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ALMOST-PRIMES IN ARITHMETIC PROGRESSIONS
AND SHORT INTERVALS

By

Hiroshi MIKAWA

1. Introduction.

In 1936, P. Turan [9] showed, under the generalized Riemann hypothesis,
there exists a prime p such that

p=a (modq), p=q (logg)***

for almost-all reduced classes a (modg). The terminology almost-all means that
the number of exceptional reduced classes modg is o(¢(g)) as g—oo. Y. Moto-
hashi [6] considered the corresponding problem for almost-primes. Let P,
denote integers with at most two prime factors, multiple factors being counted
multiplicity. He proved that there exists a P, such that

P,=a (modgq), P=Zqg"'*

for almost-all reduced classes a modg. Moreover he remarked, assuming the
g-analogue of Lindel6f hypothesis, the exponent 11/10 may be replaced by 1+e,
e>0.

It is the first purpose of this paper to make an improvement upon this
result. Let g(x) denote any positive function such that g(x)—oco as x—oco.

THEOREM 1. There exists a P, such that
P,=a (modq), P.=g(g)q(logg)’

for almost-all reduced classes a modgq.

In 1943, A. Selberg [8] showed, under the Riemann hypothesis, there exists
a prime in the intervals
(n, n+g(n)log n)*]

for almost-all n. Here almost-all means that the number of exceptional n’s not
exceeding x is o(x) as x—oo,
Several authors considered the analogous problem for P,. Thus D.R. Heath-
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Brown [3] proved that there exists a P, in the intervals
(n, n+n1/11+s]

for almost-all n. Motohashi [7] replaced the exponent 1/114¢ by &, by a
simple analytic trick. He noted that his method does not work on the above
mentioned problem in arithmetic progressions. D. Wolke [10] reduced the
length of intervals to the powers of logn. By refining Wolke’s argument,
G. Harman [2] showed that there exists a P, in the intervals (n, n+(log n)™]
for almost-all .

Our second aim is to make a small improvement upon this result.

THEOREM 2. There exists a P, in the intervals

(n, n+g(n)log n)*]
for almost-all n.

In contrast to [7][10][2], we appeal to Sieve method which is used in [6]
[3]. Our treatment of the remainder terms from Sieve estimate is different
from [6][3]. We use C. Hooley’s technique [4] to deal with a bilinear form
for the remainder terms, which is due to H. Iwaniec [5].

We use the standard notation in number theory. Especially, 7, used in

. 7 _ . 7
either < or congruence (mods), means that 7»=1 (mods). *in 3} = stands for
a=1

the restriction (g, ¢)=1. n~N means NN, <n<N,<2N for some N, and N,.
¢, and ¢, denote certain positive absolute constants. & denotes a small positive
constant and the constants implied in the symbols € and O depend only on e.

I would like to thank Professor S. Uchiyama for encouragement and careful
reading the original manuscript. I would also thank the referee for making
the paper easier to read.

2. Lemmas.

Firstly we state the inequality for the linear sieve. See [5] and [1]. Let
A be a finite sequence of integers and @ be a set of primes. Put, for d=1,
z>2,
P(z)= };Izp’ Ag={ned: n=0mod d)}
PELP

and
S(4, @, 2)=|{ned: (n, P(z))=1}].

Suppose that | A;] has the approximation
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w(d)
d

[ Al = X+r(A4, d)

where X is some positive number independent of d, and @(d) is multiplicative.
Moreover we assume that, for any 2<w<z,

_o(p) logz ¢ K
w{pléz(l P )é log w \1+ log w )’

and

o(p*) L
w zaz a = Iog3w
525 = P

with some constants K, L>1. Write

’

_ _ o)
V(z)—l?].e;[él 5 )

