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V-RINGS RELATIVE TO HEREDITARY

TORSION THEORIES

By

Yasuhiko Takehana

A ring R is called a right V-ring in case every simple right i?-module is

injective. Villamayor has characterized a right V-ring as one each right ideal

of which is an intersection of maximal right ideals. The main purpose of this

paper is to give torsion theoreticalgeneralizations of right V-rings. Theorem 2

generalizes Theorem 2.1 in [6], stating that any simple module in 2" is £T-

injective if and only if /(M)=0 holds for any Min 2", where 2* denotes a class

of modules closed under cyclic submodules, homomorphic images and extensions.

Applying Theorem 2 for the Goldie and the Lambek torsion theories, we

obtain Corollaries 5 and 6. We consider in Corollary 5 a ring R (called a right

V(G)-ring) for which every singular simple right R-module is injective, and in

Corollary 6 a right V(L)-ring for which every dense right ideal is an inter-

section of maximal right ideals. We characterize V-rings in terms of V(G)-

rings or V(L)-rings in Proposition 8 which is closely related to Theorem 8 in

[7]. In Theorem 9 it is proved that commutative V(G)-rings turn out to be

V-rings. In this connection two examples are given to show that neither com-

mutative V(L)-rings nor V(G)-rings are V-rings.

Throughout this paper R is a ring with a unit, every right R-module is

unital and Mod-j? is the category of right i?-modules. For a right i?-module

M, Z(M), E{M) and J{M) denote the singular submodule of M, the injective

hull of M and the intersection of all maximal submodules of M. A right R-

module M is called 2"-injectivefor a subclass 2" of Mod-i? if Homfi(―, M) pre-

serves the exactness for every exact sequence of right i?-modules Q-*A^B―>C

―0 with Ce2＼

Lemma 1. A right R-module M is %-injectiveif and only if Homfl(―, M)

preserves the exactness for every exact sequence O-^I-+R―>R/I-^O with i?//e£r,

where 1 denotes a subclass of Mod-i? closed under cyclic submodules and cyclic

homomorphic images.
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Proof. This is proved similarly as in the well known proof of Baer's

criterion for injectivity.

The following theorem including its proof is a slight modification of Theorem

2.1 in [61.

Theorem 2. Let 3* denote a subclass of Mod-i? closed under cyclic sub-

modules, homomorphic images and extensions. Then the following conditions,are

equivalent.

(1) Any simple module in 3* is S'-injective.

(2) /(M)=0 holds for any M in 3".

(3) // / is a right ideal of R with R/I in 1, then I is an intersection of

maximal right ideals of R.

Proof. (1)―K2): Let M in ST and O^xgM. By Zorn's lemma there is a

submodule Y of M which is maximal among the submodules X of M with x$X

Let Z>=y+xi?. Then D/Y is a simple submodule of M/Y with D/7 and M/Y

in ff. Then by (1) M/Y = (D/Y)fB(K/Y) for some submodule K of M containing

y. Since O^x+FeD/F, we have xCif, and so K~Y by the maximality of

Y. We conclude that 7 is a maximal submodule of M and x&Y.

(2) -> (3): Obvious.

(3) -> (1): Let I be a right ideal of R with R/I in 3＼ S a simple module

in ET and /eHomfl(J, S). In view of Lemma 1, it sufficesto show that / has

an extension R―*S. We may assume / is an epimorphism. Putting i£=Ker (/),

we have R/K^ 3", for I/K and R/I are in 9" and 3* is closed under extensions.

Thus by the assumption there exists a maximal right ideal L of R with LZDK

and £,£/. Then L+I=R and Lr＼I=K, and so R/K=(L/K)R(I/K). It now

easily follows that / has an extension R-+S.

We call a ring satisfying the equivalent conditions of the preceding theorem

a right V(3")-ring.

Corollary 3. Let R be a right V($)-ring and 1 a hereditary torsion class

of Mod-/?. Then L2~L holds for any right ideal L of R with R/L in ST.

