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HYPERSURFACES WITH HARMONIC CURVATURE

Masaaki Umehara

Introduction.

A Riemannian curvature tensor is said to be harmonic if it satisfies

Rijk=Rikj,

where Rijk denotes the covariant derivative of Ricci tensor Rfy. This conditionis

essentially weaker than that for the parallel Recci tensor. In fact Derdzinski [2]

gave an example of a 4-dimentional Riemannian manifold with harmonic curva-

iure whose Ricci tensor is not parallel.

Recently E. Omachi [5] investigated compact hypersurfaces with harmonic

curvature in a Euclidean space or a sphere and gave a classificationof such hyper-

surfaces provided that the mean curvature is constant.

This paper is concerned with hypersurfaces with harmonic curvature iso-

metrically immersed into a Riemannian manifold of constant curvature. In the

firstsection,a concept of Codazzi type for a symmetric (0, 2)-tensor is introduced

and a sufficientcondition for a symmetric tensor of Codazzi type to be parallelis

given. A similar condition for a symmetric tensor of Codazzi type is also treated

by S. Y. Cheng an S. T. Yau [1]. In the second section, the result proved in the

first section is applied to hypersurfaces with harmonic curvature immersed in a

Riemannian manifold of constant curvature, in which Omachi's result [5] is gene-

ralized without the assumption of compactness. Finally we study also the case

where the assumotion that the mean curvature is constant is omitted.

§1. Symmetric tensor of Codazzi type.

Let M be an w-dimentional Riemannian manifold and let {elt･･･,en) be a local

orthonormal frame fielddefind on M, and {a)u ■･･, wn} denotes its dual field. Here

and in the sequel, indices i,j,･･･ run over the range {1, 2, ･･･, n} unless other-

wise stated. Then the structure equation of M are given by

da)i-＼-SjQ)ijAa)j=O,a)ij+o)ji=0,

d(t)ij+ Ik (OikA (Dkj= @ij,
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Let ZtjfajWjt&ooj be a symmetric (0, 2)-tensor field on M. Then the covariant

derivative fak of fa is denifined by

2 kfak (Ok= dfa ―Sk $kj(Oki~%k <}>ik(Okj.

fa is said to be of Codazzi type if it satisfies the so-called Codazzi equation

fak = <f>ikj>

For a symmetric tensor fa, symmetric tensor $?} (m―1,2,3, ･･･) are defind in-

ductively as follows:

Let tr <f>=Zi<j)u and tr $m=2tffit.

Now we shall give a sufficient condition for a symmetric tensor of Codazzi

type to be parallel. First of all, the following fact is easily proved.

Lemma 1. 1. Let <j>,<f>2,■･･,<j>rbe a symmetric (0, 2) -tensor of Codazzi type.

Then ^r+1 is also of Codazzi type if and only if

(1. 1) SitivkFij-ZifaiiFK^.

For a symmetric (0, 2)-tensor $ of Codazzi type, we define a subset M# of M con-

sisting of points p so that there exists a neighborhood Up of /> such that the

multiplicity of each principal carvature is constant on Up. The M$ is an open

and dense subset of M. In each connected component of M#, the distinct eigen-

values of <j>are considered as smooth functions. Let X be one of such eigenfunc-

tions, and the eigendistribution which is denoted by Ax is the set of all eigen-

vectors corresponding to I. Derdzinski [3] showed that the eigendistributions of

<J)are all involutive. We shall give a necessary and sufficient condition of the

eigen distributions of <j>to be parallel.

Lemma 1. 2. Let <j>be a symmetric (0, 2) -tensor of Codazzi type. Then <p2is

also of Codazzi type if and only if the eigendistributions of 6 are all parallel.

Proof. Let {ex,･･･,en) be a local orthonormal frame field consisting of the

eigenvector field of <j>,and fa denotes the eigenfunction corresponding to e*. Since

0 is of Codazzi type, Lemma 1.1 implies that 02 is also of Codazzi type if and

only if
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that is

(1. 2) (Zj-h)fai=O.

If Ij^h then d(j>jk=Q. By the definitionof covariant derivative, (1. 2) is equival

ent to the equation

{Xj―Xk)(Si(piico>ij+2i<pji(Oik)―0,

(i. 3) ttj-hya)jk=o,

which implies that each eigendistribution is parallel. This proves Lemma 1.2.

Under this preparation we shall now prove the following.

