QF-3' RINGS AND MORITA DUALITY

By

R. R. COLBY and K. R. FULLER

In [2] we proved that a one-sided artinian ring is QF-3 if and only if its double dual functors preserve monomorphisms. Here with the aid of [3] we prove that the double dual functor over an arbitrary ring preserves monomorphisms of left modules if and only if it is a left QF-3' ring. In view of this theorem results in [3] and [4] provide an analogue for QF-3' rings of the Morita-Tachikawa representation theorem for QF-3 rings ([9], Chapter 5). Also we apply it to obtain a characterization of Morita duality between Grothendieck categories that serves to generalize Onodera's theorem [7] that cogenerator rings are self injective, by showing that injectivity is redundant in the classical bimodule characterization of Morita duality for categories of modules.

We denote both the dual functors $\operatorname{Hom}_R(_, R_R)$ and $\operatorname{Hom}_R(_, RR)$ by ()*. Recall that there is a natural transformation $\sigma: 1_{R-Mod} \longrightarrow ()$ **, defined via the usual evaluation maps $\sigma_M: M \longrightarrow M^{**}$. An *R*-module *M* is called *R*-reflexive (*R*-torsionless) in case σ_M is an isomorphism (a monomorphism). Also recall that *R* is left QF-3' if the injective envelope $E(_RR)$ of $_RR$ is *R*-torsionless.

- 1. THEOREM. For any ring R, the following are equivalent:
 - (a) R is left QF-3';
 - (b) The double dual functor ()** preserves monomorphisms in R-Mod;
 - (c) If i: $R \rightarrow E$ is the inclusion of R into its injective envelope E in R-Mod, then i^{**} is a monomorphism.

PROOF. That (b) implies (c) is immediate, and (c) implies (a) is easy (see [3], Proposition 1.2). Assume that R is a left QF-3' ring. Since $E = E(_{R}R)$ is torsionless there is a sequence

$$R \xrightarrow{i} E \xrightarrow{j} R^{x}$$

for some set X where i is the inclusion and j is a monomorphism.

Let $p_x: R^x \longrightarrow R$ be the canonical projections and let $b_x = p_x \circ j \circ i(1) \in R$ for each

Received September 16, 1983.

 $x \in X$. Then if $K = \sum \{b_x R : x \in X\}$ it follows that the left annihilator of K in R is zero. Now suppose $\alpha: M \longrightarrow N$ is a monomorphism in R-Mod and consider the induced sequence

$$N^* \xrightarrow{\alpha^*} M^* \xrightarrow{\beta} \operatorname{Coker} \alpha^* \longrightarrow 0.$$

If $f \in M^*$, then since E is injective there exists $\overline{f} \in \operatorname{Hom}_n(N, E)$ such that $\overline{f} \circ \alpha = i \circ f$. Then considering the diagram

$$\begin{array}{ccc} O \longrightarrow M \xrightarrow{\alpha} N \\ f & & f \\ i & f \\ R \longrightarrow E \longrightarrow R^{x} \xrightarrow{p_{x}} R \end{array}$$

it follows easily that

$$\alpha^*(p_x \circ j \circ \bar{f}) = p_x \circ j \circ \bar{f} \circ \alpha = p_x \circ j \circ i \circ f = fb_x.$$

Hence $M^*K \subseteq \text{Im } \alpha^*$ so (Coker α^*) $K = \beta(M^*K) = 0$. Thus if $\phi \in (\text{Coker } \alpha^*)^*$ we have $\phi(\operatorname{Coker} \alpha^*)K = \phi((\operatorname{Coker} \alpha^*)K) = 0$ so, since the left annihilator of K is zero, $\phi=0$. But then since (Coker α^*)*=0 we see that $M^{**} \xrightarrow{\alpha} N^{**}$ is monic.

The following theorem follows immediately from ([3], Theorem 1.4) and Theorem 1.

- 2.THEOREM. For any ring R, the following are equivalent:
 - (1) R is left QF-3' and its own maximal left quotient ring;

 - (2) The double dual functor ()** is left exact on R-Mod;
 (3) If 0→R→E₁→E₂ is exact with E₁ and E₂ injective in R-Mod then 0→R→E₁**→E₂** is also exact.

