime} \Delta^{t-r-1}+(-1)^{t+r+1} \varepsilon_{r-1} \Omega_{r}^{\prime} \Delta^{t-1-r}=0,
\end{aligned}
$$

always using the proposition. This shows that

$$
\left(\nabla_{-1} \Omega_{-1}^{\prime}, 0, \cdots, 0,(-1)^{t} \varepsilon_{t} \Omega_{\gamma} \Delta^{-1}\right)=\left(\Phi_{0}, \cdots, \Phi_{t-1}\right) D^{t-1}
$$

is a coboundary in $C^{\cdot}$, thus $\nabla_{-1} \Omega_{-1}^{\prime}$ and $(-1)^{t+1} \varepsilon_{t} \Omega_{\gamma} \Delta^{-1}$ yield the same cohomology class in $H^{t}\left(C^{\cdot}\right)$.

Let us summerize : the composition of $H^{t}\left(\operatorname{Hom}\left(p_{-1}, 1\right)\right), H^{t}\left(p^{-1}\right), H^{t}\left(\operatorname{Hom}\left(\nabla_{-1,1}\right)\right)$ and $H^{t}\left(\operatorname{Ham}\left(1, \Delta^{-1}\right)\right)^{-1}$ yields a natural isomorphism

$$
\eta_{M N}: \operatorname{Ext}_{A}^{t}(M, N) \longrightarrow H^{t}\left(A, \operatorname{Hom}_{k}(M, N)\right)
$$

and $\eta_{M N}([E])=(-1)^{t+1} \varepsilon_{t}\left[\Omega_{\gamma}\right]$, thus $\eta_{M N}([E])$ and $\left[\Omega_{r}\right]$ are equal up to sign. This completes the proof.

REMARK. As the proof shows, the precise relation (under the given identification of $H^{t}\left(A, \operatorname{Hom}_{k}(M, N)\right)$ and $\left.\operatorname{Ext}_{A}^{t}(M, N)\right)$ is

$$
\eta_{M N}([E])=(-1)^{i+1}\left[\Omega_{r}\right],
$$

where $i$ is the largest integer with $2 i \leqq t$ (for $t=2 i$, we have the $\operatorname{sign}(-1)^{t+1} \varepsilon_{2 i}$ $=(-1)^{t+1+i}=(-1)^{i+1}$, for $t=2 i+1$, we have $\left.(-1)^{t+1} \varepsilon_{2 i+1}=(-1)^{t+1}(-1)^{t+i}=(-1)^{i+1}\right)$.

## References

[B] Bourbaki, N., Algèbre, Ch. 10: Algèbre homologique, Masson. Paris 1980.
[CE] Cartan, H. and Eilenberg, S., Homological algebra, Princeton Math. Series. Princeton 1956.
[H] Hochschild, G., On the cohomology groups of an associative algebra, Annals Math. 46 (1945), 58-67.
[M] MacLane, S., Homology, Grundlehren der math. Wiss. Springer. New York 1967.
[PS] Parshall, B. and Scott, L., Derived categories, quasi-hereditary algebras, and
algebraic groups, Ottawa-Moosonee-Workshop. Carleton LNM.
[T] Tachikawa, H., Quasi-Frobenius rings and generalisations, Springer LNM 351 (1973).
V. Dlab

Department of Mathematics
Carleton University
Ottawa
Canada
C. M. Ringel

Fakultät für Mathematik
Universität
D-4800 Bielefeld 1
West-Germany

