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ON CERTAIN CURVES OF GENUS THREE

WITH MANY AUTOMORPHISMS

By

Izumi Kuribayashi

Introduction.

Let k be an algebraically closed ground field. When C is a complete non-

singular curve of genus g and G is a subgroup of its automorphism group

Aut(C), we call the pair (C, G) an AM curve of genus g {AM stands for

" automorphism ").

In Part I, we consider the AM curve (K, Aut(A')), where K is the plane

curve defined by XixI+x<lxI+x3Xi (in char(£)=£7).It is known [7] that #Aut(/C)

attains the Hurwitz's bound: 84(g―1) with g―3, in case char(k)>g+l with

g=3. To determine (K, Ant(K)), we use the fact that Aut(C) of a nonsingular

quartic plane curve C is canonically identified with a subgroup of PGL(3, k).

We shall show in particular that when char(£)=3, (K, Aut(K)) is isomorphic to

the AM curve (K4, PSU(3, 32)),where K, is defined by x＼+xi+x＼ and PS£7(3,32)

is a simple subgroup of PGL(3, k) of order 6048. We note that it is the maxi-

mum order among the automorphism groups of (complete nonsingular) curves of

genus 3 [8].

In Part II we consider the families of AM curves (C, G) of genus 3, where

G is isomorphic to the symmetric group of degree 4, <5>4.(We note that Aut(K)

contains such subgroups.) In §1, we shall determine " normal forms " of such

AM curves. In §2 we shall determine the isomorphism classes in the above

normal forms. In §3, using these results, we explain the relations between the

subgroups of Teichmiiller modular group Mod(3) which are isomorphic to c4

and their representations on the spaces of holomorphic differentials.In fact,for

an AM Riemann surface (W, G) (similarly defined as in the case of AM curves),

we obtain naturally a subgroup (denoted by M(W, G)) of the Teichmiiller modular

group Mod(3), which is isomorphic to G. Also we obtain a subgroup (denoted

by p(W, G)) of GL(3, C) which is the image of the representation of G on the

space of holomorphic differentials.We shall prove:
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Theorem. Let (W, G) be an AM Riemann surface of genus three. Assume

that G is isomorphic to >4. Then we have:

(1) M(W, G) is Mod(3)-conjugateto eitherMGU or MHU, p(W, G) is GL(3, C)-

conjugate to eitherG%i or Hzi.

(2) M(W, G)~MG2i (resp.MH2i) if and onlyif p{W, G)~G24 (resp.Hti).

MGM and MH2i (resp.G24 and HM) in the above are certain subgroups of

Mod(3) (resp. GL13, O), which are explainedin (3.1)of Part II.
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Part I. On the automorphism group of Klein's quartic curve.

§1. Notations and theorem.

1.1. Let k be an algebraically closed base field of characteristic p^Q. A

curve will mean a complete nonsinguiar curve over k. If C is a nonhyperelliptic

curve of genus 3, then its canonical embedding is a quartic plane curve. Con-

versely, any (nonsinguiar) quartic plane curve is nonhyperelliptic of genus 3,

and its embedding into the ambient projective plane is canonical.

Let C and C be two quartic plane curves. We denote by Lin(C, C) the set

of automorphisms of the ambient projective plane which induce isomorphisms of

C onto C. Then it is known that the natural mapping of Lin(C, C) into

Iso(C, C) is a bijection.

Considering a system of homogeneous coordinates, we put

P2=Proj(fc[>i, x2, x3]}-

Then we may identify the group of automorphisms of P2, Aut(P2), with a pro-

jective linear group, PGL(3, k). In fact,if a matrix (ai}) represents an element

of PGLC3, k),its corresponding automorphism (of P2) is defined by:



and S(a, b, c) ―

la h c＼
＼bca＼

＼
c a bj

Gl

1.2.1. Lemma. The followings hold in GL(3, k)
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If C is a quartic plane curve in P2=Pro](kZx1, x2f xsj) the automorphism group

of C, Aut(C), is always considered as a subgroup of PGL(3, k). For a matrix

T―(aij) in M(3, k), T* denotes the homomorphism of the graded ^-algebra

3
k[_x1} x%, xz~],defined by: Xi>-> S atjXj {i―l, 2, 3). And when T is an element

of GL{3, k) and H is a subset or an element of GL{3, k), we denote T'^-H-T

by T*(H).

We use the same notation for a quartic curve and a generator of its homo-

geneous ideal of definition. And we denote an element of PGL{3, k) by its

representatives when there is no fear of confusion. Then, for example, if C is

a quartic curve and H is a subset of Aut(C), then for any element T of

PGL(3, k), T*(C) is well-defined as a plane curve, and T*{H) is also well-defined

as a subset of Aut(T*(Q).

