COHOMOLOGIES OF HOMOGENEOUS ENDOMORPHISM BUNDLES OVER LOW DIMENSIONAL KÄHLER C-SPACES

By
Masaro TAKAHASHI

1. Introduction

In this paper, we determine the infinitesimal deformations of an EinsteinHermitian structure of a homogeneous vector bundle in several cases. In particular, we get the tangent space at the homogeneous structure of the moduli space of Einstein-Hermitian structures as the representation space of a compact Lie group.

A compact simply connected homogeneous Kähler manifold is called a Kähler C-space. Such a manifold can be written as G / K where G is a compact semisimple Lie group and K is the centralizer of a toral subgroup of G ([10]). Let G^{C} be the complexification of G and K^{c} the complexification of K in G^{C}. We denote by L the parabolic subgroup of G^{c} which contains $K^{c} . G / K$ is diffeomorphic to G^{C} / L. Thus G / K admits a holomorphic structure from the holomorphic structure of G^{C} / L. Moreover it admits a G-invariant Kähler metric.

Let (ρ, V) be a complex representation of K. Then (ρ, V) can be extended to a holomorphic representation $\left(\rho_{L}, V\right)$ of L. The homogeneous vector bundle $E_{\rho}=G \times{ }_{\rho} V$ is isomorphic to the homogeneous holomorphic vector bundle $E_{\rho_{L}}=G^{c} \times_{\rho_{L}} V$ as C^{∞}-vector bundles. Thus the homogeneous vector bundle E_{ρ} has a natural holomorphic structure from the holomorphic structure of $E_{\rho_{L}}$ ([3]). Moreover if (ρ, V) is irreducible, then E_{ρ} has a unique G-invariant Einstein-Hermitian structure up to a homothety ([8]).

An irreducible complex representation (ρ, V) is determined by the highest weight. Then a homogeneous vector bundle E_{ρ} is determined by the highest weight of (ρ, V), if (ρ, V) is irreducible. It is natural to ask how we describe the deformations of the holomorphic structure and the Einstein-Hermitian structure by the highest weight. Also we ask how we describe moduli spaces of holomorphic structures and Einstein-Hermitian structures by the highest weight.

In the deformation theory of complex structures of complex manifolds, the complex structure of a Kähler C-space is locally stable ([3]). But the holomorphic structure of a homogeneous vector bundle generally is not locally stable. Here the local stability means that any deformation space is trivial. So there is a problem to find sufficient conditions for the local stability of the holomorphic structure of a homogeneous vector bundle.

Let $\operatorname{End}\left(E_{\rho}\right)$ be the endomorphism bundle of E_{ρ} and $\mathfrak{g l}\left(E_{\rho}\right)$ the subbundle of $\operatorname{End}\left(E_{\rho}\right)$ which consists of trace free endomorphisms. It is well known that the Dolbeault cohomology group $H^{0,1}\left(G / K, \operatorname{End}\left(E_{\rho}\right)\right)$ is the tangent space of the moduli space of holomorphic structures if $H^{0,0}\left(G / K, \mathfrak{g l}\left(E_{\rho}\right)\right)=H^{0,2}\left(G / K, \mathfrak{a r}\left(E_{\rho}\right)\right)$ $=\{0\}$. The moduli space of Einstein-Hermitian structures is an open subset of the moduli space of holomorphic structures. Under the same conditions, $H^{0,1}\left(G / K, \operatorname{End}\left(E_{\rho}\right)\right)$ is also the tangent space of the moduli space of EinsteinHermitian structures ([7], [6] and [9]). So we think that it is important to compute these cohomologies for our problems.

In this paper, for a first step of problems above we investigate Kähler C-spaces G / K with rank $G=2$. In $\S 2$ we shall review a construction of Kähler C-spaces and some properties of vector bundles over them. We shall state our results in $\S 3$ and prove them in $\S 4$. Our main results are Theorems 4,5 and Corollary 6. In the case of $\operatorname{rank} G=2$, we compute $H^{0, p}\left(G / K, \operatorname{End}\left(E_{\rho}\right)\right.$) and $H^{0, p}\left(G / K, \mathfrak{g l}\left(E_{\rho}\right)\right)$ from the highest weight of (ρ, V) (Theorems 4 and 5). Then we get dimension of the moduli space of Einstein-Hermitian structures of a homogeneous vector bundle in several cases (Corollary 6). The following theorem is an immediate consequence of these results.

Theorem 1. Let G / K be a Kähler C-space where G is of type A_{2} or B_{2}. Let (E, h) be an irreducible Einstein-Hermitian homogeneous vector bundle over G / K with $\operatorname{rank} E=r$. Then the dimension of the moduli space of irreducible Einstein-Hermitian structures of E is as follows:
(1) If G is of type A_{2} or B_{2} and if K is a maximal torus, then the dimension of the moduli space is 0 .
(2) If $G / K \cong S U(3) / S(U(1) \times U(2)) \cong P_{2} \mathbb{C}$, then the dimension of the moduli spoce is

$$
\frac{1}{2} \sum_{k=1}^{r-1}(2 k+1)(k+2)(k-1)
$$

(3) If $G / K \cong S p(2) /(U(1) \times S p(1)) \cong P_{3} C$, then the dimension of the moduli space is

$$
\frac{1}{3} \sum_{k=1}^{r-1}(2 k+3)(2 k+1)(2 k-1)
$$

(4) If $G / K \cong S O(5) /(U(1) \times S O(3)) \cong Q_{3}(C)$, then the dimension of the moduli space is

$$
\frac{1}{2} \sum_{k=1}^{r-1}(2 k-1)(k+2)(k-1) .
$$

The author would like to express his gratitude to Professor Mitsuhiro Itoh and Professor Hiroyuki Tasaki for their valuable advices and encouragement.

