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ON THE VANISHING OF HOCHSCHILD COHOMOLOGY

HHA. A8)A) FOR A LOCAL ALGEBRA A

By

Qiang Zeng

§0, Introduction.

Throughout this paper we assume that A is a finite dimensional local

algebra over an algebraically closed fieldK. By considering certain subgroups

of the Hochschild cohomology groups of /1-bimodule ARA for a generalized

biserialcommutative algebra A the author proved in [7] that A is selfinjective

if and only if H＼A, A(g)A)=0. Here A is called to be generalized biserial if

the both composition lengths of ^((rad /i)V(rad A)i+1) and ((rad yf)7(rad A)i+1)A

^2 for alli=＼, 2, ■■■.

On the other hand for a commutative algebra A with cube zero radical

using Hoshino's results Asashiba proved in [1] that A is selfinjectiveif and

only if ExtA(AHomK(AA, K), AA) = H＼A, A<g>A)=0.

One of the purposes of this paper is to show in §1 that Asashiba's results

together with Hoshino's can be proved directly by calculating the similar sub-

groups of the Hochschild cohomology of J-bimodule A<g)A with [7].

It was conjectured in [5] that A is selfinjectiveif H＼A, ARA)=Q for i=

1, 2, ･･■.The above results implies that a commutative algebra A is selfinjec-

tive if H＼A, A<S)A)=0 and A is either generalized biserialor of cube zero

radical. So it is interesting to consider the same problem for an algebra with

quartic zero radical which is a homomorphic image of the polynomial ring

K＼_x,y~＼of variables x and y. In §2 we shall prove that for such algebras

we have also an affirmative answer. However it is to be noted here that for

this case it needs to consider the larger subgroups of the Hochschild cohomology

of /f-bimodule A<g)A different than ones for the above stated cases.

As was seen in [6] and [7] for commutative algebra A it holds that the

both composition lengths of (rad yi)/(radAf and (rad yi)2/(radAf^2 implies that

A is generalized biserial. In §3 we shall show that we can generalize the

above fact for non-commutative algebras. At the end of this section we shall

quote that for a (not necessarily commutative) positively Z-gradable algebra A
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we can choose a set of homogeneous elements with respect to the grading of

A as a system of minimal generatorsof rad A.

§1. H＼A, A0A) for algebra A with cube zero radical.

Let A be a local algebra over an algebraically closed fieldK having a cube

zero radical N. Then the following results were obtained by Asashiba and

Hoshino.

Proposition 1.1.(M. Hoshino, see [1]) // H＼A, ARA)=0, then dim*N*

Theorem 1.2(H. Asashiba [1]) // A is commutative and H＼A, A<g>A)=0,

then A is selfinjective.

Let xu x2, ■･■,xn be the elements of A such that xx+N, x2+N, ･･･, xn-＼-N

are a if-basis of N/Nz and wu w2> ･･･, wm a Zf-basisof A^2.

Put XiXj=I] =iao^A for a＼j<=zKand 1^/', /^m, and let us denote by Ak

the nXn matrix {a＼j)and by lAk the transpose of Ak.

In order to prove the above results we shallintroduce the following Theo-

rem 1.3.

Theorem 1.3. Let T be the followingnm2x2nm matrix

A,

Aa

Al

At

'At

A.i Am

A,

^T-m

// HHA, A6§A)=Q, then rank T>nm2

Am

[AZ

I A
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Proof. Let

0 ―> ./―> AR A ―> A ―> 0

365

be an exact sequence of A '-modules with a canonical ho mo mo rph ism a: A<g>A

->A defined by putting e(x<S>y)=xy, where Ae=A<^>A° and A0 is the opposite

ring of A. Then

H＼A, ARjl) = ExtAe(AeA, AeARA)

= HomAeU, ARA)/{(0＼J)＼0^HomAe(ARA, ARA)}.

Cf. [2]. Since AeJ is generated by {ci=Xi(g)l―l(g)Xi＼i=l,2, ■･･,n) and N2d

soc AAr＼soz AA and soc AeA<g)A-=soc AA(g>soc AA, we can define a yle-homomor-

phism (p: J->A§§A by giving n elements of N2<^>N2 as the values of <J)(it)'$

respectively. Let us denote by H the subgroup of H＼A, A<g)A) which is

generated by the residue classes of HomAe(J, A&A) whose representatives are

such (p's. Then by HdH＼A, A<g)A)=d we have an extension W: ARA-^A<g)A

of (p and we can put

?T(101)=l(8)/io+S?-i^(8)^+S?=iM'*0^*,

where /i>=a>ol+ S?=i≪yi^i+I]*l=ii8>*M'*with aj0,aH, pJk&K for ;=0, 1, ･･･, n

and £*=r*ol+2?=ir*i*i+2?=id*iu/* with Tko,Tku dkl^K for k=l,2,-,m.

