H-SEPARABILITY OF GROUP RINGS (In memory of Professor Akira Hattori)

By

Kazuhiko HIRATA

Let k[G] be the group ring of a finite group G with a coefficient field k. Assume that the characteristic of k does not divide the order of G. Let H be a subgroup of G, Δ the centralizer of k[H] in k[G] and D the double centralizer of k[H] in k[G]. The purpose of this paper is to prove that k[G] is an H-separable extension of D. For this, a unit in the center C of k[G] plays a fundamental role (Lemma 1). Besides, we can prove the well known facts that k[G] is (finitely generated) projective over C and k[G] is a central separable algebra over C, explicitely, by use of this unit.

Denote by g_x and c_x the number and the sum of elements in the conjugate class of G containing the element x of G, respectively.

LEMMA 1. $u = \sum_{c_x} (1/g_x) c_x c_{x^{-1}}$ is a unit in C.

PROOF. We first prove that $\{(1/g_x)c_x\}$ and $\{c_{x^{-1}}\}$ form a dual base of C over k. Let $c_yc_x = \sum_{c_x} c_x a_{xx}$ where a_{xx} are integers. This means that each z_k $(1 \le k \le g_z)$ conjugated to z, appears in $c_yc_x = a_{xx}$ times, that is, for fixed k, the number of pairs (i, j) such that $y_ix_j = z_k (1 \le i \le g_y, 1 \le j \le g_x)$ is equal to a_{xx} . So, the number of terms $x_j^{-1} = z_k^{-1}y_i(1 \le j \le g_x)$ is $a_{xx}g_z$ in $c_{z^{-1}}c_y = \cdots + (a_{xx}g_z/g_x)c_{x^{-1}} + \cdots$. This proves that $((1/g_z)c_{z^{-1}})c_y = \sum c_{x^{-1}}a_{xx}$ $((1/g_x)c_{x^{-1}})$ or equivalently $\{(1/g_x)c_x\}$ and $\{c_{x^{-1}}\}$ form a dual base of C over k. Now C is a separable k-algebra in the sense of that, for any field extension L of k, C_L is a semisimple L-algebra. Then $u = \sum_{c_x} (1/g_x)c_xc_{x^{-1}}$ is a unit in C by Theorem 71. 6 in [2] p.482.

Let v be the inverse of u in C, uv=1.

COROLLARY 2. $\sum_{c_x} (1/g_x) c_x \otimes c_{x^{-1}} v$ is a separability idempotent in $C \otimes_k C$.

PROOF. It is clear that $c(\Sigma(1/g_x)c_x \otimes c_{x^{-1}}v) = (\Sigma(1/g_x)c_x \otimes c_{x^{-1}}v)c$ for any $c \in C$ and $\Sigma(1/g_x)c_xc_{x^{-1}}v = 1$.

Let p be the map of k[G] to C defined by $p(a) = (1/n) \sum_{x \in G} xax^{-1}$ for $a \in k[G]$, where n is the order of G. The map p is the projection of k[G] to C. Then p is an element of Hom_C(k[G], C) which has a left k[G]-module structure in the usual way.

Received February 8, 1986.

COROLLARY 3. $\{x \cdot p\}$ and $\{x^{-1}v\}(x \in G)$ form a projective base of k[G] over C.

PROOF. For the identity 1 of G, we have

 $\sum_{x\in G} (x \cdot p)(1)x^{-1}v = \sum_{x\in G} p(x)x^{-1}v = \sum_{x\in G} (1/g_x)c_xx^{-1}v = \sum_{c_x} (1/g_x)c_xc_{x^{-1}}v = 1.$

Now, for any $y \in G$, we have

$$\sum_{x \in G} (x \cdot p)(y) x^{-1} v = \sum_{x \in G} p(yx) x^{-1} v = \sum_{x \in G} p(yx)(yx)^{-1} v y = y.$$

Now consider the two-sided k[G]-module $k[G] \otimes_C k[G]$. Then, for each $x \in G$, the element $(1/n) \sum_{y \in G} y \otimes xy^{-1}$ is in

 $(k[G]\otimes_C k[G])^{k[G]} = \{\xi \in k[G]\otimes_C k[G] | a\xi = \xi a, \text{ for all } a \in k[G] \}.$

Therefore the map f_x for $x \in G$, which assigns to each $a \in k[G]$ the element $((1/n) \sum_{y \in G} y \otimes xy^{-1}) a$ defines a two-sided k[G]-homomorphism of k[G] to $k[G] \otimes_C k[G]$. The map l_x for $x \in G$, which assigns to $\sum_i a_i \otimes b_i$ in $k[G] \otimes_C k[G] \sum_i a_i x^{-1} v b_i$ in k[G], is a two-sided k[G]-homomorphism of $k[G] \otimes_C k[G]$ to k[G]. Then it is easily verified that $\sum_{x \in G} f_x \circ l_x$ is the identity map of $k[G] \otimes_C k[G]$. Thus we have proved the following corollary.

COROLLARY 4. $k[G] \otimes_C k[G]$ is a two-sided k[G]-direct summand of the direct sum of *n*-copies of k[G].

If this is the case, then it holds that $k[G] \otimes_C k[G] \cong \operatorname{Hom}_C(k[G], k[G])$ and k[G] is *C*-finitely generated projective, see [3] p. 112. Therefore k[G] is a central separable *C*-algebra by Theorem 2.1 [1].