2. Preliminaries

In this section, we review a construction of Kähler C-spaces and some properties of homogeneous bundles over them. We refer the reader to the books [1] and [5] for the representation theory of compact Lie group.

Following Wang ([10]), we call a compact simply connected homogeneous Kähler manifold a Kähler C-space. A vector bundle E over a homogeneous space G / K is said to be homogeneous if it is associated to the principal K-bundle $G \rightarrow G / K$.

Let G be a compact simply connected semisimple Lie group. Let T_{0} be a toral subgroup of G and K the centralizer of T_{0} in G. Then G / K is a compact simply connected homogeneous manifold. Let T be a maximal torus of G which contains T_{0}. Then T is contained in K and we put $l=\operatorname{dim} T$. We denote by Δ the set of nonzero roots of G relative to T. Let $\Pi=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l}\right\}$ be a fundamental system of Δ. We may assume that Π is the system of simple roots of Δ for a suitable order of the Lie algebra of T. In this order, we denote the set of positive roots by Δ^{+}. Let $\Delta_{\Pi_{1}}$ be the set of nonzero roots of K relative to T and $\Pi_{1}=\left\{\alpha_{i_{1}}, \alpha_{i_{2}}, \cdots, \alpha_{i_{r}}\right\}$ the subset of Π which generates $\Delta_{\Pi_{1}}$. If we denote the set of positive roots of $\Delta_{\Pi_{1}}$ by $\Delta_{\Pi_{1}}^{\dagger}$, then we have $\Delta_{\Pi_{1}}^{+}=\Delta^{+} \cap \Delta_{\Pi_{1}}$.

Let G^{c} and K^{C} be complexifications of G and K, respectively. Let L be the parabolic subgroup of G^{c} such that its Lie algebra is generated by the Lie algebra of K^{c} and $\left\{E_{\alpha} ; \alpha \in \Delta^{+} \backslash \Delta_{\Pi_{1}}^{\dagger}\right\}$. Here E_{α} denotes the root vector of $\alpha \in \Delta$. Then we see

$$
G / K \cong G^{C} / L
$$

as C^{∞}-manifolds. So G / K is a homogeneous complex manifold by this holomorphic structure. Moreover it has a G-invariant Kähler metric ([2]). Thus we get a Kähler C-space G / K. Conversely every Kähler C-space can be described as above. Also we can construct the Kähler C-space from a pair (Π, Π_{1}), where Π is a fundamental system of roots and Π_{1} is a subset of Π ([10] and [2]).

Let (ρ, V) be an irreducible finite dimensional complex representation of K with highest weight $\hat{\rho}$. We denote by $\left\{\widetilde{\varpi}_{1}, \widetilde{\varpi}_{2}, \cdots, \widetilde{\varpi}_{l}\right\}$ the system of fundamental weights of Π. Then the highest weight $\hat{\rho}$ of (ρ, V) can be written as follows:

$$
\hat{\rho}=n_{1} \widetilde{\sigma}_{1}+n_{2} \widetilde{\varpi}_{2}+\cdots+n_{l} \widetilde{w}_{l},
$$

where $n_{1}, n_{2}, \cdots, n_{l}$ are integers and if $\alpha_{i} \in \Pi_{1}$ then $n_{i} \geqq 0$.
In this case we can uniquely extend (ρ, V) to a holomorphic representation (ρ_{L}, V) of L ([3]). We put

$$
\begin{aligned}
& E_{\rho}=G \times{ }_{\rho} V, \\
& E_{\rho_{L}}=G^{c} \times{ }_{\rho_{L}} V .
\end{aligned}
$$

Then

$$
E_{\rho} \cong E_{\rho_{L}}
$$

as C^{∞}-vector bundles. We regard E_{ρ} as a holomorphic vector bundle by the isomorphism above unless otherwise stated. Also if (ρ, V) is irreducible, there is a unique G-invariant Hermitian structure h up to a homothety and (E_{ρ}, h) is an irreducible Einstein-Hermitian vector bundle ([8]). Therefore we consider E_{ρ} as an irreducible Einstein-Hermitian vector bundle if (ρ, V) is irreducible. For more details about an Einstein-Hermitian vector bundle, we refer the reader to [7].

