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CONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT
THEOREM FOR STATIONARY ¢-MIXING SEQUENCES

By
Ryozo Yokovama

1. Introduction and result.

Let {X; —oo<j<oo} be a strictly stationary sequence of random variables
centered at expectations with finite variance, which satisfies ¢-mixing condition

1.1 sup | (AN B)—P(APB) |[P(A)=¢(n) | 0 (n—co).

Here the supremum is taken over all Ae H%. and Be M7, and M denotes the
o-field generated by X; (¢=7=0b). Let Sp=X+ -+ X, and 6.>=£ES,?% n=1,2, ---.

For independent random variables, Brown [l and 2] has shown that the
Lindeberg condition of order vz2 is necessary and sufficient for the central limit
theorem and the convergence of E|S./o.|" towards the corresponding moment of
the normal distribution. For dependent random wvariables, such a result seems
less well-known. We study here the convergence of moments for stationary ¢-
mixing sequences.

Taeorem. Let {X} satisfy (1.1). If EX**<co for some integer m=2, and if

(1.2) an?=an(1+0(1))
as n—oo(e>0), then
(1.3) L(Spf00) " — Bam  (H—>00),

where B, is the vth absolute moment of N, 1).

We remark that under the assumptions of the theorem X satisfies the central
limit theorem (cf. [4, Theorem 18.5.1]). Also remark that any other conditions
beyond (1.1) on the decays of mixing coefficients ¢(n) are not required.

2. Preparatory lemmas.

LemMA 1 {4, Theorem 17.2.3). Suppose that (1.1) is satisfied and that & and
y are measurable with vespect to M. and Mi.. (nz0) respectively. If E|&|F <oco
and Elp|?<oo for p, ¢>1 with (1/p)+(1/q)=1, then

2.1 |E(&n)— EE)E()| = 2pm)Elg1) P{EI| )
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LemMMA 2. Let (X} satisfy (1.1) and E|X\|’<oco for some v=2. If
G > OO
as n—oo, then theve is a constanl K, for which
(2.2) ElS,|’=Ke;, n=1,
In this lemma, the assumption (1.2) is not necessarily required. If (1.2) holds,

the right-hand side of (2.2) can be replaced by K#n'2

Proor. We apply the method used in the proof of Lemma 7.4 of Doob [3] to
that of Lemma 18.5.1 of Ibragimov-Linnik [4]. Lemma 2 is true for v=2. We
assume therefore that (2.2) holds when v is an integer m=2 and prove that it
then holds for v=m+4, 0<3=1. Let us write

Sa= 31 X @n=E|S.|m?
We only prove that, for ¢>0 there exist K; and % such that

2.3) E|Sn+ S5m0 (246 atn+ Kio™e.

The proof of (2.2) then follows on the same line as in Lemma 18.5.1 of [4].
We have

2.9 E|Su+Sal™ S E{1S+Sal™ (1Sal + |50l S E|Sa| ™0 + E| S ™42
m-—1 N . m A
+E{ Zo (F1Sal7*21Sal™7 4+ 35 (DISal?]Sal™ 742
j= J=1

Since S, and S. have the same distribution,
(2.5) E|Sy|m+2=E|S,|™ =ay.
Using (2.1) with p=(m+8)/(j+0),
(2.6) E|Sa| 72| Sp| ™4 <2a,[ (k)] G+D/(mtd 4 B[S, [543 F|S,|m7,
and with p=0m+d/j,
2.7 E[Sn|7| S| ™90 < 2a,[$(R)} ™+ + E|Sp|IE|Sal =142,
By Holder’s inequality,
ElSu|* < (E|Sp|™™™, 0<u=m.
Thus, since (2.2) is assumed to hold for v=m (with some K), for 0=j=m—1,
(2.8) E|Sp|3%3 E|Sp|™ I < (E|Sa]™) ™™ < Kot

and for 1=j=m,
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2.9) E|Sy}7 E|Sp| ™7+ < (E|Sa]™)m+8/m < Ko7+,
From (2.4) through (2.9), we obtain
E|Su+Sa| ™ = 2+ Klp(R)” ™ )an + Kion™,
for some constants K; and K,. To prove (2.3) it suffices to take % so large that

Kz[¢(k)]a/(m+ﬁ) <e.
We represent the sum S, in the form

k+1

k
Sn=§i2 &+ iZ =2k +2 k41,
i=1 =1

where

ip+(i—-1)g .
&= 2 X; (I=izk)
G-D@+o+1
(p+a) .
m= 2 X; (l=i=k)
ip+G-1Da+1
Ne+1= Z Xi;

k(p+@)+1
where k=[z/({ +¢)], and p=p(n) and g=q(n) are integer-valued functions such that
as #-—00
(2.10) P00, g0, g=0(p), p=0(n), ng=0(p*) and ng(g)=0(p).