It follows that

W(ci)=xi<g)he+'E1}=1xixjRhj―l(g)hoxi

―'2j=iXj<g)hjXi―'E%siwk<g)gkXi

for alli. From xiXj=^f=lalijWi and the assumption that W(ci)=<}){ci)<^N'i(g)N'

it follows that

='ZT=iWiRW=Mjhj-gixi)

and we can nut

On the other hand

=(S"-1a{i)aio+S?=1(S?=ifl≪≪ir)^r-rIoA:i

+Sr=i(S^ia^,)u;,-23≫1(SP>inPa^)u;,
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Thus we have the following simultaneous linear equations with unknown /3JS

and jiP-

2jj =i(lijpjs 2-ip=lUpillp―Vtis

for i=l, 2,■■■, n and /,s = l, 2, ･･■, m. But for any t-itiwe can define Ae-

homomorphism <p:J―>A(^)A and by noting alij―(i,/)-component of At, aspi=

(i,£)-component of lAs, we get that nm2<^the rank of T.

Proof of Proposition 1.1. Since the number of the columns is 2mn it is

necessary to hold 2mn^m2n. Thus m<2.

Now we have the followingimmediately

Corollary 1.4.(H. Asashiba [1])

A

// H＼A, A(3A)=Q and m=2, then

lA

A, lA2

A2

A,

Ax

A*

is regular.

Lemma 1.5. Let A be a commutative algebra with N3―0. If H＼A, ARA)

=0, then soc A = N2.

Proof. We may assume that dim^(rad /f/(rad Af^2 because otherwise A

is uniserial. Take x,os(soc A)＼N2 and define /fe-homomorphism <p: /―>(socA)

(g)(socA)dA(&A by putting (p(cil)=xio<^)xiQfor some i^io and ^o(^)=0 for all

i^ii. Then by the assumption that H＼A, A<g)A)=0 we have an extension

0 : A<g)A-*A<g)A of y> with

O>(101)=10/io+S"-i^(8)^+S?=iw*0^*.

It follows from 0(cil)=^xig(S)xiothat ―hi^i^Xi^ a contradiction, for xio and

x,;iare /f-linearlyindependent.

Proof of Theorem 1.2. By Lemma 1.5 it is enough to prove ra=l.

Suppose m=£l. Then by Proposition 1.1 m―2 but then T is non-regular since

Ai―'-Ai for z= l, 2. This implies HYJ, J(X)/f)^0 and a contradiction.

§2. The case where A is a homomorphic image of K＼_x,y~]/(x,y)＼

As mensioned in the introduction we shall consider for an algebra A with

quartic zero radical which is a homomorphic image of the polynomial ring
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K＼_x,y~＼of variables x and y. However A is same with a homomorphic image

of K＼_x,y~＼/(x,yY, since A is an artin ring and K is an algebraically closed

field.

At the beginning we shall prove

Lemma 2.1. Let A be a homomorphic image of K[_x, y~]/(x,y)'1. Then A

is generalized biserialif A is selfinjective.

Proof. Suppose that A is selfinjectivebut not generalized biserial. Then

{x-2+(rad Ay, xy+(rad A)3, y*+(radA)3} is a free K-basis of (rad J)2/(rad )3,

because otherwise they are /C-linearlydependent and hence A is a homomorphic

image of K＼_x,y~]/((x,y)＼/), where the polynomial f^K＼_x, y~＼has a non-zero

homogeneous term of degree two and then A is generalized biserialas was

proved in [6]. Hence we can suppose that A is one of the following cases:

Case 0: A=K[x, y~＼/(x,yY ;

Case I: A~K＼_x, ;y]/((x,y)＼/,) where 0^fl-ax3+bx2y + cxy2 + dy'i with

a, b, c and d^K.