By $\operatorname{End}\left(E_{\rho}\right)$ we denote the endomorphism bundle of E_{ρ}. Let $\mathfrak{s l}\left(E_{\rho}\right)$ be the subbundle of E_{ρ} which consists of trace free endomorphisms. By definition of $\operatorname{End}\left(E_{\rho}\right)$ and $\mathfrak{g l}\left(E_{\rho}\right)$,

$$
\begin{align*}
& \operatorname{End}\left(E_{\rho}\right) \cong G \times_{\rho \otimes \rho^{*}} \operatorname{End}(V), \tag{1}\\
& \mathfrak{g r}\left(E_{\rho}\right) \cong G \times_{\rho \otimes \rho * \xi}(V), \tag{2}
\end{align*}
$$

where $\operatorname{End}(V)$ is the linear space of endomorphisms and $\mathfrak{g l}(V)$ is the subspace of $\operatorname{End}(V)$ consisting of trace free endomorphisms. Thus

$$
\begin{equation*}
\operatorname{End}(V)=V \otimes V^{*}, \tag{3}
\end{equation*}
$$

where V^{*} is the dual space of V. And K acts $\operatorname{End}(V)$ by the tensor product representation ($\rho \otimes \rho^{*}, V \otimes V^{*}$) where (ρ^{*}, V^{*}) is the dual representation of (ρ, V). By the way $\mathfrak{a l}(E)$ is invariant by K. Thus K acts $\mathfrak{B l}(V)$ via the action for $\operatorname{End}(V)$.

Finally we denote the Dolbeault cohomology groups of $\operatorname{End}\left(E_{\rho}\right)$ and $\operatorname{arl}\left(E_{\rho}\right)$ by $H^{p, q}(G / K, \operatorname{End}(\rho))$ and $H^{p, q}\left(G / K, \operatorname{Bl}\left(E_{\rho}\right)\right)$, respectively. We set

$$
\begin{aligned}
& h^{p, q}\left(\operatorname{End}\left(E_{\rho}\right)\right)=\operatorname{dim} H^{p, q}\left(G / K, \operatorname{End}\left(E_{\rho}\right)\right), \\
& h^{p, q}\left(\operatorname{Igr}^{2}\left(E_{\rho}\right)\right)=\operatorname{dim} H^{p, q}\left(G / K, \operatorname{sl}\left(E_{\rho}\right)\right) .
\end{aligned}
$$

3. Main Results

We continue with the notation and the situation in $\S 2$. Let G / K be a Kähler C-space where G is a compact simply connected semisimple Lie group and K is the centralizer of a toral subgroup of G.

Lemma 2. Let (ρ, V) be an irreducible complex representation of K. Then the restriction of $\left(\rho \otimes \rho^{*}, V \otimes V^{*}\right)$ to the center of K is trivial.

Proof. Let Z_{K} be the center of K and K^{\prime} the semisimple part of K. Then

$$
\varphi: Z_{K} \times K^{\prime} \rightarrow K, \quad(z, k) \mapsto z k
$$

is a Lie group homomorphism with kernel $Z_{K} \cap K^{\prime}$. Then $(\rho \circ \varphi, V)$ is a representation of the direct product Lie group $Z_{K} \times K^{\prime}$ on V. We note that

$$
\left.\rho \circ \varphi\right|_{z_{K}}=\left.\rho\right|_{z_{K}},\left.\quad \rho^{\circ} \varphi\right|_{K^{\prime}}=\left.\rho\right|_{K^{\prime}}
$$

Because of irreducibility of $(\rho, V),(\rho \circ \varphi, V)$ is also irreducible. So there are irreducible representations $\left(\rho_{Z_{K}}, V_{Z_{K}}\right)$ of Z_{K} and $\left(\rho_{K^{\prime}}, V_{K^{\prime}}\right)$ of K^{\prime} such that

$$
\left(\rho_{Z_{K}} \otimes \rho_{K^{\prime}}, V_{z_{K}} \otimes V_{K^{\prime}}\right) \cong\left(\rho^{\circ} \varphi, V\right)
$$

where $\left(\rho_{Z_{K}} \otimes \rho_{K^{\prime}}, V_{Z_{K}} \otimes V_{K^{\prime}}\right)$ denotes the exterior tensor product representation of ($\rho_{Z_{K}}, V_{Z_{K}}$) and ($\rho_{K^{\prime}}, V_{K^{\prime}}$). By irreducibility of $\left(\rho_{Z_{K}}, V_{Z_{K}}\right), V_{Z_{K}}$ is a one dimensional space. Then the tensor product ($\rho_{Z_{K}} \otimes \rho_{Z_{K}}^{*}, V_{Z_{K}} \otimes V_{Z_{K}}^{*}$) is isomorphic to the trivial representation.

COROLLARY 3. Let G be a compact semisimple Lie group and $K=T$ be a maximal torus of G. Let (ρ, V) be an irreducible complex representation of T. Then

$$
\begin{aligned}
& \operatorname{End}\left(E_{\rho}\right) \cong G / T \times C \\
& \mathfrak{g l}\left(E_{\rho}\right) \cong G / T \times\{0\}
\end{aligned}
$$

In particular,

$$
\begin{aligned}
& h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)= \begin{cases}1, & \text { for } p=0 \\
0, & \text { for } p \geqq 1,\end{cases} \\
& h^{0, p}\left(\mathfrak{g r}\left(E_{\rho}\right)\right)=0, \quad \text { for } p \geqq 0 .
\end{aligned}
$$

Proof. We note that any irreducible complex representation space of a torus is one dimensional. From Lemma 1 it is easy to see that $\operatorname{End}\left(E_{\rho}\right)$ is trivial. And also it is easy to see that Hodge numbers of End $\left(E_{\rho}\right)$ and $\mathfrak{g l}\left(E_{\rho}\right)$ are as stated above (for example, by means of Bott's generalized Borel-Weil
theorem ($\left[3\right.$, Theorem $\left.\mathrm{IV}^{\prime}\right]$).
Q.E.D.