LEMMA 1. Let 2>2, D>2. For any >0 we have
S(A, @, )V X{F(s)+E}+R*
S(A, @, )2V (@ X{f(s)—E}—R~

where s=log D/logz, E=cn+0((log D)™'®) with some constant c. The functions
F(s) and f(s) are the continuous solutions of some system of differential-difference

equations. In particular,

sF(s)=2e" (0<s<3)
0 0<s£2)

sf (s)={
2¢"log (s—1) 2<sg4)

where 1 is the Fuler constant. The remainder term R* has the form

R*= Z 8 i(D, 7?)7'(1.4, d)

diP(z
where the sequence (25)=(25(D, 3)) has the properties:
if d=D,

and, for any M, N>1, MN=D,
A= = > m;‘N an. (M, N, p)bs. (M, N, 1)
=d

i<exp (89~ %) msM
mn

with |an.l, 165 =1,

In our simple cases, the above assumptions are of course satisfied. The
following Lemma 2 is well known. Lemma 3 is the C. Hooley’s version of
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bounds for incomplete Kloosterman sums. See [4] for both lemmas.
1
5

o=_3_ QZ(Z?jO(min (L ﬁ»

where e(x)=e**** and Hxl[:miglx—nl. Moreover,
ne.

LEMMA 2. Let ¢@)=[t]—1t+ For H>2, we have

. 1y
mln(l, —m)ﬁhglcne(ht) s
with

| Cr| €min

log H H )
H ’ |h?

LEMMA 3. We have, for any >0,

m
a—

=, e( d

m~
(m,cd)=1

)<(eXa, d)1/2d1/2+e(1+%).

3. Proof of Theorem 1.

In this section we show the inequality (3.5) below, from which Theorem 1
follows by the routine argument. Our usage of the weighted sieve is standard
and the necessary theory is found in [1, Chapter 9]. So we skipp.

For (e, ¢)=1, ¢=x, put

A={n: x<n=<2x, n=a(modq)}, P={p:p/tq}

and
(o, D=l dal = .
Let a, u, v be the parameters such that
—<u<v, zévéi, u<3. (3.1)
a a

Write D=MN=2x)%, y=(2x)*, z=(2x)°. By Lemma 1, we have
(x5 q, a)=|{P:: x<P,=2x, P,=a(mod¢)}|

log P
> 3 {1—~(3—u)-1 , (—“ng“") 11— 31
= = A
(n.TIL’E(zuiq)=1 HAP=R Ay Og x max(P,Z)S%lein(ZP,y) FEP<y 171126”2

log P
log2x

1122 2 w00 (e D) o 2) )]

=S4, @, H—B—u) D(1~u )DS A, @, -2 31
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log P MN
- —(3— )t - .
B AMNI A D=6 3 (I-uggho)s 8 (=5 ) pe)
- 21
ZEp<y nEA
p2in
-r
B ¢fq) fog s (LH0W0g2)™ N{Cla, w, 1)~ B} +8,—(3—u)"S,—S,, say.

By the factorization property of A3(MN), the following lemma may be
applied to the first remainder term S,.
LEMMA 4. Let (24)=(44(D)) denote any sequence such that
A.=0 if d=D,
(24| =p*(d)
and, for M< x4 N<xV*, MN=D, (4;) has the decompbsitz’an
ENam(l, M, N)b,(l, M, N)

l=sClog D)2 m=M ns
mn=d

Zdz

with laml, 1621 =1. We have
A
zd)—((dgzl dd)%'z(<x(logx)3+<%)x"5.

2
*
a=1

1

2
din
=

.z<n<2a:(
n=alg (@

In the second remainder term S,, with e=mn, we interprete pm as one
Then, we may also apply Lemma 4 to S,. We postpone the proof

variable.
of Lemma 4 until section 5. As to S;, in section 4, we shall show the
following :
x
If {=)<(log x)'*, then we have
f ( q) g x)
xi—e
S e B 1=0(*—)+Ex; 9, @ 3.2)
with
q* . 2 _x_ 1-¢
SHIE; ¢ oI <(T e
11 1 1 1 a 11 -
Now we choose a_TO_4£’ 5—5—45, 7—_1*—8(')-_5’ then the conditions

(3.1) are satisfied and S,<S,. Put
E(x;q, a)=S,—(3—u)"'S,—E,.