Case II: A―K＼_x, y~＼/({x,y)＼flt /2) where /x and /2 are /f-linearlyinde-

pendent and fi=aix3+bix2y + cixy2+ diy3 with ait bit ct and dt(=K for i=l, 2.

Case III: A―K＼_x, j>]/((x,y)＼fu f2, f3) where fu f2 and /3 are K-linearly

independent and /i= aiX3-|-6iA;23'-l-cfX3;2+ rfi3'3with au bit ct and d^K for

x= l, 2, 3.

It is easy to see that if A is one of the Case 0―II,then soc A is not simple.

Hence it is enough to consider the Case III only because A is selfinjectiveand

soc A is simple. Since A is not generalized biserialthe series of composition

lengths of factor modules with respect to the upper Loewy series of A is (1, 2,

3, 1), that is, dlmKA/(radA)=l, dim* (rad ^/(rad yl)2= 2, dim* (rad J)7(rad A)3

―3 and dimx (rad AY―I.

Now we observe the lower Loewy series of A. At first,it does not happen

that dimx soc2 A/soc A=3 and dim^ soc A = l. Because otherwise the series of

composition lengths of factor modules with respect to the upper Loewy series

of DA, where D denotes the usual selfduality UomK(―, K), is (1, 3, *, *) but

DA = A and thisis a contradiction. Hence the series of composition lengths of

factor modules with respect to the lower Loewy series of A is either (*, *, 2, 1)

or (*, *, 1, 1). But they do not happen because x2, xy and j2s(rad A)2＼(radA)3

and (rad A)3 (Csoc A) is simple by the JC-linearlyindependent assumption of

/1? /2 and /3. It concludes that A is generalized biserial.
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Corollary 2.2. Let A be isomorphic to K＼_x,j>]/((x,y)＼fu f2, f3) where

/i, ft and f3 are K-linearly independent and fi = aixs+bix2y-{-cixy2 + diy3 with

au biy Ci and d^K for i=l, 2, 3, then there existsan element ae(rad J)2＼(radAf

such that aesoc A.

Now our main purpose of this section is to prove

Theorem 2.3. Let A be a homomorphic image of K[_x, y~＼/{x,y)*. If

HHA, A6§A)=0, then A is selfinjective.

Note that it was proved in [7] that the theorem is true if A is generalized

biserial. Thus it is enough to prove that if A is not generalized biserial,then

H＼A, ARA)^Q. Throughout this section we assume hereafter that A is not

generalized biserial.

Let us denote x6$l―lRx and v(R)l―l(g)vby d and cz respectively.

Lemma 2.4. Let A be not a generalized biserial. If Xci=fii2for I, p.^Ae

then 1―ati+li and u = aci+ Ui with some a^K and Xx,≪!e(rad Aef.

Proof. Put X=a1,1aRl)+ax.1(x<g)l)+a1,x(l<g)x)+ay.1(yRl)+a1.yaRy)+tl

and fi=b1,1(l<g>l)+bx.1(x<g>l)+b1,x(l<g)x)+by,1(y<g)l)+b1,y(l<g)y)+tt1 with Xu ^e

(rad^fe)2. Then it is clear that {a1,1(lRl)-＼-ax,1(xRl)+aUx(lRx)+a1,y(lRy)+

av.i(:yRl)} Xci = {b1,1(l<8)l) + bx,1(x<g)l)+b1,xO.<g)x)+by,1(y<g)l) + b1,ya<g)y)} Xc2

mod(radJe)3. That is aulc1 + ax,1(x2Rl)+(aliX-ax,1Xx(3x)-aUx(lRx2)-＼-

ay,i(xyRl)-ay.i(yRx)+ai,y(xRy)-aUy(l(3xy)=b1,1C2+bx,1(xyRl)-bx,1(xRy)

+61, x{yRx)-bx. x{lRxy)+by, 1(/(g)l)+(61, y-bv,, ))^(g)3;)- 6 x,,(10/) mod (rad(^e)s

Since x2, xy and y2 are iiT-linearly independent mod(rad/f)3 we have that

ai.i=0=bi,u ax,1―0―aljX, byti=Q=bUy, ayA=bx,1 = ― a1,y = ―b1,x. Now put

av x― a for some aeK.

Let

0 ―> / ―> AR A ―> A ―> 0

be an exact sequence of the left yfe-modules with a canonical homomorphism £

defined by putting e(s<S)t)―stfor s, t^A. Then AeJ is generated by cx and e2.