Let $D: \mathfrak{a} \xrightarrow{\longrightarrow} \mathfrak{a}': D'$ be a pair of contravariant functors between abelian categories a and a' that are adjoint on the right, i.e., there are isomorphisms

 $\eta_{A,A'}$: Hom_a $(A, D'(A')) \longrightarrow$ Hom_{a'}(A', D(A)),

natural in $A \in |\mathfrak{a}|$ and $A' \in |\mathfrak{a}'|$. Associated with η_A , $_{A'}$ are the arrows of right adjunction $\tau: 1_{\mathfrak{a}} \longrightarrow D'D$ and $\tau': 1_{\mathfrak{a}'} \longrightarrow DD'$ defined by $\tau_A = \eta^{-1}{}_A, \ {}_{D(A)}(1_{D(A)})$ and $\tau'_{A'}$ $=\eta_{D'(A')}, A'(1_{D'(A')}),$ respectively. These satisfy, for each $A \in |\mathfrak{a}|, A' \in |\mathfrak{a}'|,$

$$D(\tau_A) \circ \tau'_{D(A)} = \mathbb{1}_{D(A)}$$
 and $D'(\tau'_{A'}) \circ \tau_{D'(A')} = \mathbb{1}_{D'(A')}$.

We recall that any pair of such functors $D: \mathfrak{a} \longleftrightarrow \mathfrak{a}': D'$ which are adjoint on the right are left exact ([8], Corollary 3.2.3).

We call an object A of a (A' of a') reflexive (respectively, torsionless) in case $\tau_A(\tau'_{A'})$ is an isomorphism (respectively, a monomorphism); and we note that (as in [1], Section 23) D and D' define a duality between the *full subcategories of* reflexive objects $a_0 \subseteq a$ and $a'_0 \subseteq a'$. Then as in [3] we say that the pair $D: a \rightleftharpoons a': D'$ defines a *Morita duality* in case D and D' are exact and the subcategories $a_0 \subseteq a$ and $a_0' \subseteq a$, are closed under subobjects and quotient objects and contain sets of generators for a and a', respectively.

According to ([3], Proposition 2. 3) the functors D and D' of a Morita duality are faithful as well as exact. We shall now show that these conditions imply the closure condition for reflexive objects (as is well known if \mathfrak{a} and \mathfrak{a}' are module categories).

3. LEMMA. Let $D: \alpha = \alpha': D$ be a right adjoint pair of contravariant functors between abelian categories. Then D and D' are faithful if and only if all objects in α and α' are torsionless.

PROOF. If D is faithful and $0 \longrightarrow K \xrightarrow{f} A \xrightarrow{\tau_A} D'D(A)$ is exact, then since $D(\tau_A) \circ \tau'_{D(A)} = \mathbb{1}_{D(A)}, D(f) = 0$ so f = 0 also. On the other hand, if all objects of A are torsionless and $f \in \operatorname{Hom}_{\mathfrak{a}}(A, B), f \neq 0$, then $D'D(f) \circ \tau_A = \tau_B \circ f \neq 0$ so $D'D(f) \neq 0$, hence $D(f) \neq 0$, so D is faithful.

4. PROPOSITION. A right adjoint pair of contravariant functors $D: \mathfrak{a} \rightleftharpoons \mathfrak{a}': D'$ between abelian categories defines a Morita duality if and only if \mathfrak{a} and \mathfrak{a}' contain generating sets of reflexive objects and D and D' are faithful and exact.

PROOF. From Lemma 3 and exactness we obtain a commutative diagram

$$0 \qquad 0 \qquad 0 \qquad 0 \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad 0 \\ 0 \longrightarrow A \qquad \longrightarrow \qquad B_0 \qquad \longrightarrow \qquad C \longrightarrow \qquad 0 \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad 0 \\ 0 \longrightarrow D'D(A) \longrightarrow D'D(B_0) \longrightarrow D'D(C) \longrightarrow \\ 0 \\ 0$$

with exact rows and columns when B_0 is reflexive. Thus the Five Lemma apples.

We don't know whether, in the presence of reflexive generating sets, the closure properties for a_0 and a_0' imply that D and D' are exact and faithful. Of course they do if a and a' are the categories of modules over a pair of rings (or even if they are functor categories [10]).