Then, by the above argument, we see

q X
S*|E(x; g, @) < x(log x)3+(z)x“5. 3.3)
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Moreover,

ve7{C(a, u, v)—E}

2e" v av—1
—pe T —1— - —_ . -1/8
ve T {log(aev 1)—aulog ” +(au—1)log 2u—1 } ¢:e+0((log x)"1%)

40 11 40 1 s
> i (log3 10 ——log—— i 10 log30> — e+ 0((log x)3) > ——

200 ’
for sufficiently large x and small e. Therefore we have, provided
X
(—q—) <(log )™, 3.4)
. x -1/3
II(x; q, a)>——--—-¢(q)log2x (C+0((log x)"*))+E(x, q, a) (3.5

where C is a positive absolute constant and E(x; g, a) satisfies (3.3).
We shall derive Theorem 1 from the above inequalities (3.5) and (3.3). Put

1 4 .,
=§g((1)f1(logq)5. Obviously we may assume g(g)<(logg), so the condition (3.4)
is satisfied. Let € denote the exceptional set of reduced residue classes, namely,
E={a:! (a q) v Pk P e g(q)q(logq)E} is empty}.

By (3.5), we see a& & unless

C x
|E(x; q, a)| >4 3 W

Thus, by (3.3), we have that

X 2 ) \
(TW> 1Bl < Z1E(xsq, @)

< SEGx;q, @)l

< x(log x)H—(%)x"e ,
or

¢(q)

#(9)'| €| < glg)log x)ox ~ +——(log x)*x~*

Lglpt+g2,
as required.
4, Elementary treatment of remainder terms.

In this section we firstly reduce the proof of Lemma 4 to an estimation of
R below. Next we prove (3.2).
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Put
Aa
Amy= I A, A= Z ,
@ d,p=1
then,
E(x:q, a)= Amy—24
T<ns2x q
n=a(Q)
Now,

BB g, 01°S 3 1EG; ¢ )l

= 3, AW+ 2 S An)An)-22A 5 Am+(T) 44
1IE 22<q

o3, ww)+2 B 8 Am)dn-22a( D k5 N+

z<ni<n 2x x<n52x
< 2 @.h=1

=2 > A(n)/l(n—i—ql)—-q—/lz—}-O(x(log x)s—{—;D(log D))

0Llsx/q a<nser-ql
2
=D(x, q)——xq~—/12+0(x(logx)3+§D(log x)), say. 4.1y
We proceed to consider D(x, ¢).

Dz, )=2 3 > 2 Zdlzdz 2 1

<lsx d n<2z+ql
< /q( ld q) 1 nEo(dl)q
ql=0(dg)
=2 2 2 AaAq, > 1
o<lsz/q (d 1 q) L z/di<ms@x—ql)/dy
142, * =0(d%
@rapit d m+ql/(d1.d2)_o(d2)

where d¥=d.,/(d,, d»), d¥=d,/(d,, d;). Hence we see

D(x, y=M+2R 42
where
M=Mx =2 _% 3 T ety al
- = 0<l$$/q(éilld ’q)z_ “feeTd d,] [dy, d.]
Cdy. dz)ll
_ 2x—ql l dF
R——-R(X: q)_°<l§xq(éiz1d ?12d12d2{¢([d1’ d2]+ (dl, dz)q d;k)
(d1 dg)lL
{ d*
4,
W ey, i) @3

We now consider M. In the next section we shall estimate R.

M= 3 5 Swde s 5 g
@pdpzie [d,, d;] 0<Lsx/q
(d1dg, =1 dg) il
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x? zdlzdz 1 Md sz [
O 1 2
q ‘f?}(izz)iﬂq [d:, ds] (d,, d2) + (x <d‘12¢2)51/q [d;, ds] )

=l ol Bm, e routos

(a, ) 1
_x __,i 2 3
=7 +0( 7 og D) +x(logx)).
Thus, combining this with (4.1) (4.2), we have
S E(x 5 g, )]*<2R+0(x(log x)s+%D(logx)) 4.4)

where R is given by (4.3).
Next we turn to the proof of (3.2). Put

M= T 1, M=%
ppEIn pel p

where I={p: x*<p<x“*"9, p fg}. Then, the left hand side of (3.2) is equal
to

=E(x;q, a)-]—O(-x;—.E) , say.