And

H＼A, ARA)^YlomAeU, ARA)/{(0＼J)＼R^HmAe(ARA, A&A)}.

Since socyie(yi(g)yi)=(soc^yl)(^(socAA), for any elements ux and u2<^(socAA)(g)

(socAA) we can define a Je-homomorphism f: J^>A6§A by putting f(ci)=ul
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and f{cz)=zU%. In [7] and in §1 we have consider a subgroup H of H＼A, A(&A)

which is generated by the residue classes of WomAe{J, A^A) whose representa-

tives are such homomorphisms /'s.

However in the proof of Theorem 2.3 it needs to consider some vie-homo-

morphisms g: J^A(&A which do not belong to H. Then the following lemma

is useful to check whether a map from / to ARA is a yie-homomorphism.

Lemma 2.5. Take two elements y and 8 belongingtorad%(A<g)A) and define

f: J-+A&A by puttingf(ac1+^c2)=aT+^d for any a, /3e/K // de^Td, then

f is a Ae-homomorphism.

Proof. If hx―p.c% for any X, pt^Ae, then by Lemma 2.4 X―ac2+Xi and

fi= ac1+fi1 with Xu ^eCradJ6)2. Hence ^1/(^1),//i/(^2)e(radyfe)7=0. There-

fore 5^=^ implies Xf(ci)=ftf(c2)- Thus / is well-defined.

Proof of Theorem 2.3. As in the proof of Lemma 2.1, we shall divide

the proof of this theorem into the following cases:

Case 0: A=K[x, y~]/(x,yY;

Case i: A=K＼_x, yV((x, y)＼/0 where 0i=f1―ax3+bx2y + cxy2 + dy3 with

a, b, c and d^K.

Case II: A ―K＼_x,y~＼/((x,y)＼fu /2) where fx and /2 are /C-linearlyinde-

pendent and /1 = atx3+btx2y + ctxy2 + dtyz with ait bt, ct and d^K for i=l, 2.

Case III: A = K[_x, y~＼/({x,y)＼fu f2, f3) where /:, /2 and /3 are if-linearly

independent and fi = aix3-＼-bix2y+ cixy2jrdiys with ai} bi}cx and d^K for

*'=1, 2, 3.

Now for all cases 0―IIIwe shall denote the defining ideal by / and denote

the residue classes u+I for u^K＼_x, y＼, that is an element of A, simply by.u.

At first we shall prove for the Case 0: A = K[_x, y~＼/{x,y)＼ We define a

/C-homomorphism f: J->A(g)A by setting f(c1)=y'i<g)y3and f(c2)―O. Since

y3(g)ysGSOCAe(A(g)A),f is obviously well-defined as a yfe-homomorphism. But /

cannot be extended to any <p: A(^A―>ARA. Because if </>:A^A-^A^A is an

extension of /, then <pis defined by <p(,l<S>^)=1jv^vv<S>hvsince A(&A is generated

by 101 as a yfe-module, where hv=hv(x, y) is a /C-linearcombination of V ―

{1, x, y, x2, xy, y2, x%, x2y, xy2 and y3} the AT-basis of A. And

(i)

(ii)

But <p(ti)=%vevxv<g)(hv―xhxv) + 2}uev＼ix1,＼vev)u<g)(―xhu)= ―l<g)xhl + x<g)(h1―xhx)
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- yRxhy + x2R(hx- xh xZ) + xy&{hy- xhxy)- y2R xhy2 + x3R{h
x2-

xh
xZ)+x2

y(&

(hxy-xhxH)+xy2R{hy2-xhxyt)-y3Rxhyi, thus from (i) -xhy3=y3, but this is

a contradiction because xhy3 + y3 does not belong to (x, y)＼

Now we shall prove for the Case I: A~K＼_x, ;y]/((*, y)＼ /i). Here we may

assume that f1 ―axZjrbx2y-＼-cxy2-＼-dyi = s{x ―ay){x ―fiy)(x―Ty) with s=£0, a,

/3 and f^K because K is assumed to be algebraically closed. Therefore accord-

ing to (1) a=/3=r; (2) a―^y; (3) a=£j8, a^T and fl=tY, we can change the

variables of the polynomial ring K＼_x, y~＼so that fi is one of the following

three cases: (1) fx ― x3; (2) f1 = x2y; (3) fi ― xy(x ―y). But for any case, if

we define /: J-*A(g>A by setting f(ci)=y3<g>ys<bsoc Ae(A(g)A) and /(^2):=0, then

/ is obviously well-defined and / has no any extension to A(g>A^>A(g)A by a

similar argument as in Case 0. Namely xhy3 + ys does not belong to {{x,y)＼ f＼).