We now turn to the general setting of contravariant functors $D: \mathfrak{a} \longrightarrow \mathfrak{a}': D'$, adjoint on the right, where \mathfrak{a} and \mathfrak{a}' are Grothendieck categories. With \mathfrak{a}_0 and \mathfrak{a}_0' as above we assume that these contain generators $V \in \mathfrak{a}_0$, $V' \in \mathfrak{a}_0'$. Then letting $U = V \oplus D'V'$ and $U' = V' \oplus DV$ (so that $DU \cong U'$ and $D'U' \cong U$), $R = \operatorname{End}_{\mathfrak{a}}(U)$ ($\cong \operatorname{End}_{\mathfrak{a}'}(U')^{\operatorname{op}}$), $S = \operatorname{Hom}_{\mathfrak{a}}(U_{,-})$ and $S' = \operatorname{Hom}_{\mathfrak{a}'}(U', ..)$, we have, as in ([6], Theorem 8.1) and ([3], Theorem 3.1), functors

$$\begin{array}{c} R \text{-Mod} \quad \frac{T}{\overleftarrow{S}} \quad \mathfrak{a} \\ ()^{*} \downarrow \uparrow ()^{*} \quad D \downarrow \uparrow D' \\ Mod \text{-} R \quad \frac{T'}{\overleftarrow{S'}} \quad \mathfrak{a'} \end{array}$$

where T(T') is a left adjoint of S(S'), T and T' are exact, and TS and T'S' are equivalent to the identity functors on \mathfrak{a} and \mathfrak{a}' , respectively. Also, as in ([3], Theorem 3.1), $S' \circ D \circ T \cong ()^*$ and $S \circ D' \circ T' \cong ()^*$ so $D \circ T \cong T' \circ ()^*$ and $D' \circ T' \cong T \circ ()^*$. Thus Ker $T' \subseteq \text{Ker}()^*$ and Ker $T \subseteq \text{Ker}()^*$.

5. LEMMA. Let D, D', a, a', U, U' and R be as above. Then the following are equivalent:

- (a) D and D' are faithful;
- (b) U and U' are cogenerators in \mathfrak{a} and \mathfrak{a}' , respectively;
- (c) Ker $T = Ker()^*$ and Ker $T' = Ker()^*$.

PROOF. If $\alpha \in \text{Hom}_{a}(A, B)$, we have a commutative square

$$\begin{array}{c} \underset{\alpha}{\cong} & \underset{\alpha'}{\operatorname{Hom}_{\mathfrak{a}'}(A, U) \longrightarrow \operatorname{Hom}_{\mathfrak{a}'}(U', DA)} \\ & \underset{\alpha}{\operatorname{Hom}_{\mathfrak{a}}(B, U)} & \underset{\alpha'}{\longrightarrow} & \underset{\alpha'}{\operatorname{Hom}_{\mathfrak{a}'}(U', DB)} \end{array} \end{array}$$

Now $D(\alpha) \neq 0$ if and only if $\operatorname{Hom}(U', D(\alpha)) \neq 0$ (since U' is a generator) if and only if $\operatorname{Hom}(\alpha, U) \neq 0$. It follows that (a) and (b) are equivalent. Now since $D \circ T \cong T' \circ$ ()*, and $D' \circ T' \cong T \circ$ ()*, it is clear that if D and D' are faithful, then Ker T =Ker $D \circ T = \operatorname{Ker} T' \circ$ ()* $\subseteq \operatorname{Ker}($)* and similarly Ker $T' \subseteq \operatorname{Ker}($)*. Thus (a) implies (c). Suppose Ker $T = \operatorname{Ker}($)*. If $\alpha \in \operatorname{Hom}_{\mathfrak{c}}(A, B)$ and $D(\alpha) = 0$, then $(S(\alpha))^* \cong S'DTS(\alpha)$ $\cong S'D(\alpha) = 0$ so $\alpha \cong TS(\alpha) = 0$, also. Thus (c) implies (a).

We denote the full subcategories of *R*-Mod and Mod-*R* whose objects are the torsion modules, i. e., those modules *M* with $M^*=0$, by *R*-Tors and Tors-*R*, respectively. Then, if *R* is QF-3', an *R*-module *M* is torsion if and only if Hom (M, E(R))=0, and *R*-Tors and Tors-*R* are then localizing subcategories of *R*-Mod and Mod-*R*, respectively (see [3], Proposition 1.1).