Theorem 1. 3. Let M be an n-dimensional Riemannian manifold and <j>a

symmetric (0, 2) -tensor defined on M. If <f>and <f>zare both of Codazzi type then

the following assertions are true:

(1) <f (r=l, 2, 3, ･･ ･) are all of Codazzi type.

(2) Let {ex, ･･･, en) be a frame which diagonalizes the tensor <j>so that <pij=

kidij. If ki^kj, then Rijij=O.

(3) In addition, if tr <j>is constant, then tr <f>r(r=l, 2, 3, ･･ ･) are all constant

and <f>is parallel.

Proof. By taking the frame {eu ･･-,£,},(1.1) is simplified to

This can be written as

(l. 4) W-UW-'-'Xij-zjfa^O.

Since $ and ^2 are both of Codazzi type, using (1. 1) we have

(1. 5) (Jy--W≪*=0.

From (1. 4) and (1. 5), the firstassertion follows immediately. In the next place,

the assertion (2) is considerd. By Lemma 1. 2, eigendistributions of <j>are mutual-

ly orthogonal and parallel. Hence peM# has a Riemannian product neighborhood

UiX---xUi where the tangent space of each Ut is spanned by eigenvectors of

(j>with the same eigenvalue. If lj=hlj then d and e, belong to the distinct eigen-

distributions,hence i?w=0. Since M# is dense, the assertion (2) holds at every

point in M. We now prove the assertion (3). Since <pk(k=l, 2, 3, ･･･) are all of

Codazzi type, we can use (1.1). Contracting (1. 1) with respect to j and i we
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{l/(r+l)}(trf+1)k-Sl(tr <f>)ifa=O.

Suppose that tr 0 is constant, then

(tr0r+1)fc=O (£=1,2, ･･-,≫).

Hence tr 0r is constant on M. Next we prove that <f>is parallel. Since <f>is of

Codazzi type, the well-known Bochner formula is reduced to the following rela-

tion

(1. 6) (1/2)J(tr f)=Zi,j,k(0ijky+2iHtr <j>)tt+ Q.I2)Zt,JRijiJ(li-kj)t,

where A denotes the Laplace operator (cf.[1]). Since tr^ and tr^2 are constant

and Ii,jRijij{Xi―lj)2is equal to zero, (1.6) implies that 0 is parallel.

To show that <J>is parallel,we assume that tr <pis constant. If M has posi-

tive or negative sectional curvature, then this condition can be omitted.

Corollary 1. 4. Let M be a connected Riemannian manifold with positive or

negative sectional curvature. If <pand <p2are both of Codazzi type, then <ftconcides

with the Riemannian metric on M up to scalar multiple.

Proof. From (2) of Theorem 1. 3, all the eigenvalues of <j>are the same,

thatis Xi=-"=Xn at every point. So there exists a function / denned on M such

that <fiij=fdij.Since <fiis of Codazzi type, it is easy to verify / is a constant

function.

§2. Hypersurf aces with harmonic curvature.

This section is devoted to the study of hypersurfaces with harmonic curva-

ture immersed into a Riemannian manifold of constant curvature.

Let M be an ^-dimensional Riemannian manifold with harmonic curvature

isometrically immersed into a Riemannian manifold of constant curvature c.

Then the second fundamental form h is a symmetric (0, 2)-tensor of Codazzi type.

Let {<?!,･･･, en) be a frame which diagonalizes the second fundamental form h so

that hij=Zidij. Then the Gauss equation says

Rijki―c{dikdji―dudjk)+hikhji―huhkj-

We have

(2. 1) Rij=c{n-1)8ij+htj Xxh-Zihahu,

where Rtj denotes the Ricci tensor of M. Hence the covariant derivative Rijk of

Rij satisfies
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Rijk=hi]k tr h+hij (tr h)k

―Z,＼hUk hij―11 hu hijk
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Subtracting the equation which exchanges the index k with j in (2. 2), since M

has harmonic curvature we have

(2. 3) hik(trh)k―hik(trh)j=I, hu>cfa,―Iifan hue.

The following theorem is an extension of Omach's result [5].

Theorem 2. 1. Let M be a hypersurface with harmonic curvature isometrical-

ly immersed into a Riemannian manifold of constant curvature c. if the mean

curvature is constant, then the principal curvatures are all constant and the num-

ber of distinctprincipal curvatures is less than or equal to 2. Moreover if the

ambient space is simply connected and M (dim M^3) is connected and complete,

then M is totallyumbilical or a Riemannian product of two totallyumbilical con-

oZ/Y/j/j/mir>ii'＼f4if)/~laijJ-i'Vtrt/y/i/i'i-Fs＼lr$o

Proof. Since the mean curvature is constant, from (2. 3) we have

(2. 4) Iihukhij-Sihujhi^O.