Next we consider the case of rank $G=2$. In this case the fundamental system of roots Π is $\left\{\alpha_{1}, \alpha_{2}\right\}$. And if G / K is a Kähler C-space then the corresponding Π_{1} as in section 2 is $\left\{\alpha_{1}, \alpha_{2}\right\},\left\{\alpha_{1}\right\},\left\{\alpha_{2}\right\}$ or ϕ. Furthermore a compact simple Lie group G is of type A_{2}, B_{2}, or G_{2} in this case. If G is of classical type then corresponding Kähler C-spaces are

$$
\begin{array}{ll}
G / K \cong S U(3) / S(U(2) \times U(1)) \cong P_{2} C & \text { if } G=A_{2} \text { and } \Pi_{1}=\left\{\alpha_{1}\right\}, \\
G / K \cong S U(3) / S(U(1) \times U(2)) \cong P_{2} C & \text { if } G=A_{2} \text { and } \Pi_{1}=\left\{\alpha_{2}\right\}, \\
G / K \cong S p(2) /(U(1) \times S p(1)) \cong P_{3} C & \text { if } G=B_{2} \text { and } \Pi_{1}=\left\{\alpha_{1}\right\}, \\
G / K \cong S O(5) /(U(1) \times S O(3)) \cong Q_{3}(C) & \text { if } G=B_{2} \text { and } I_{1}=\left\{\alpha_{2}\right\} .
\end{array}
$$

It is clear that the first case is isomorphic to the second one in the above. And we note that if $\Pi_{1}=\left\{\alpha_{1}, \alpha_{2}\right\}$ then $K=T$ is a maximal torus of G, i.e., it is the case of Corollary 3. Also if $\Pi=\phi$ then $K=G$, i. e., G / K consists of a one point $\{0\}$.

Then we state the main theorem.
THEOREM 4. Let G be a compact simply connected simple lie group with rank $G=2$. Let $\Pi=\left\{\alpha_{1}, \alpha_{2}\right\}$ be a fundamental system of roots relative to a maximal torus T of G. We put $\Pi_{1}=\left\{\alpha_{i}\right\}(i=1,2)$. We denote by K the analytic subgroup of G with maximal rank which corresponds to Π_{1}. Let (ρ, V) be an irreducible complex representation of K with highest weight $\hat{\rho}=n_{1} \widetilde{\sigma}_{1}+n_{2} \widetilde{\sigma}_{2}$, where $\left\{\widetilde{\varpi}_{1}, \widetilde{\varpi}_{2}\right\}$ is the system of fundamental weights. Then the Hodge number $h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)$ is as follows:
(I) If G is of type A_{2} and $\Pi_{1}=\left\{\alpha_{2}\right\}$ then

$$
h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)= \begin{cases}1, & \text { if } p=0, \\ \frac{1}{2} \sum_{k=1}^{n_{2}}(2 k+1)(k+2)(k-1), & \text { if } p=1, \\ 0, & \text { if } p \geqq 2 .\end{cases}
$$

(II) If G is of type B_{2} and $\Pi_{1}=\left\{\alpha_{1}\right\}$ then

$$
h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)= \begin{cases}1, & \text { if } p=0, \\ \frac{1}{3} \sum_{k=1}^{n_{1}}(2 k+3)(2 k+1)(2 k-1), & \text { if } p=1, \\ 0, & \text { if } p \geqq 2 .\end{cases}
$$

(Ш) If G is of type B_{2} and $\Pi_{1}=\left\{\alpha_{2}\right\}$ then

$$
h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)= \begin{cases}1, & \text { if } p=0, \\ \frac{1}{2} \sum_{k=1}^{n_{2}}(2 k-1)(k+2)(k-1), & \text { if } p=1, \\ 0, & \text { if } p \geqq 2 .\end{cases}
$$

(IV) If G is of type G_{2} and $\Pi_{1}=\left\{\alpha_{1}\right\}$ then

$$
h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)= \begin{cases}1, & \text { if } p=0, \\ 7, & \text { if } p=1 \text { and } n_{1}=2, \\ 21, & \text { if } p=1 \text { and } n_{1} \geqq 3, \\ \frac{1}{40} \sum_{k=5}^{n_{1}}(2 k+1)(k+5)(k+2)(k-1)(k-4), & \text { if } p=2, \\ 0, & \text { otherwise } .\end{cases}
$$

(V) If G is of type G_{2} and $\Pi_{1}=\left\{\alpha_{2}\right\}$ then

$$
h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)= \begin{cases}1, & \text { if } p=0, \\ 2261, & \text { if } p=1, \\ \frac{1}{24} \sum_{k=2}^{n_{2}}(21 k-2)(18 k-1)(13 k-1)(8 k-1)(3 k-1) k, \\ 0, & \text { if } p=2, \\ 0, & \text { if } p \geqq 3 .\end{cases}
$$

Theorem 5. Under the same assumption of Theorem 4, the Hodge number $h^{0, p}\left(\mathfrak{g l}\left(E_{\rho}\right)\right)$ is equal to

$$
h^{0, p}\left(\mathfrak{G l}\left(E_{\rho}\right)\right)=\left\{\begin{array}{cc}
0, & \text { if } p=0, \\
h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right), & \text { if } p \geqq 1,
\end{array}\right.
$$

for every cases (I)~(V) in Theorem 4.
We shall prove these theorems in the next section. We state some consequences of these results here. If $h^{0,0}\left(\mathfrak{g l}\left(E_{\rho}\right)\right)=h^{0,2}\left(\mathfrak{g l}\left(E_{\rho}\right)\right)=0$, then we can identify $H^{0,1}\left(G / K\right.$, End $\left.\left(E_{\rho}\right)\right)$ with the tangent space at the homogeneous structures of the moduli space of E_{ρ} ([6], [9] and [7, Chapter ViII]). Then we get the following corollary.