Let *H* be a subgroup of *G* and $G = \sum_{i=1}^{r} y_i H$ a coset decomposition of *G* by *H*. Denote by h_x and d_x the number and the sum of elements in the *H*-conjugate class of *G* containing the element *x* of *G*, respectively. Let Δ be the centralizer of k[H] in k[G]. Then $\{d_x\}$ is a *k*base of Δ . By the same way as in Lemma 1, it can be verified that $\{(1/h_x)d_x\}$ and $\{d_{x^{-1}}\}$ form a dual base of Δ over *k*. Let *q* be the map of Δ to *C* defined by $q(a) = (1/r) \sum_i y_i a y_i^{-1}$, $a \in \Delta$. It can be shown that *q* does not depend on the choice of y_i , and *q* is the projection of Δ to *C*.

PROPOSITION 5. $\{(1/h_x)d_x \cdot q\}$ and $\{d_{x-1}v\}$ form a projective base of Δ over C.

PROOF. If we notice that $q(d_x) = (h_x/g_x)c_x$, the calculation is similar to the proof in Corollary 3 and we shall omit it.

Let D be the centralizer of Δ in k[G]. Then $D \supset k[H]$ and the centralizer of D in k[G] is equal to Δ .

PROPOSITION 6. k[G] is an H-separable extension of D.

PROOF. For a representative x of an *H*-conjugate class of *G*, define

 $s_x: k[G] \longrightarrow k[G] \otimes_D k[G]$ by $s_x(a) = ((1/r) \sum_i y_i \otimes (1/h_x) d_x y_i^{-1}) a$

328

and

$t_x: k[G] \otimes_D k[G] \longrightarrow k[G]$ by $t_x(\Sigma_i a_i \otimes b_i) = \Sigma_i a_i d_{x^{-1}} v b_i$,

respectively. As $(1/r)\sum_i y_i \otimes (1/h_x)d_x y_i^{-1}$ is in $(k[G] \otimes_D k[G])^{k[G]}$ and $d_{x^{-1}}v$ is in Δ , s_x and t_x are two-sided k[G]-homomorphisms, respectively. If we notice that $\sum_{d_x} (1/h_x)d_x y_i^{-1}d_{x^{-1}}v$ is contained in D, it is easily verified that $\sum s_x \circ t_x$ is the identity map of $k[G] \otimes_D k[G]$, where the sum is taken over all the H-conjugate classes of G. Therefore $k[G] \otimes_D k[G]$ is a two-sided k[G]-direct summand of a direct sum of finite copies of k[G] and k[G] is an H-separable extension of D.

Even if the characteristic of k divides the order of G, if the index of H in G is a unit in k, k[G] is always a separable extession of k[H] by Proposition 3.1 [4]. In this case, it happens that k[G] may or not be an H-separable extension of D. Let k be a field of characteristic two. Take $G = S_3$ the symmetric group of degree three and $H = \langle (12) \rangle$. Then G = H + (13)H + (23)H is a coset decomposition of G by H. Put $x_1 = (12), x_2 = (13) + (23)$ and y=(123)+(132). Then we have $\Delta = k1 + kx_1 + kx_2 + ky$ and $D=k[G]^{4}=D$. The projection q of Δ to C is given by $q(a) = (1/3)(1 \cdot a \cdot 1 + (13)a(13) + (23)a(23))$ for $a \in \Delta$. Then $\{q, x_2 \cdot q, z_3 \in A\}$ $y \cdot q$ and $\{1+y, x_2, 1\}$ form a projective base of Δ over C. Define maps $s_i: k[G] \rightarrow k[G]$ $\otimes_D k[G](i=1,2,3)$ $s_1(a) = (1/3)(1 \otimes 1 + (13) \otimes (13) + (23) \otimes (23))a, s_2(a) = (1/3)$ by $(1 \otimes x_2 + (13) \otimes x_2(13) + (23) \otimes x_2(23)) a \text{ and } s_3(a) = (1/3)(1 \otimes y + (13) \otimes y(13) + (23) \otimes y(23))a$ respectively. Also define maps $t_i: k[G] \otimes_D k[G] \rightarrow k[G] (i=1, 2, 3)$ by $t_1(\sum a_i \otimes b_i) = \sum$ $a_i(1+y)b_i$, $t_2(\sum a_i \otimes b_i) = \sum a_i x_2 b_i$ and $t_3(\sum a_i \otimes b_i) = \sum a_i b_i$, respectively. Then $\sum_{i=1}^3 s_i \circ t_i$ is the identity map of $k[G] \otimes_D k[G]$ and k[G] is an *H*-separable extension of *D*. Next, take $G = S_4$ and $H = \langle (13), (1234) \rangle$. Then the center C of k[G] is a local ring of dimension five over k. On the other hand we can see easily that Δ is eight dimensional over k. Therefore Δ is not C-projective and k[G] is not an H-separable extension of D.

References

- Auslander, M. and Goldman, O., The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960) 367-409.
- [2] Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras, Wiley (Interscience), New York, 1962.
- [3] Hirata, K., Some types of separable extensions of rings, Nagoya Math. J. 33 (1968) 107-115.
- [4] Hirata, K. and Sugano, K., On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan 18 (1966) 360-373.

Department of Mathematics Faculty of Science Chiba University Yayoi-cho, Chiba-city 260 Japan