This implies that h and h2 are both of Codazzi type. Hence (3) of Theorem 1. 3

implies that the principal curvatures are all constant on M. On the othe hand,

(2) of Theorem 1. 3 implies that h―lj or i?yiy=0. By the Gauss equation Ran

=c+2.i/ij, we have

(2. 5) (c+h^)(h-W=^-

It is a simple algebraic fact that (2. 5) implies M has at most two distinctprincipal

curvatures. Now we suppose that the ambient space is simply connected and M

is connected and complete. If the pricipal curvatures are all the same, then M

is totallyumbilical. If M has two distinctprincipal curvatures, using the argu-

ment of K. Nomizu and B. Smith [4] and the rigidity of such an immersion, we

concluded that M is a Riemannian product of two totally umbilical constantly

submanifolds. This proves Theorem 2. 1.

Usiner Theorem 2. 1. we obtain the following result.

Theorem 2.2. Let M be a connected hypersurface with harmonic curvature

isometrically immersed into a Riemannian manifold of constant curvature. If the

multiplicityof the each principal curvature is everywhere greater than or equal to

2, then M satisfiesone of the following conditions.

(1) The second fundamental form of M is degenerate everywhere.
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(2) The principal curvatures are all constant and the number of distinctprin-

cipal curvatures is less than or equal to 2.

In order to prove this theorem, two lemmas are firstof all prepared.

Lemma 2. 3. In the assumption of Theorem 2. 2, if the second fundamental

form h is nondegenerate at the point p, then d(tr h)=0 at p.

Proof. Since the second fundamental form h is nondegenerate at p, all the

principal curvatures are not equal to zero. From (2. 3), we have

(2. 6) h 8ij(tr h)k - Xk8ik(tr h),=(Xj- Xk)hm.

Since the principal curvatures are nonsimple, for a fixed index k, there exists an

index ; such that ji^k and /tj= /t!c-In (2.6) putting i ―j then

Aj(trh)k= (lj-lk)hjkj.

Since Zj=h and Xj^O, we have (tr h)k=0. This implies <i(trh)=0 at p.

Lemma 2. 4. In the assumption of Theorem 2. 2, if the second fundamental

form is degenerate at one point, then it is degenerate everywhere.

Proof. Suppose that there exist two points p and q on M so that the second

fundamental form is nondegenerate at p and degenerate at q. and consider a

curve T = xt (O^^l) such that xo=p and xi=q. Putting

8=inite[XM{detAxt=0},

where Axt is the shape opeator at xt, then by the continuity of the shape

operator, we see that

(2.7) detAXi=0.

On the other hand, for all 5 (O^s^d), there exist an open subset Us such that

UsZD{xt: O^t^p} and det Ayi=Q for all yeUs. Since the second fundamental form

is nondegenerate on Us, from the Lemma 2. 3, the mean curvature is constant

on Us. Applying Theorem 2.1, we see that the principal curvatures are all con-

stant on Us. Hence

detAxg=detAp (Q^s^d),

so we have

(2. 8) detAXt=]imt^MdetAxM=detAp^O.

From (2. 7) and (2. 8). we can make a contradiction. This proves Lemma 2. 4.
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Proof of Theorem 2. 2. If the second fundamental form is nondegenerate

everywhere, then by Lemma 2. 3, the mean curvature is constant on M. Apply-

ing Theorem 2. 1, we see that M satisfiesthe second condition of Theorem 2. 2.

If the second fudamental form is degenerate at some point, then by Lemma 2.4,

the second fundamental form is degenerate everywhere. This proves Theorom

2.2.

Finally we study hypersurfaces with harmonic curvature assuming no other

conditions. We obtain the following result.

Theorem 2. 5. Let M be a hypersurface with harmonic curvature isometrical-

ly immersed into a Riemannian manifold of constant curvature c and p&M be a

criticalpoint of the mean curvature H.

(1) // c―0, then the number of distinctprincipal curvatures does not exceed

4 at p.

(2) If c^O, then the number of distinctprincipal curvatures does not exceed 3

at h.

Proof. Let p be a critical point of H. The covariant derivative hun of hijk

is defined by

21 hau m = dhijk―11 hijk (tin―11 huk wij―2t hm wa.