Moreover we have

éj‘]El(x;q, a)’< él [Ex(x; g, a)|®

I

3 (A= )= )

& 22 {A*(n)z‘*_(_g_)z(A*)z}_;‘_

z<ns22

(B2 22 2 0+HF)

p2in plpzln
X X
(B 225+

<<£xl—s+x’
q
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as required.

5. Proof of Lemma 4.

In this section we estimate R by appealing to Lemma 2 and Lemma 3.
Write (dl, d2)=5, d;k:)h, ;k:)JQ, lzak then

_ 2x— 5kq A
R= ngsglq (sz %31 13”25”2{¢( tke ) ¢( v uz Vy )}
R
We firstly decompose ;. Since p*(0v)=1, we may write
A= 2 2 P aanl, M, N)b.n(I, M, N).
Isog D2 de=d  _ mu=v
T pEmy=1
Thus,
R= PIIIPY R E 2 @aym (s, M, N)beyr (1, M, N)-
0Bks</q I1,lzsQog D)2mySM/dy nys
0. p=1 dyer= mysMid} "2§N/62
dgeg= (miny, mong)=1
(mlnlmgnz =1
p2(ny)=pt(ng) =1
: 2x—0kq min,
Gagmillns My Nbegnfley M, NPt bg 70 )
min,
—¢( 5m,n1m2n2 kg o \)}
< 2 2 (logD)z(0 X sup|Ril,
0<Oksz/q My, MasM
NI N3sN
where

R1:R1(5, ky q; MIJ MZJ Ivly NZ)

2x—5kq 0 min,
= k
= 2 25 8 admam)f b g ki)
2~My n2~N2 .
(ming, mang)=
(mlnlmznz Q= 1

mn,
u2ining =1 — ( +k )}
"2 (‘b 5m1n1‘mznz q MaTly ’

M,, M,, N,, Ny’s run through the powers of 2, and the supremum is taken over

all sequences ai, @, PBi, Bs, such that lail, la.l, |8, |B:/=1. Moreover,

R< 3 3 (logDye@p{, S swlRi+, 3 (MMN.N)}

0<iksz/q MiMoN Ng>zl-2 MiMyNNgsxl-2¢
X
L(log Dy 2 X () sup | Ry|+—x"%. G.D
ag, a
0<Pk=z/9 My, Mégﬁ /}!;,11 NosN 7

M1M2N1N2>11 2¢
Next we apply Lemma 2 to ¢-function in R,. Thus, we see

R,=R;+R,, (52)
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where

RZZE 2 E al(ml)aZ(mZ)[g (nx)ﬂg(nz) m>

my ma ™y nz omyman N, o<inisH ( MaMe
(ming, Mmong)=1
(mynyimang,q) =1

2z-0kq ht
.SZ e( 5m17n2n1?’l2 >dt

1
R:=21 3 3 Xminfl
my; Mg ny mg b mn,
(myng, mong)=1 + q Mman
(minymong,q)=1 el

“ Bmlnxmznz

with x,=x, x,=2x—0kq.
Now we consider R;. By Lemma 2, we have

Rk 22 P > w()r(r)minf1
N G " H frret] +kq~“
< ‘—22 ~M2N L~MZN min( 1,
= r(r,q)2=12 (l,T)1=11 H“ 51’, —l—kq——H
sx® 20 2 [ChllSh)] (5.3)
Jj=1,2 hezZ

where
S(h):S(h N Ml; MZ) Nl: NZ: ])

r~Mnggl~MZlN1 (51 ) (hkq l)

r,@d=1 (,r)=1

We proceed to estimate S(h). Trivially,
S(h)X M, M;N,N,. (5.4)

For h+#0, we get, by partial summation and Lemma 3,

swe 3 ()| 5, e(rkel)|

il 2 2 OM\Nyr /1~y
= =1
hx 1/2,1/2+¢/2 MlNl
AV —
q
(hk, r)?
/2 1/2 l/2 _
<<(l+ MleNlNg ) (r~M2N (hk,7) +M, N1r~1;1221v2 ri/2 )

<<(I+jw—lA}:TCV,I—AB—>;CEIZ(T’W%N;glir’7’_))1/2{(;7,2)112_HMlNl(Z l)uz}
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hx € 3/2 1/2
(g ) VN MUN N (5.5)
since
ngNM<f<m) log N.