Proof. Since L/(L2) is a homomorphic image of a direct sum of copies of

R/L, L/(L2)e£T. As 2" is a closed under extensions, R/(LZ) is in 3", and so L2

is an intersection of maximal right ideals of R by the preceding theorem. It

now follows from the same argument as in the proof of Corollary 2.2 in [6]

that L2=L holds.
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As is easily seen from Theorem 2.4 in [4], a ring R is a right noetherian

V-ring if and only if every semisimple right i?-module is injective. This result

can be generalized as follows (The proof of (2)―≫(1)of the following proposition

is a modification of the proof of (4)―>(2)in [4, Theorem 2.41).

Proposition 4. Let 3* denote a hereditary torsion class of Mod-i? and X =

―{IdR; i?//e3"}. Then the following conditions are equivalent.

(1) R is a right Y(ST)-ring and X satisfiesthe ascending chain conditions.

(2) Every semisimple module in £Tis 'H-injective.

Proof. (1)―>(2): This follows from Theorem 2 together with Proposition

14.2 of [3].

(2)―Kl): In view of Theorem 2 it suffices to prove that X satisfiesthe

ascending chain conditions. Suppose that

h^I&h ^Ij^

is a strictlyascending chain in X and I=^JIj. Since R is a V(£T)-ring,for each

j, there exists a maximal right ideal Lj of R with Lj^Ij-1 and LfMIj. Putting

Hj=Ljr＼Ij, we have Ijl^HjULlj-i and Ij/Hj is a simple module in 3", for Ij/Hj

is a homomorphic image of /?//,-_i. Thus the sequence Q-*Ij/Hj-*I/Hj―>I/Ij―>0

splitsby the assumption, and so there exists a canonical projection hj: I―*I/Hj

-^Ij/Hj for each j. Let / denote a mapping from / to 0(/,-///,-)defined by

f(x) ―{hj{x)) for xg/, Since hi(x)―0 for x^eHj and />/, / is of course well

defined. By the assumption, R(///i//) is £T-injective,and so / is extended to a

mapping from R to c(/,/#>) since R/I is in £T. But ^(l)e(/1///1)c(/2/^2)c

･･･(&(Ij/Hj) for some /. This contradicts to the fact that hi(x)±?0 for each i

and x^Ii―Hi.

Recall a fundamental property of the Goldie or the Lambek torsion theory.

For their definitionssee [3]. Letting G(M) (L(M)) denote the Goldie (the Lam-

bek) torsion submodule of a right R-module M, respectively, there hold for a

module M (1) G and L are left exact radicals, (2) G(M)/Z(M) = Z(M/Z(M)),

(3) G(M)=M (L(M)=M) if and only if Z(M) is large in M(Hom*(M, E(R))=0),

(4) Z(M)-DL(M), (5) if Z(R)=0 then G(M)=Z(M)=L(M) and (6) if M is ff-

injective then M is injective, where 2"= {MeMod-i?; G(M)=M}.

Now we apply Theorem 2 for the Goldie or the Lambek torsion class.

COROLLARY 5. The following conditionsare equivalent.

(1) Any singularsimple right R-module is injective.

(2) J(M)=0 holdsfor each right R-module M with Z(M) large in M,
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(3) // / is a right ideal of R with Z(R/I) large in R/I, then I is an inter-

section of maximal right ideals of R.

A right ideal / of R is called dense if UomR(R/I, E(R))=0.

Corollary 6. The following conditions are equivalent.

(1) // S is a simple right R-module with HomR(5, i?)=0 and I a dense right

ideal of R, then for any /eHomB(J, S),f is extended to a mapping from R into S.

(2) /(M) = 0 holds for any right R-module M with HomR(M, E(R))=0.

(3) Any dense right ideal of R is an intersection of maximal right ideals

of R.

Corollary 7. Suppose that Z(RR)=0, then the following conditions are

equivalent.

(1) // S is a simple right R-module with Homs(S, R)―0, then S is injective.

(2) J(M)=0 holds for any singular right R-module M.

(3) Any large right ideal of R is an intersection of maximal right ideals

of R.

Proof. This follows from Corollaries 5 and 6 together with the fact that

if Z(Rr)=0, then the Lambek torsion theory coincides with the Goldie torsion

theory.

We call a ring satisfying the equivalent conditions of Corollary 5 (Corollary

6) a right V(G)-ring (a right V(L)-ring) respectively. It is clear that right V(G)-

rings are right V(L)-rings.