Corollary 6. Under the same assumption of theorems above, the dimension of the moduli space of irreducible Einstein-Hermitian structures is as follows:
(I) If G is of type A_{2} and $\Pi_{1}=\left\{\alpha_{2}\right\}$ then

$$
\frac{1}{2} \sum_{k=1}^{n_{2}}(2 k+1)(k+2)(k-1)
$$

(II) If G is of type B_{2} and $\Pi_{1}=\left\{\alpha_{1}\right\}$ then

$$
\frac{1}{3} \sum_{k=1}^{n_{1}}(2 k+3)(2 k+1)(2 k-1)
$$

(III) If G is of type B_{2} and $I_{1}=\left\{\alpha_{2}\right\}$ then

$$
\frac{1}{2} \sum_{k=1}^{n_{2}}(2 k-1)(k+2)(k-1)
$$

(IV) If G is of type G_{2} and $I_{1}=\left\{\alpha_{1}\right\}$ then

$$
\left\{\begin{aligned}
0, & \text { for } n_{1}=0 \text { or } 1 \\
7, & \text { for } n_{1}=2 \\
21, & \text { for } n_{1}=3 \text { or } 4
\end{aligned}\right.
$$

(V) If G is of type G_{2} and $\Pi_{1}=\left\{\alpha_{2}\right\}$ then

$$
\left\{\begin{aligned}
0, & \text { for } n_{2}=0 \\
261, & \text { for } n_{2}=1
\end{aligned}\right.
$$

Because of Theorem 5, we see that if G is of classical type, then $h^{0.0}\left(\mathfrak{l l}\left(E_{\rho}\right)\right)=h^{0.2}\left(\mathfrak{j l}\left(E_{\rho}\right)\right)=0$. Moreover we note that if $\Pi_{1}=\left\{\alpha_{i}\right\}$ then rank E_{ρ} $=n_{i}+1$ in theorems and corollary above. Also under the same condition, we note that the dimension of the moduli space of E_{ρ} depends only on n_{i}. Then we get Theorem 1 from Corollaries 3 and 6 .

4. Proof of Theorems

In this sections, we prove Theorems 4 and 5 . The two theorems 4 and 5 are proved at the same time. First we note equations (1) and (2) in §2. So $\operatorname{End}\left(E_{\rho}\right)$ and $g \mathfrak{l}\left(E_{\rho}\right)$ are defined by representations $\left(\rho \otimes \rho^{*}, V \otimes V^{*}\right)$ and $\left(\rho \otimes \rho^{*}, \mathfrak{g l}(V)\right.$), respectively. Because of Lemma 2, $\rho \otimes \rho^{*}$ is trivial on the center of K. The semisimple part of K is of type A_{1} in these cases. Thus we can apply the Clebsch-Gordan theorem to the representation $\rho \otimes \rho^{*}$. Therefore we see that if $I_{1}=\left\{\alpha_{i}\right\}$ and the highest weight of ρ is given by $\hat{\rho}=n_{1} \widetilde{\omega}+n_{2} \widetilde{\sigma}$, then the highest weight which corresponds to each irreducible component of $\left(\rho \otimes \rho^{*}, \operatorname{End}(V)\right)$ are given by

$$
\begin{equation*}
n_{i} \alpha_{i},\left(n_{i}-1\right) \alpha_{i},\left(n_{i}-2\right) \alpha_{i}, \cdots, \alpha_{i}, 0 \tag{4}
\end{equation*}
$$

Also under the same assumption the highest weight which corresponds to each irreducible component of $\left(\rho \otimes \rho^{*}, \mathfrak{z l}(V)\right)$ are given by

$$
\begin{equation*}
n_{i} \alpha_{i},\left(n_{i}-1\right) \alpha_{i},\left(n_{i}-2\right) \alpha_{i}, \cdots, 2 \alpha_{i}, \alpha_{i} \tag{5}
\end{equation*}
$$

Let $\left(\rho_{k}, V_{k}\right)$ be the complex irreducible representation of K with highest weight $\hat{\rho}_{k}=k \alpha_{i}$ and we put $E_{\rho_{k}}=G \times \rho_{k} V_{k}$. Then (4) and (5) imply the following, respectively:

$$
\begin{align*}
& H^{0, p}\left(G / K, \operatorname{End}\left(E_{\rho}\right)\right)=\bigoplus_{k=0}^{n_{2}} H^{0, p}\left(G / K, E_{\rho_{k}}\right) \tag{6}\\
& H^{0, p}\left(G / K, \mathfrak{\mathfrak { l } (E _ { \rho })) = \bigoplus _ { k = 1 } ^ { n _ { 2 } } H ^ { 0 , p } (G / K , E _ { \rho _ { k } })}\right. \tag{7}
\end{align*}
$$

Next we compute the cohomology one by one. We denote by δ the half of the sum of the positive roots, i. e.,

$$
\delta=\widetilde{\omega}_{1}+\widetilde{\omega}_{2}
$$

in these cases. And we denote by S_{α} the reflection with respect to $\alpha \in \Delta$. We use the tables of root systems in [4] for the following.