Next we shall prove for the Case II: A = K＼_x, y~＼/({x,y)＼ fu f2) where fu

f2 are /f-linearly independent and fi=^aixz+bix2y-＼-cixy2 + diy2' for i―l, 2. As

we considered at Case I, A has to be one of the following three cases:

(1) fi ― xs, f2―ax2y+bxy2-{-cy3;

(2) f^x2y, f^ax'+bxy'+cy3;

(3) fi=x%^.-xyl, f2=axs+bx2y+cy＼

For case (1), if c=0, we define /: J-^A(^A by setting tv―-≫y*<g)y3and £2->0,

then / is clearly well-defined and has no any extension to A(/)A as we prove

in the Case 0.

If c^Q, we may put c=l. Then soc A ―(x2y, xy2) ( ―Kx2y-＼-Kxy2) and

y3― ―ax2y ―bxy2e^soc A. So we can take {1, x, y, x2, xy, y2, x2y, xy2} as a

/("-basis of A. Define f:J-*A<g>A by setting f(cl)=xy2<g>y2 + xy<g)y3=:xy2(3y2

-xyR(ax2y+bxy2) and f(c2)=O. Then cif{c1)={yRl-lRyXxy*Ry2 + xyRy3)

=Q=Cif(c<i), hence by Lemma 2.5 / is well-defined. Now if <p: A<g>A-^ARA is an

extension of / with <p(lRl)=lRhl + x(3hx + yRhy + x2Rhx2-＼-xyRhxy + y2Rhy2

+ x2yRhx2y+xy2Rhxyz. Then

(p{ci)―xyz^y2― xy^{axzy+bxy2)

?>(<e)= 0

From (i) we get that ―xhy2=0 and hy2―xhx z=y2.

(i)

(ii)

By the second equation, the

polynomial hy2 has nonzero term of y2, but it contradicts to the firstequation.

For case (2),if a―0, we define f: J-^A^A by setting /(^)=0 and f{c2)―

x30x3, then / is clearly well-defined and has no extension to A&A as we

proved in the Case 0.



Vanishing of Hochschild cohomology H＼A, A<g)A) 371

If c=0, similarly defined /: /―>A§Z)Aby setting f(cl)=y3(g)y3 and f(c2)=0,

then / is clearly well-defined and has no any extension to A(^)A as we proved

in the Case 0.

If aci=Q and 6=0, we may put a ―1. Then soc A = (xy2, y3) and xs= ―cys

esoc/f. So we can take {1, x, y, x2, xy, yz, xy2, ys＼as a /(-basisof A. De-

fine /: J->A<S)A by setting

Ci―> xy26?)y2

c2 ―> ―c 1xy2&)x2

Then e3f(i1)=(yRl-l<g>yXxy*<g)y*) = -xy2<g)ya = (x<g)l-l<g)xX-c-lxya<g)xt) =

t＼f(i%),hence by Lemma 2.5 / is well-defined. Now if ip＼A(&A-+A<g)A is an

extension of / with (p(＼(&l)=l(&hl+ x(&hx + y(&hy + xiRhxi+xy(&hXy + yi(g)h 2

+ xyaRhxyi+y*<g)hyS. Then

(i)

(ii)

From (i) we get that ―xhy2―0 and hy2―xhxy2―y2. By the last equation hy2

has nonzero term of y2, but it contradicts to ―xhy2―Q.

If abci^Q, we may put b=l. Then soc/f = <x3, y3} and xy2= ―ax3―cy3^

soc A. So we can take {1, x, y, x2, xy, y2, xs, yz) as a /C-basisof A. Define

/ : J^A(^>A by setting

d ―> c(yi<g>y*)―xyRy*

t%―> a(x2<g)y3).

Then c1f(c2)=(x(g>l-l(3x)a(x2(3y3)= a(x*Ry*) = (ax2)Ry3=(-cy3-xy2)Rys =

(y(g)l-lRy)[c(y3<g)y2)― xy<g>ya]=e2f(ci),hence by Lemma 2.5 / is well-defined.