6. THEOREM. Every right adjoint pair of contravariant faithful functors

 $D: \mathfrak{a} \xrightarrow{} \mathfrak{a}': D'$ between Grothendieck categories with reflexive generators defines a Morita duality.

PROOF. Suppose that $D: \mathfrak{a} \longrightarrow \mathfrak{a}': D', U, U', R, T$, and T' are as in Lemma 5 and that D and D' are faithful. Then by Lemma 5, U and U' are generatorcogenerators, so by Morita's ([6], Theorems 8.3 and 5.6) R is QF-3' and its own maximal quotient ring. (See also [8], Theorem 4.13.4 or [5], Proposition 4.3.1). Thus by Theorem 2 the R-double duals are left exact. But by Lemma 5 we also have Ker $T = \text{Ker}()^*$ so by ([8], Theorem 4.4.9) we may identify $T: R-\text{Mod} \longrightarrow$ \mathfrak{a}' and $T': \text{Mod}-R \longrightarrow \mathfrak{a}'$ with the canonical functors $T: R-\text{Mod} \longrightarrow R-\text{Mod}/R$ -Tors and T': Mod-R/Tors-R and conclude that (D, D') define a Morita duality by ([3], Theorem 2.6).

Specializing Theorem 6 to the case of module categories yields the following generalization of Onodera's theorem that cogenerator rings are injective [7] and provides a new characterization of Morita duality between categories of modules.

7. COROLLARY. If R and S are rings and $_{R}U_{S}$ is a bimodule with $S=\text{End}(_{R}U)$ and $R=\text{End}(U_{S})$ and if $_{R}U$ and U_{S} are cogenerators, then $_{R}U$ and U_{S} are injective.

PROOF. Apply Theorem 6 to the functors $D = \text{Hom}_{R(-, U)}$ and $D' = \text{Hom}_{S(-, U)}$.

8. Remarks.

(1) One can apply the technique used to prove Theorem 1 to the sequence $i \xrightarrow{j} E({}_{R}U) \xrightarrow{j} U^{X}$ to give a direct proof that if ${}_{R}U_{S}$ a balanced bimodule and ${}_{R}U$ and U_{S} are cogenerators, then ${}_{R}U$ is injective.

(2) In ([4], Theorem 1), conditions (i) and (ii) and the last part of (iii) easily imply that R is QF-3' so by Theorem 1, as we speculated in ([4], Remark (a)), we can delete the first part of condition (iii) from the statement of that theorem; in view of Theorems 1 and 2 and ([3], Theorem 3.1) it now becomes an analogue for QF-3' rings of the Morita-Tachikawa representation theorems for QF-3 rings ([9], Theorems 5.3 and 5.8).

References

- [1] Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules, New York-Heiderberg-Berlin: Springer-Verlag, 1974.
- [2] Colby, R. R. and Fuller, K. R., Exactness of the double dual, Proc. Amer. Math. Soc. 82 (1981), 521-526.
- [3] Colby, R.R. and Fuller, K.R., Exactness of the double dual and Morita duality for Grothendieck categories, J. Algebra 82 (1983), 546-558.
- [4] Colby, R.R. and Fuller, K.R., On rings whose double dual functors preserve monomorphisms, J. Pure Appl. Algebra 28 (1983), 223-234.

- [5] Lambek, J., Lectures on Rings and Modules, Waltham-Toronto-London: Gin/Blaisdell, 1966.
- [6] Morita, K., Localization in categories of modules I, Math. Z. 114 (1970), 121-144.
- [7] Onodera, T., Uber Kogeneratoren, Arch. Math. 19 (1968), 402-410
- [8] Popescu, N., Abelian Categories with Applications to Rings and Modules, New York-London: Academic Press, 1973.
- [9] Tachikawa, H., Quasi-Frobenius Rings and Generalizations, Springer-Verlag Lecture Notes in Math., **351** (1973).
- [10] Yamagata, K., On Morita duality for additive group-valued functors, Comm. in Algebra 7 (1979), 367-392.

The University of Hawaii Honolulu, Hawaii 96822 U.S.A.

The University of Iowa Iowa City, Iowa 52242 U.S.A.