In conjunction with (5.3) (5.4) (5.5), we have

Ri<x MMNN(Col + 33 1Cal)

HMaN o

MNP MNGOMNDR), 3 [ Cal (14—
0<I R SHM N, M,M,N,N,

log H H
<<x5M1M2N1N2( Oi[ +h>HM2N2—hT
Hx )

log H
LN P MNOLNY ] 5 =22 TN
1 24V14V2

o<nsn H

(1+

1
+H<h§2HM2N2H(F+ hMll\/ZNlNz )}

log H 1
H TN,

< x*M,M,N,N, VRPN

Hx
172 2

+ MuN(M N log (14— 35w )

Now, we choose

_ MlMgNlNz

1-4
x €

H

then we see H>2 since M,M,N,N,>x'"% in (5.1). Thus, we have

Ry &L x8(x* %+ M, Ny)+x (M, Np)* 124+ My Ny (M2 N,) ) (log x)° x*¢,
or
sup| Rs| € x1 2+ x*MN+x"*(MN)*2 L x' 7%, (5.6)
since MN<x*3-",
We turn to R,. We shall show sup|R,|«x*-%*/%, from which Lemma 4
follows. Actually, by (5.1) (5.2) (5.6), we then get

R<(log DY 3 3 «(8)*sup(|Ral +| R3!)+-g-x"‘<<£x“‘.

q
Now,
1 22 -3kq/dmmy
Ry=rrr 2 3 a;(ml)az(mz)g 2 3 Pu(ni)Ba(ne)
1Ng my mg z/fmimg 0<\RISH ny ng
(my, mg)=1 (miny, mang)=1
(mimg,q)=1 (ning, =1

p£2(ning)=1
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. Mg—e( h )-e(h kq%)dt

NN niNy
1 22 /0M My 1\[11\]2 ht
< NlNz «n% 1721.]2 Sz/«iMle 0<hs=H n; ;ﬁ (711)['32(712) ( NN,
(my, mg)=1 (ming, mong)= 1
(mg,q@)=1 (n1ng,q)=1
22(ning =1
_ 1 2r/6MyMy min, )
- N1N2 Sz/éﬁMlMg my ng ; 7121 22 Chnxnz(t) (hkq Idt (5.7)

where |cpa 2,0 1.
We proceed to consider the sum

S=S¢; q, k; M,, M,, N, N,)

=238 2 2 cnnn0-e(hkg m"“)z

mymgl b nmy ng

Ty o 2 A2 ch1"1"2(t)5h2"3"4(t) 2 X e(kq(h1 gty —h, L ))

0<hy,hosH my ng nmg ny my mg MmaNy MaNy
(ny,ng)=(ng, ny)=1 (miny, mong)=1
(n1ngngny, Q=1 (myng, mang) =1
22(nyng)=p2ngny)=1 (mg,@)=1
Put
* n4 Sk 1 ?’lz
b=h,(m;n,) —hy(myns)
(n3, ng) (n1, n4) (ny, ny) (ns, )
where
(myn)*mym =1 (modma,n,),
(myngy**myns=1 (modm,n,),
then

N3 N ny e
————————— —hy(mng)** myn
(712, ns) (nl) n4) v e (nh 714) (nZ; nﬂ)

maninsb="h,(m,n,)*mn,

N N ny Ny Ny Ny
=h —h mod m
! (ng, n5) (71, n4) ? (n1, ny) (13, 1) ( : (ns, ny) (1, nA))
=/, say.