Proposition 8. The following assertions hold.

(1) R is a right V-ring if and only if R is a right V(G)-ring and every

minimal right ideal of R is injective.

(2) R is a right and left Y-ring if and only if R is a right and left V(L)-

ring with Z(RR) ―Z(RR)~0 and every minimal one-sided ideal of R is injective.

Proof. (1) The "only if" part is clear. For the "if" part it is sufficient

to observe that /(M)=0 holds for each cyclic singular right R-module M in

view of Theorem 8 in [1]. But this is a direct consequence of Corollary 5.

(2) It is well known that the left Goldie torsion theory coincides with the

left Lambek torsion theory in case R is left nonsingular. On the other hand,

each right V-ring is left nonsingular by Lemma 2.3 in [6]. Thus (2) follows

from (1).
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Next we consider commutative V(G)-rings.

Theorem 9. Each commutative V(G)-ring is a V-ring.

Proof. It is well known that if R is commutative, then R is a V-ring if

and only if R is a Von-Neumann regular ring. It is sufficient to prove that

F=I holds for every right ideal / of R. If / is a large right ideal of R, then

P―I holds by an application of Corollary 3 for the Goldie torsion theory. Now

let L be a right ideal of R and / a complement of L in R (i.e. J is maximal

in {JdR; /n£=0}). Then it is well known that L+J is large in R. Thus

L-＼-J=(L+J)2=L2+J-L + L-J+J2=L*+J2, and so L2=L as desired.

The following example is given to show that V(G)-rings are not necessarily

V-rings.

Example 1. Let k be a field, /?=(*
°＼

M=(k,
I)

and K=(°.
[).

Then it is easily verified that M is a unique proper large right ideal of the ring

R and Z(i?)=0. Since M is a maximal right ideal of R, R is a V(G)-ring by

Corollary 7. But J(R) = Mr＼K*0, and so R is not a V-ring.

In Theorem 8 in [7], R. Yue Chi Ming showed that R is a V-ring if and

only if R satisfiesthe following conditions (1) /(M)=0 holds for any cyclic

singular right i?-module M and (2) every minimal right ideal is injective. It is

easily verifiedthat the above condition (1) is equivalent to the condition (3) of

Corollary 7.

The following example shows that a ring satisfying the condition (1) above

is not always a V(G)-ring and a commutative V(L)-ring is not always a V-ring.

Example 2. Let He a field,R=U^
b);

a, b^k＼ and M=(°n
kn).

Then
l＼0 at J ＼fl 0/

R is a commutative ring and has only one non-trivialright ideal M. Since J(R)

= Z(R)―M^0, R is not a V-ring. It is clear that R is a V(L)-ring and satisfies

the condition (3) of Corollarv 7.

Finally we consider another generalization of V-rings which is suggested

by Theorem 6 in [7].

Theorem 10. Let 2" denote a subclass of Mod-i? closed under cyclic sub-

modules and homomorphic images. Then the following conditions are equivalent.

(1) Any simple right R-module is 1-injective.

(2) J(N)=0 holds for any right R-module N such that there exists a simple

submodule S of N with N/S in £T.
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(3) // K is a maximal right subideal of a right ideal P of R with R/P in

£T,then K is an intersection of maximal right ideals of R.

Proof. (1)―K2): Let TV be a module and S a simple submodule of N with

N/S in <T. Then it is similarly proved as in the proof of Theorem 2 that

J(N/S)=0. By the assumption, N=S£&H holds for some submodule H (^N/S)

of N. Thus /(/V)g/(S)c/(f/)=0, as desired.

(2)―(3): Obvious.

(3)―>(1):It is similarly proved as in the proof of (3)―>-(l)of Theorem 2.

COROLLARY 11. The following conditions are equivalent.

(1) Any simple right R-module is injective.

(2) J(N)~0 holds for any right R-module N such that there existsa simple

suhmodule S with Z(N/S)=N/S.

(3) // K is a maximal right subideal of a large right ideal P of R, then K

is an intersection of maximal right ideals of R.

Proof. Put 2-={Me:Mod-Z?: Z(M) = M＼ in Theorem 10.
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