Case (1) In this case G is of type A_{2} and $\Pi_{1}=\left\{\alpha_{2}\right\}$. Then we see

$$
\begin{aligned}
\delta+\hat{\rho}_{k} & =\delta+k \alpha_{2} \\
& =-(k-1) \widetilde{\varpi}_{1}+(2 k+1) \widetilde{\varpi}_{2}
\end{aligned}
$$

From this, we see that

$$
\delta+\hat{\rho} \text { is } \begin{cases}\text { regular } & \text { if } k \neq 1 \\ \text { singular } & \text { if } k=1\end{cases}
$$

in the sense of [3]. Also we see that

$$
\text { the index of } \delta+\hat{\rho}_{k}= \begin{cases}0, & \text { if } k=0 \\ 1, & \text { if } k \neq 0,1\end{cases}
$$

By the way, we have

$$
S_{\alpha_{1}}\left(\delta+\hat{\rho}_{k}\right)=(k-1) \widetilde{\varpi}_{1}+(k+2) \widetilde{\varpi}_{2}
$$

This implies that $S_{\alpha_{1}}\left(\delta+\hat{\rho}_{k}\right)$ is contained in the fundamental Weyl chamber. We put

$$
\lambda_{k}=(k-2) \widetilde{\omega}_{1}+(k+1) \widetilde{\omega}_{2}
$$

and $V_{\lambda_{k}}$ denotes the complex irreducible representation space of G with highest weight λ_{k}. By means of Bott's generalized Borel-Weil theorem ([3, Theorem $\left.\mathrm{IV}^{\prime}\right]$), we get

$$
H^{0, p}\left(G / K, E_{\rho_{k}}\right) \cong \begin{cases}V_{\lambda_{k}}, & \text { for } k \geqq 1 \text { and } p=1 \tag{8}\\ \{0\}, & \text { for } k \geqq 1 \text { and } p \neq 1\end{cases}
$$

and

$$
H^{0, p}\left(G / K, E_{\rho_{k}}\right) \cong \begin{cases}C, & \text { for } k=0 \text { and } p=0, \tag{9}\\ \{0\}, & \text { for } k=0 \text { and } p \geqq 1 .\end{cases}
$$

as complex G-spaces. We have

$$
H^{0, p}\left(G / K, \operatorname{End}\left(E_{\rho}\right)\right) \cong\left\{\begin{array}{cl}
C, & \text { for } p=0, \\
\oplus_{k=1}^{n_{2}} V_{\lambda_{k}}, & \text { for } p=1, \\
\{0\}, & \text { for } p \geqq 2,
\end{array}\right.
$$

from equations (6), (8) and (9) and

$$
H^{0, p}\left(G / K, \mathfrak{g l}\left(E_{\rho}\right)\right) \cong\left\{\begin{array}{cl}
\bigoplus_{k=1}^{n_{2}} V_{2_{k}}, & \text { for } p=1, \\
\{0\}, & \text { for } p \neq 1,
\end{array}\right.
$$

from equations (7), (8) and (9) as complex G-spaces. We can compute $h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)$ and $h^{0, p}\left(\mathfrak{g r}\left(E_{\rho}\right)\right)$ by Weyl's dimension formula for a complex irreducible representation space. Then we obtain theorems in the case (I).

Case (III) In this case G is of type B_{2} and $\Pi_{1}=\left\{\alpha_{1}\right\}$. Then we see

$$
\begin{aligned}
\delta+\hat{\rho}_{k} & =\delta+k \alpha_{2} \\
& =(2 k+1) \widetilde{\varpi}_{1}-(2 k-1) \widetilde{\sigma}_{2} .
\end{aligned}
$$

From this, we see $\delta+\hat{\rho}_{k}$ is regular for any k. Also we see

$$
\text { the index of } \delta+\hat{\rho}_{k}= \begin{cases}0, & \text { for } k=0 \\ 1, & \text { for } k \neq 0\end{cases}
$$

By the way, we have

$$
S_{\alpha_{2}}\left(\delta+\hat{\rho}_{k}\right)=2 \widetilde{\varpi}_{1}+(2 k-1) \widetilde{\pi}_{2} .
$$

This implies that $S_{\alpha_{2}}\left(\delta+\hat{\rho}_{K}\right)$ is contained in the fundamental Weyl chamber. In the same way as in the case (I), we get

$$
\begin{aligned}
& H^{0, p}\left(G / K, \operatorname{End}\left(E_{\rho}\right)\right) \cong \cong \begin{array}{cl}
{\underset{y}{c}}_{C,}^{\bigoplus_{1}} V_{\lambda_{k}}, & \text { for } p=0, \\
\{0\}, & \text { for } p \geqq 2,
\end{array} \\
& H^{0, p}\left(G / K, \mathfrak{ß l}\left(E_{\rho}\right)\right) \cong\left\{\begin{array}{cl}
\bigoplus_{k=1}^{n_{1}} V_{\lambda_{k}}, & \text { for } p=1, \\
\{0\}, & \text { for } p \neq 1
\end{array}\right.
\end{aligned}
$$

as complex G-spaces. Here

$$
\lambda_{k}=(2 k-1) \widetilde{\varpi}_{1}+(2 k-2) \widetilde{\varpi}_{2}
$$

and $V_{\lambda_{k}}$ is the irreducible complex representation space of G which corresponds
to λ_{k}. We get $h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)$ and $h^{0, p}\left(\mathfrak{F l}\left(E_{\rho}\right)\right)$ by Weyl's dimension formula as before.