Thus, we see

mn mn mynn
' 1461 '—hg 17t3 El 1701763 (mOd 1) ,
Moty MaNy 2 Ny

m.
2 (ng, ns) (m1, ny)

Since p*(niny)=p*(nsn)=1, (mn,, men)=(mns, myn,)=1. Therefore we may
write
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- min, N
S= 3 S B @ ® D B (kg0
0y, heSH  nj(=1,2,3,4) my my d
hyngng—hgning=1ling, ny) (ng, ng)
Mmongna=d(ny, ny (ng, ng)

minyng
=500 > D B > i e hqi 2R
1 R nju=nzs0 myp ni~Hy d
(ng nz) (n3, ng)=1 (my,d(ny, ngd(ng, ng)=1

hlﬂsﬂrhzmﬂrl(n: n4)(n2-na)
Mmonang=d(ny, nyg)(ng, N3
@,=1

For [#+0, we apply Lemma 3.
SCT P DMt R D R R (el diran(1+)

hy hg nj
h1n3m4—hgn1n2 hyngng—hgning=l(ny, ny (ng, n3)¢0
Myngng= d(nql) n4) (ng,ng)

1/2
MM, 3 s S{E S0 oy, g 3 0T
r~HNiNg r1 e

nj mg nj mg d“z
kL, d) \1/2 1/2 1/2
< HMMN N2 3 2 (5 5550 (5 50) "1 £ 21)").
hi he hj mg nj mg nj mg
Here, by an elementary argument, we easily see that

kl, d
55y kL 4) (&, d) - )
nj mg

2 S d*(MNY'Ni,

nj My
and
22 1IKM,N3NE.

nj mg
Thus,
S x HM M, N, No+x H¥ N M N2+ M MY*NN,)
Lx HYx'“+NUM N P+M MY NIN,). (5.9)

Hence, in conjunction with (5.7) (5.8) (5.9), we have

22 /6M My 1/2
2121) (S)2dt

R2<< NlNz S J40M Mo\ my mg

X
SSMMNN,

X0 MMy x4+ MuMy(N UM N DY+ M MR N N}

{MiM,- x*H* x4+ N{MND 2+ M M > NN, } 2

Since MZx'%~%, N<x'*°, we get

sup| Ry | € x%/2 (M2 x4+ M TN 2 31 -3¢/
as required.
This completes our proof of Theorem 1.
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6. Proof of Theorem 2.

In this section we give a brief proof of Theorem 2. We may easily modify
the proof of Theorem 1. Put

A
Am= 54, A=3-F

where 2,’s satisfy the conditions in Lemma 4. Moreover, for x<y=2x,
A=A(x)>2, write

E(y, )= 3 A'(n)—AA'.
y-b<n=y
Then we have

2z
|7 1EG, &)1y

min(2z, n+A4) min(2z, ny+48, 729+4)
— 10 )\2
= 3 A dy+ 3 3 A(n)A'(ny) y
z-A<ns2z max(Zz, n) z—A<ny, nys2x max(Zz, %y, Ng)
n1#nN2
Inj—nalsA

min(2z, n+4)
YV A'(n)S oy A

T-AL<Nn<22 max(zx,

min(2z, n+4)

=o(_ 3 a2 3 3 AwAata

0<asA x~-AL<ns2z~a max(z,n+a)

—ZAA'{

z

S Am)-A+0( 3 z-(n)-A)}+AZ(A')2((x—A)+A)
<NS2x-A z—A%nsx

or 2x—A<n=s2

=0(Ax(log ¥})+2 3 { 5, w4 (n+a)a—a)

<asA lz<n<2

+O(m - Rgzgx_ar(nﬁ(ndra)-m} —28%(A){2 24(

+O0Q° %)+ AN A" (x—A4)
=0(Ax(log x)»)+D'(x, A)—A¥A")*(x —A)+O(A*D(log D)+A%x*), say.

)

z<n -
din

The above D'(n, A) is essentially equal to the sum D(x,q) in (4.1). We
therefore see

S“] E(y, A)|*dy<Ax(log x)*+Ax1-s L Adxe .

The other modifications are immediate. Hence we get Theorem 2.
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