From (2. 3), we have

(2. 7) htjm(tr h)k +hij(tr ti)km-hikm(tr h)j-hik(tr A)ym

= ^i ^≪fcm^jy + 2"l^iifchijm.―% I hujm hik ― 21 hiij hikm ･

Substructing the equation which exchanges the index m with i in (2. 7), since h

is of Codazzi type, we have

Ai/(tr h)km-hmJ(tr h)ki-hik(tr h)jm+hmk{tv h)jt

= 11 {hikim ―hkmi) hi ―11 (Jlijim―hjmi) hik + 221 hak hijm ―221 huj hikm ･

Applying the Ricci formula we obtain

hijiXc h)km-hmj(tr h)ki-hik(tr h)jm+hmk(tr h)Jt

= 2i<s KsHm hsl hij + 221, s Rslim hsk hij ―2^ s Rsjim hsl "lie+ 221 huk hijm ― 221 huj hikm.

It simplifies to

(2. 8) h dij(tr h)km - Xn 8nJ (tr h)ki - Xt 8ik(tr h)jm + Xm dmk (tr h)Jt

= i*j―hf Rjkim+221 huk hijm - 221 hUj hkm -

On niittino- k = i and m=? (i,=hi＼ we*, have
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(2. 9) - Xj(tr h)it- Xi(tr h)j} = (Xj - Xtf RjUj+21＼ hm hjfl- 21 {hUjf ･

Since p is a critical point of tr h, (2. 3) implies that

(2. 10) (Xj-Xk)hjki=O.

We now suppose that X^Xj. From (2. 10) it follows that hin=Q (1=1, 3, ･･･,≪)

Hence Iihmhjji and Ii(hiji)2 are equal to zero, so we obtain

(2. 11) ^-(tr A)≪+ Xi(tr A),y=(^ - Xj)2Rijtj.

Denoting that

a?*= (tr h)kk,

en = {h - Xjf Rijij= {h - Xjf{c+Xilj),

then (2.11) simplifies to

(2. 12) XjXi+liXj=Cij.

Now we assume that there exist nonzero distinctprincipal curvatures Xit X2, X

and Xi, then we have

X＼X2T/l^l ―ZC＼Z,

AlX&T A4X＼=zCi4,

X2xi+XiXz = C2i,

from which it follows that

(2. 13) xi= (ll2XlX2)(X1e2i+ X2Cu-Xic1z).

On the other hand, we also have

(2. 14) xA = (ll2XlXa)Ulc>l+ Xscli-Xlcls)-

Combining (2. 13) together with (2. 14) we obtain

X＼X2C34~rA3/4C12―=A3^1C24~t"A2A4C31･

Because of Cij=(Xi―Xj)z{c+XiXj),it is reduced to

XlX2(X3-Xiyc+X3Xi(Xx-X2)2c-X1X3(X2-Xi)2c-X2Xi(Xs-X1)2c

=x1x2xixi {(x2- a4)2+(a3-x1y- (xs- x4y - (x,- x2y},

which is rewritten as

c(a1-a4)(a3-a2)U2^ + ;i;4)= 2A1A3^3^U2-^)U1-a4).

First of all we consider the case c=0, in which
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Since Xlf 1%, h and h are all the nonzero distinct principal curvatures, it is im-

possible. Hence the number of nonzero distictprincipal curvatures is less than

4. So the numer of distinctprincipal curvatures is at most 4.

Next we consider the case c^O. In this case we have

hence

(2. 15) X2X3+ X1X4= (2lc)X1^^^-

Similarly we have

(2. 16) Aa3 + h^ = (2lc)X1X2^^-

From (2. 15) and (2. 16) we see that

which leads a to contradiction,hence the number of nonzero distinctprincipal curva-

tures are less than 4. But if M has three distinct principal curvatures Xu !z and

2.3at p and one of then, say ^ is equal to zero, then (2. 12) impries that

/2^l= Ci2= C A2,

Hence X2=h or hh=Q, this makes a contradiction. Therefore the number of dis-

tinct principal curvatures at p is at most 3.

Corollary 2. 6. Let M be a compact hypersurface with harmonic curvature

isometricallyimmersed into a Riemannian manifold of constant curvature c.

(1) // c=0, then there exists a point p&M such that the number of distinct

principal curvatures is at most 4.

(2) // ci^O, then there exists a point p M such that the number of distinct

principal curvatures is at most 3.
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