Now if (p; A(g)A^>A<g>A is an extension of / with <p(l(g)l)=l£g)/z1+ ;c£g)/ix+

y<g)hy+ x2Rhxi + xyRhxy + yaRh yz+ x*Rhxi + y*Rh,, Then

<p(d)=c(ysRy2)- xyRys

<p(c2)=a(xzRy3)

(i)

(ii)

From (i) we get that ―xhyZ=0 and --chy2―xhyS=cy2. By the last equation

hy2 has nonzero term of y2, but it contradicts to ―xhy2=0.

For case (3), if a=0, we define /: J-*A(g)A by setting f(d)=0 and f(tz)

= xs(g>xz,then / is clearly well-defined and has no extension to A(g)A as we

proved in the Case 0.

If c=0, similarly define /: J-^A^A by setting f(c1)=ys0y3 and /02)=0,
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then / is clearly well-defined and has no any extension to AR A as we proved

in the Case 0.

If ac^O and b=0, we may put a = l and then socvl = <xv2, v3> with xs=

-cy 3esoc/L So we can take {1, x, y, x2, xy, y2, xy2, y3} as a /f-basisof A

Define /: J-^-A^A by setting

Then c2f(c1)=0=(xRl-lRxXy3Rx2 + x2Ry3)=-y3Rx3-{-x3Ry3=c1f(c2), hence

by Lemma 2.5 / is well-defined. If <p: ARA->A(&A is an extension of / with

<paRD = lRh1 + xRhx + yRhy + x*<S)hx2+ xy(3hIy+y2Rhy2 + xy2Rhxy2+y*(3hy;i.

Then

?>(<i)=0 (i)

<pbi)=y*Rxt + xaRy*. (ii)

From (i) we get ―xhy2―Q and from (ii)hy2―yhyZ=x2. By the last equation

hy2 has nonzero term of x2, but it contradicts to ―xhy2=0.

If abc^O, we may put a = l. Then soc yl= <x;y2,y3) and x3= ―bxy2―cy3

esoc/1. So we can take {1, x, y, x2, xy, y2, xy2, y3} as a /C-basis of A. De-

fine /: J―>A(&A by setting

£2―* ys(g)x2―(c1x2+bc~1xy)(g)x*.

Then ^2/(<r1)=O=(x(g)l-l(S)x){3;3(g)x2-(c-1x2+6c-1x3;)0x3}=^/(^) hence by

Lemma 2.5 / is well-defined. If <p: A^A^-A^A is an extension of / with

<p(lRl)=lRh1 + x(3hx + yRhy+x2Rhx2 + xyRhxv + y2Rhy2+xy2Rhxy2+y3(3hys.

Then

9>(O=0 (i)

^ta)=3'3(8>*2--(c~1*2+&c~1*:y)(8)*s･ (ii)

From (i) we get ―xhy2―0 and from (ii)hy2―yhyi=x2. By the last equation

hy2 has nonzero term of x2, but it contradicts to ―xhy2=0.

Finally we shall prove for the Case III: A = K＼_x,y~＼/({x,y)＼fu f2, fs)

where fu f2, fs are /C-linearlyindependent and fi = aix3+bix2y-＼-cixy2+ diy3

with aif bt, Ci and d^K for i―l, 2, 3. By Corollary 2.2 we know that there

exist two nontrivial elements a and /3 belonging to soc A such that a~axz +

bxy+cy2 with a, b, c^K and /3erad3/l.

Now define /: J-+A(g)A by putting f(d)=a(g)a for i―l, 2, then / is clearly
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well-defined.

If a=£0, we may put a = l and then x2= a ―bxy ―cy2. So we can take

{1, x, y, xy, y2, a, fi} as a /f-basis of A. If <p: ARA-+A<g>A is an extension

of / with <p(l(g)l)= lRh1 + x<g)hx+ y<g)hy+ xy<g)hxy + ys<g)hyi+aRha+p<g)hii.

Then

<p(ii)=a<S)a (1)

<p(ei)=―lRyh1 ―x<g)yhx + y<g)(hl―yhy)+ xy<g)(hx―ylixy)

+ y*(g)(hy-yhy2)-a(g)yha-pRyhp + xy2(g)hxy + ys(g)hy2

= aRa. (2)

Since xy2~k^ and ys= k2fi for some ku k2<=K we have by (2) that ―yha = a,

a contradiction.