Case (III) In this case G is of type B_{2} and $I_{1}=\left\{\alpha_{2}\right\}$. Then we see

$$
\begin{aligned}
\delta+\hat{\rho}_{k} & =\delta+k \alpha_{2} \\
& =-(k-1) \varpi_{1}+(2 k+1) \widetilde{\varpi}_{2} .
\end{aligned}
$$

From this, we see

$$
\delta+\hat{\rho}_{k} \text { is } \begin{cases}\text { regular, } & \text { if } k \neq 1, \\ \text { singular, } & \text { if } k=1,\end{cases}
$$

and

$$
\text { the index of } \delta+\hat{\rho}_{k}= \begin{cases}0, & \text { for } k=0, \\ 1, & \text { for } k \neq 0,1 .\end{cases}
$$

By the way, we have

$$
S_{\alpha_{1}}\left(\delta+\hat{\rho}_{k}\right)=(k-1) \widetilde{\varpi}_{1}+3 \widetilde{\varpi}_{2} .
$$

This implies that $S_{\alpha_{1}}\left(\delta+\hat{\rho}_{k}\right)$ is in the fundamental Weyl chamber. As before, we get

$$
\begin{aligned}
& H^{0, p}\left(G / K, \operatorname{End}\left(E_{\rho}\right)\right) \cong\left\{\begin{array}{cl}
C, & \text { for } p=0, \\
\bigoplus_{k} \\
\bigoplus_{2} \\
\{0\}, & \text { for } p \geqq 2,
\end{array}\right. \\
& H^{0, p}\left(G / K, \mathfrak{g l}\left(E_{\rho}\right)\right) \cong\left\{\begin{array}{cl}
\bigoplus_{k=1}^{n_{2}} V_{\lambda_{k}}, & \text { for } p=1, \\
\{0\}, & \text { for } p \neq 1
\end{array}\right.
\end{aligned}
$$

as complex G-spaces. Here

$$
\lambda_{k}=(k-2) \widetilde{\omega}_{1}+2 \widetilde{\varpi}_{2}
$$

and $V_{\lambda_{k}}$ is the irreducible complex representation space of G which corresponds to λ_{k}. We get $h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)$ and $h^{0, p}\left(\mathfrak{g l}\left(E_{\rho}\right)\right)$ by Weyl's dimension formula as before.

Case (IV) In this case G is of type G_{2} and $\Pi_{1}=\left\{\alpha_{1}\right\}$. Then we see

$$
\begin{aligned}
\delta+\hat{\rho}_{k} & =\delta+k \alpha_{2} \\
& =(2 k+1) \widetilde{\varpi}_{1}-(k-1) \widetilde{\varpi}_{2} .
\end{aligned}
$$

From this, we see that

$$
\delta+\hat{\rho}_{k} \text { is } \begin{cases}\text { regular, } & \text { if } k \neq 1 \text { and } 4, \\ \text { singular, } & \text { if } k=1 \text { or } 4,\end{cases}
$$

and

$$
\text { the index of } \delta+\hat{\rho}_{k}= \begin{cases}0, & \text { for } k=0, \\ 1, & \text { for } k=1,2,3 \text { or } 4, \\ 2, & \text { for } k \geqq 5 .\end{cases}
$$

By the way we have,

$$
S_{\alpha_{2}}\left(\delta+\hat{\rho}_{k}\right)=-(k-4) \widetilde{\varpi}_{1}+(k-1) \widetilde{\varpi}_{2}
$$

and

$$
S_{\alpha_{1}} S_{\alpha_{2}}\left(\delta+\hat{\rho}_{k}\right)=(k-4) \widetilde{\varpi}_{1}+3 \widetilde{\varpi}_{2} .
$$

This implies that $S_{\alpha_{2}}\left(\delta+\hat{\rho}_{k}\right)$ is contained in the fundamental Weyl chamber if $k=2,3$ and $S_{\alpha_{1}}{ }^{\circ} S_{\alpha_{2}}\left(\delta+\hat{\rho}_{k}\right)$ is contained in the fundamental Weyl chamber if $k \geqq 5$. As before, we get

$$
\begin{aligned}
& H^{0, p}\left(G / K, \operatorname{End}\left(E_{\rho}\right)\right) \cong\left\{\begin{array}{cl}
C, & \text { if } p=0, \\
\{0\}, & \text { if } p=1 \text { and } n_{1}=0,1, \\
V_{\lambda_{2}}, & \text { if } p=1 \text { and } n_{1}=2, \\
V_{\lambda_{2}} \oplus V_{\lambda_{3}}, & \text { if } p=1 \text { and } n_{1} \geqq 3, \\
\prod_{k=5} V_{\lambda_{k}}, & \text { if } p=2, \\
\{0\}, & \text { if } p \geqq 3,
\end{array}\right. \\
& H^{0, p}\left(G / K, \mathfrak{g}\left(E_{\rho}\right)\right) \cong\left\{\begin{array}{cl}
\{0\}, & \text { if } p=0, \\
\{0\}, & \text { if } p=1 \text { and } n_{1}=0,1, \\
V_{\lambda_{2}}, & \text { if } p=1 \text { and } n_{1}=2, \\
V_{\lambda_{2}} \oplus V_{\lambda_{3}}, & \text { if } p=1 \text { and } n_{1} \geqq 3, \\
\overbrace{k} \bigoplus_{k=5} V_{\lambda_{k}}, & \text { if } p=2, \\
\{0\}, & \text { if } p \geqq 3
\end{array}\right.
\end{aligned}
$$