For such a pair of p and ¢, see for example [4, Theorem 18.4.11. Under the re-
quirements imposed on p and g, we shall show that Z’; is negligible, and that
consequently E{(Su/o4)*"~E(Zifo.)*™. We note that, because of the stationarity,
Lemma 2 is applicable to &; and 5. In the following, for convenience’ sake the
conditions of the theorem are assumed to hold and K denotes generic constant.

LEMMA 3. As n—oco
(2.11) EZ8=ES¥ +o(e%), =1, 2, -, m,

Proor. We first show that

(2.12) EZ'% =0(d%).

We have
20—1

(2.13) BZYu=EZ'¢+ % () EZ'Litd + B,
iz

By Minkowski’s inequiality, Lemma 2 and (2.10),
(2.14) EZ <keEpt = K(k*q) =0(e2),
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by Lemma 2.

(2.15) Epta=Kmn—k(p+a) =003,

and by Holder’s inequality, (2.14) and (2.15),

(2.16) |EZ' il | = (BEZ P Eg )P =0(o7)) .

Then (2.12) follows from (2.13)-(2.16).

201
EZ¥=E(Sy—Z )P =ESE+ 3, (=11 ES, 2",

j=0
and by Hélder’s inequality, Lemma 2 and (2.12),
|ES; Z'353| = (ESEH(EZ' ) P =0(o?),

for j=0, 1, -, 2{—1. Thus the lemma is proved.
Let :2=EZ? for i=1, 2, ---, k. Then (2.11) implies that

(2.17) 3 =a} (L+0(1)).

Since
EZ%=E(Supo— 2",

it follows from the proof of Lemma 3 that

(2.18) EZ} =ESipi0+0(0%i0),

which together with (2.10) implies that

(2.19) EZ% = K(ip),

for i=1, 2, -, k, =1, 2, -, m. Also (2.10) and (2.18) imply that

(2.20) =ol(l+o1), i=1, 2, -, k.

3 Proof of Theorem.
E(Sulon)?=1, n=1, 2, ---. Assume inductively that as #—co
3.1 E(Snfon)®>Ba, I=1, 2, -, m—1.

In view of (2.11) and (2.17), the assumption (3.1) is equivalent to the one that as

71— 00

(3.2) E(Zlre)? B, =1, 2, -+, m—1.

Using (2.11) again, we have only to prove under the assumption (3.2) that as n—oo0
(3.3) E(Ze[te)™ Bom .

We have
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k 2m-—1
(3.4) EZm= %, > (" EZ_,&7, where Z,=0,

i=1 j=0
k k 2m-—-3
= 3, Eem+2m Z EZpo6+ Z EVEZPTE + 3 N (M EZL &,
i=1 =1 j=1
By Lemma 2 and (2.20),
k
(3.5) 2 EEr=Kkp™=o0({").
i=1

By Lemmas 1, 2, (2.10), (2.19) and (2.20),
k
(3.6) Z |EZ%m &)
k
§2[¢(q>](2’m—1)/2m Z (EZ'A;@I)(2M—-1)/2TIL(E'E%m)l/zm
i=1

k
éK[qs(q)]l/me Z (i__l)(‘mn——l)/z
=K'Tks(@)) (kD) = 0(zF").

For j=1, ---, 2m—3, by Lemma 2, (2.19) and (2.20),

k
3.7) 3 (EZgmyirm (Bgpyon=prim = Kl i (kpy=0(c}')
i=1
and so
k
(3.8) _Z' |EZ] &7 =0(cf™)

Further, by Lemmas 1, 2, (2.19) and (2.20),
ik k

3.9) >, EZmsrei— 3, BZ Eel|
i=1 i=1

k
S2AYQID™ B (EZ) (B

=K@l ™kp)™=0({").
Consequently, by (3.4)-(3.9), as n—co
k
(3.10) EZpr= 3, () EZ§4* EE +o(<f).
i=1
By (2.20) and (3.2),

k

3.11) 25 () E(Ziafti-r)*™ 2 E(ED) 27

=€) Ban-s-+olDidh 2, 7O
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~{G") Bem-2+o(L)}oT" :‘é (i —1)™ ' +0(1)
~{E™) Bam—z oD} (B™ [m) +0(1)
~A(2m—1) Bem—z +0(L)}cI +O(1) ~ Panti™.

Hence, by (3.10) and (3.11), (3.3) follows, and the proof of the theorem is com-
pleted.

Remarg. If E|X,|" <oo(y'>u>>2), then by Lemma 2, {|Sife.|", n=1} is uni-
formly integrable. By the central limit theorem we have, without the assump-

tion (1.2),
E\Salaa|"—p, (m—>00).
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