If c^O, we may put c=l and then y2=a ―ax2―bxy. So we can take

{1, x, y, x2, xy, a, fi} as a /f-basis of A. If <p:yf(gb4―>yl(g)ylis an extension

of / with <p(lRl)=lRh1 + xRhx + yRhv + x2hx2 + xy($hxy+a(3ha+pRhli. Then

<p(d)=a<g)a (1)

p{(!)=a(S>a ･ (2)

By (1) we have similarly that ―xha=a, a contradiction.

If a=0=c, then a=bxy and we may put b―l. So we can take {1, x, y,

x2, y2, a, /3} as a if-basis of A. If <p: A(£)A-^A(g)A is an extension of / with

<p(l<^l)=l<S)h1^x<S)hx+y<S)hy-＼-xt<S)hxt+y%<S)hyi+a<S)ha+P<S)hp. Then

p(fi)=≪0a (1)

^(^2)=a(S)a ･ (2)

Then by (1) we have that hx = xhx2, hy ―xy + xhxy and ―xhy2=0. By (2) we

have that hx = xy + yhxy, hy = yhy2 and ―yhx2―0. If /z^ has nonzero term of

y, hx = xy + yhxy^xhx2 since yhxy has nonzero term of ;y2,it is a contradiction.

If hxy has nonzero term of x, hy = xy + xhxy^yhy2 since x/z^ has nonzero

term of x2, also a contradiction. Finally if both the terms of x and y in /i^j,

are zero, then hy = xy-＼-xhxy^yhy2 because hy2 has no term of x by xhy2=Q.

This is also a contradiction.

§3. Miscellaneous results.

As was easily seen in [6] and [7] for commutative algebra A over an

algebraically closed field K it holds that the both composition lengths of
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(rad A)/(rad A)2 and (rad A)2/(rad A)3£2 implies that A is generalized biserial.

We shall generalize the above fact for non-comrnutative algebras.

Proposition 3.1. A local K-algebra A is generalized hiserialif and only

if so is A/(rad A)3.

Proof. At first we would like to remark A is not assumed to be com-

mutative. It is enough to proved only the "if" part. If dim^rad A)/(rad Af

= 1, then A is uniserial. So we can take two elements x and y of A such

that {x+(rad.yf)2, y +(rad A)2} generates (rad yf/(rad Af.

If (ax+by)2=0 mod (rad Af for any a, b^K, then A /(rad yf)3is isomorphic

to the exterior algebra over 2-dimensional /("-vector space and xy = ―yx

mod (rad Af. Consequently yf/(radA)3 is selfinjective. Now (rad yl)3/(radA)4

is generated by {x+(rad Ay, x2y+(rad A)*, xyx+(rad A)4, yxy+(rad Af, yx2

+(rad yf)4,3/2x+(rad yl)4,xj;2+(rad A)＼ >>3+(rad /I)4}. But each of them belongs

to (rad A)4 because x2, y2 = 0 mod (rad A)3 and xy = ―yx mod (rad /i)3and hence

(rad yl)3c(rad yi)4. It follows from Nakayama Lemma that (rad Af―Q.

Now we may assume that there exists an element y of A such that x2^0

mod (rad yf)3. By the assumption dimK(rad A)2/(rad A)3^2, we proceed at first

the proof for the following

Case 1: (rad yl)2/(rdAf is spanned by {%2+(rad Af, xj>+(rad yf)3}. We may

put y2~ax2+bxy and yx = cx2 + dxy mod (rad Af with a, b, c and d<E.K. Since

(rad yi)3= (rad /l)(radAf it holds that (rad yf)3/(radAy = <x3+(rad yf)4,x2y +

(radyf)4, jx2+(rad yf)4,;y;c;y+(radyf)4>. But (rad Af/(rad A)4 is spanned by

{x3+(radyl)4, x2^+(rad yf)4}. Because we have that xy2~x(ax2+bxy) = axSjr

bx2y, yx2=(yx)x~(cx2-＼-dxy)x=cx:iJrdxyx, but xyx = x(yx) = x(cx2 + dxy)=

ex 3+ dx2y and yxy=(yx)x~(cx2 + dxy)x = cx2yJrdxy2' mod(rad A)4.