as complex G-spaces. Here

$$
\lambda_{k}= \begin{cases}-(k-3) \widetilde{\varpi}_{1}+(k-2) \widetilde{\varpi}_{2}, & \text { for } k=2,3 \\ (k-5) \widetilde{\varpi}_{1}+2 \widetilde{\varpi}_{2}, & \text { for } k \geqq 5\end{cases}
$$

And $V_{\lambda_{k}}$ is the irreducible complex representation space of G which corresponds to λ_{k}. We can compute $h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)$ and $h^{0, p}\left(\underset{\mathcal{L}}{ }\left(E_{\rho}\right)\right)$ by Weyl's dimension formula as before.

Case (V) In this case G is of type G_{2} and $\Pi_{1}=\left\{\alpha_{2}\right\}$. Then we see

$$
\begin{aligned}
\delta+\hat{\rho}_{k} & =\delta+k \alpha_{2} \\
& =-(3 k-1) \widetilde{\varpi}_{1}+(2 k+1) \widetilde{\varpi}_{2}
\end{aligned}
$$

From this, we see that

$$
\delta+\hat{\rho}_{k} \text { is } \begin{cases}\text { regular, } & \text { if } k \neq 2, \\ \text { singular, } & \text { if } k=2 .\end{cases}
$$

and

$$
\text { the index of } \delta+\hat{\rho}_{k}= \begin{cases}0, & \text { for } k=0, \\ 1, & \text { for } k=1, \\ 2, & \text { for } k \geqq 2\end{cases}
$$

By the way, we have

$$
S_{\alpha_{1}}\left(\delta+\hat{\rho}_{k}\right)=(3 k-1) \widetilde{\sigma}_{1}+5 k \widetilde{\sigma}_{2} .
$$

This implies that $S_{\alpha_{1}}\left(\delta+\hat{\rho}_{k}\right)$ is contained in the fundamental Weyl chamber. As before, we get

$$
\begin{aligned}
& H^{0, p}\left(G / K, \operatorname{End}\left(E_{\rho}\right)\right) \cong\left\{\begin{array}{cl}
C, & \text { for } p=0, \\
\{0\}, & \text { for } p=1 \text { and } n_{2}=0, \\
V_{\lambda_{1}}, & \text { for } p=1 \text { and } n_{2} \geqq 1, \\
\bigoplus_{k=2} V_{\lambda_{k}}, & \text { for } p=2, \\
\{0\}, & \text { for } p \geqq 3,
\end{array}\right. \\
& H^{0, p}\left(G / K, \mathfrak{彐}\left(E_{\rho}\right)\right) \cong\left\{\begin{array}{cl}
\{0\}, & \text { for } p=0, \\
\{0\}, & \text { for } p=1 \text { and } n_{2}=0, \\
V_{i_{1}}, & \text { for } p=1 \text { and } n_{2} \geqq 1, \\
\bigoplus_{k=2}^{n_{2}} V_{\lambda_{k}}, & \text { for } p=2, \\
\{0\}, & \text { for } p \geqq 3
\end{array}\right.
\end{aligned}
$$

as complex G-spaces. Here

$$
\lambda_{k}=(3 k-2) \varpi_{1}+(5 k-1) \widetilde{\varpi}_{2},
$$

and $V_{\lambda_{k}}$ is the irreducible complex representation space of G which corresponds to λ_{k}. We can compute $h^{0, p}\left(\operatorname{End}\left(E_{\rho}\right)\right)$ and $h^{0, p}\left(\mathfrak{G l}\left(E_{\rho}\right)\right)$ by Weyl's dimension formula as before.

Now we complete the proof of Theorems 4 and 5 .
Remark. We only write the dimensions in the statement of Theorems and Corollary, but we get the cohomology groups and the tangent spaces of moduli spaces as the representation space of G. Indeed, we have determined the highest weight of each irreducible component in the proof.

References

[1] J.F. Adams, Lectures on Lie Groups, Benjamin, New York, 1969.
[2] A. Borel, Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S. A. 40 (1954), 1147-1151.
[3] R. Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
[4] N. Bourbaki, Group et Algèbre de Lie, Chapitre 4, 5 et 6, Hermann, Paris, 1968.
[5] T. Bröker and T. Dieck, Representations of Compact Lie Groups, Springer-Verlag, New York, 1985.
[6] H. J. Kim, Moduli of Hermite-Einstein vector bundles, Math. Z. 195 (1987), 143150.
[7] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Iwanami Shoten, Tokyo, 1987.
[8] S. Kobayashi, Homogeneous vector bundles and stability, Nagoya Math J. 101 (1986), 37-54.
[9] Lübke and Okonek, Moduli spaces of simple bundles and Einstein-Hermitian connections, Math. Ann. 276 (1987), 663-674.
[10] H.C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1-32.

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki, 305
Japan