Now we shallproceed the proof by induction on exponents of rad A. Sup

pose that(rad^y-YCrad^)"-1 is spanned by {x*-2+(rad^)re-x, x"-3.y+(rad /l)n-1).

Then (rad J)n-7(rad A)n ― <xn~l+ (rad A)n, xn~2y+ (rad A)n, yxn~s+ (rad A)n,

yxn-sy-Hrvd A)71). But yxn-2=(yx)xn-3=(cxz + dxy)xn-3 = cxn-1 + dx{yx)xn-4 =

ex11'1+ dx(cx2 + dxy)xn~* = (c + cd)xn'1 + d2x2(yx)xn~5 = (c + cd + cd2)xn~l+

d3x＼yx)xn-6~ ■■■=c(l + d + d2^ Vdn~z)xn-l+ dn-2xn-2y, yxn-sy = [c(l+ d-＼-d2

-＼ ＼-dn-i)xn~2+ dn-zxn-zy'＼y= c(l+d + d2^ ＼-dn-4)xn~2y+ dn~3xn-3y2 and

xn-3yi = xn-3{ax2+bxy) = axn-l+bxn-2y mod(radyl)n, hence (rad A)n~'/{r^ A)n

is spanned by {xn-i+(rad A)11,xn-2y+(md A)n).

Case 2: xj;+(rad A)3 is linearly dependent to x2+(radAf and (rad J)2/(rad A)3

is spanned by {x2-f-(radA)3, -yx+(rad A)3}. Then we may put that v2= ax2 +
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byx mod (rad Af with a, b&K. Considering (rad Af/(rad J)4=<x3+(rad Af, yx2

+(rad^)4, y*x+(radAy), but yzx=(ax2+hyx)x = axs+byx2 mod (rad AY, so

(rad J)3/rad AY is spanned by {x3+(rad yf)4,j;x2+(rad yi)4}.

Now we shall proceed the proof by induction on exponents of rad A. Sup-

pose that (rad A)n-2/(radA)n-x is spanned by {xn-2+(radA)n-＼ ^^"-^(radyf)"-1}.

Then (rad J)n-7(rad yl)n = <xn-1+(rad A)n, yxn-2+{r2id A)n, y2xn-s+(rad A)71}.

But y2xn-3 = (ax2+byx)xn~3 = ax71'1+byxn~2 mod (rad yl)n, hence (rad A)71'1/

(rad A)71 is spanned by {xn'l+(rad A)71, yxn~2+(rad A)71}.

Case 3: x;y+(rad yl)3 and yx+(rad Af are both linearly dependent to x2 +

(radyl)3. Then (rad A)2/(rad Af is spanned by {x2+(rad Af, .v2+(rad Af), and

so itis clear that (rad yl)"/(rad /f)n+1is spanned by {x7l+(rad A)n+1, .-v"+(rad A)n+1}

for n>3. It comoletes the oroof.

Corollary 3.2. Let

dim*(rad yl)n/(radA)n+1^l

<1 for all s>n.

A be a generalized

for some integer n>0

biserial local algebra. If

then dirrw(rad J)Y(rad A)s+1

Proof. Use the spanning systems of (rad A)s/(rad A)s+1 which we have

obtained in the proof of the previous proposition for s^n.

Let A ―J0c^ic ･･･(&An be a positively Z-grading of /f-algebra A such that

rad A = A^ ･･･cJn, y4o=/f and AtAj(zAi+j for i,;^0. If dimA-(rad A)/(rad A)2

=t, we have a minimal system {xu x2, ･･･, xt＼of generators of rad A. Put

(1) ^i==I]?=i≪/,i for / = 1, 2, ･･･,£and ctj^^Ai.

In the proof of [7, Proposition 4.1] we proved the fact stated in the follow-

ing proposition for t=2 and A being commutative. Now we shall prove

Proposition 3.3. There is a set B ―{aJkiSk<^jiSk＼l<,jk,sk£n and k = l, 2

･･･, t＼such that B is a minimal system of generators of rad A.

Proof. Let us denote by a the residue class of a^A modulo (rad A)2.

From (1) we have that x^=S?=i^,f f<>r 7 ―1,2, ･･･, t. If follows that there

exists a set {aJk,Sk＼k = l, 2, ■■■, t} such that it becomes a A"-basis of (rad A)/

(rad A)2. Then it is clear that {aJk,Sk | k = l, 2, ■■■, t} generates rad A, since

rad A is nilootent.
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