1.2. Notations. We fix a primitive 7-th root C,of unity in k (if exists),and

we denote: fcf.Til)

(1)

(2)

(3)

(4)

It

/3

ri:=CB-C*, rt:=C'-C4, r.:=C-C,

^i:=C+C2+C4, (92:-C6+C5+C3 and

is immediate to see ･

?=/32+2? $=#,+2, iS!=i31+2, i3li92=/31+J83,&&=&+&, $3$ = &+&,

/3i, /32and /33 are the distinct three roots of the equation /33-f/32―2/3+ 1=0

#! and 62 are the distinct two roots of the equation (2(9 + l)2+7=0,

piri=n, ^it^Tz, p%r*=ri, airi=r≫, ^r^ri, ajs=r2.

Next we define distinguished elements and a subgroup of GL(3, k) as fol-

lows: (cf. [3, p. 444])

X: = D(C, CS 0, Oi'.^ri-Wi-OtY1-Si.au Bu 1),(/=1, 2, 3)

And GK

)

where D{a, b, c)=＼

Q, z. a}, where a

a 0 0＼

0 b 0

0 0 c/
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(1)

(2)

(3)

(4)
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the order of X (resp. r, a) is 7 (resp. 3, 2).

ai=za2, ffz^TGz, a3=zTa1, ffiT=a2, a2T=ai, <j3r=a'1,

rlz-l = T,

" defining relation " OiX-^Oi^X^od21 (i=l, 2, 3)

Proof. These are followed from above by direct calculation.

1.3. Lemma. Assume that char(k)^7.

onto GK sending r1
n

Lo ll
(resp.
Lo ll Li

natural homomorphism of GK into PGL(3,

Th

3

0

k)

ere.is an isomorphism of PSL(2, 7)

j to 1 {resp. r, a). Hence the

is iniective.

Proof. We have known that the followings are defining relations for

PSL{2, 7):

x->=y≫= lt y-lxy = x2, *2=1, riyt=y-1 and (xt)3= l.

If we take (in PSU2, 7))

[I n r2
iJ' Lo ;r and [2 ;n;

3F °1
oJLo iJ

in lieu of x, y and z, then these satisfy the above relations. From (1.2.1)1, z J

and t'1ar also satisfy the relations. Therefore there is a surjective homomor-

phism as in the statement of the Lemma. Since PSL{2, 7) is a simple group

(of order 168), thisis an isomorphism. Then the latter part is obvious. Q. E. D.

1.4. A couple (C, G) of a curve C and its automorphism group G shall be

called an AM curve. An isomorphism of AM curves of (C, G') onto (C, G) is

an isomorphism of curves T:C'-^C such that G' = T~1GT. In this case we

denote (C, G') by T*(C, G) or (T*(C), T*(G)), and also write (C, G') = (CS G).

The purpose of this part is to prove the following theorem:

1.4.1. Theorem. When char(&)^3 {resp. char(&)=3), (K, Aut(K)) isisomor-

phic {as AM curves) to (K, GK) {resp. (Kif PSU{3, 32))). Moreover when char(^)

=2, {K, Aut{K)) is isomorphic to {K2, PSL{3, 2)).

In the above, K denotes the plane curve defined by Xix|+x2xl+x3x?, in

case char(fe)^7. AT4 denotes the curve x＼+xi-＼-x＼and K2 denotes the curve

xl+xl+x43+xfxl+xlxi+x|x?+x1x2x3(x1+x2+X3). And PSU{3, 32) denotes the

injective image in PGL{3, k) (in case char(&)=3) of

SU{3, 32)={y4eESL(3, 3z)＼tA-A^=I},



:

1

0

0

Here we have known that G8 is a 2-Sylow subgroup of GL(3, 2)and thatG2i(+)

and G24(―)are isomorphic to the symmetric group of degree 4, <s54.

Also we define distinguishedfamiliesof AM curves as follows:

F8:=the set of AM curves (C(a,b),G8) (with parameters a and b)

FZi(+):=the set of AM curves (C(a, a),G24(+))

F24(-):=the set of AM curves (C(l,b),G2i{-))

where

C(a, b):= xi-＼-axi-＼-bxi+xlx2+axlxl+xlxl+x1xixs(x1-^-x2+xs).■

When G is a subgroup of GL(3, k) (in any characteristic)we denote by

F(G) the set of (nonsingular)quartic AM curves (C, G). Forgetting automor-

phism groups, we also use the above each family as the set of corresponding

curves.

Now we prove a lemma which characterizethe curve K≪.
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where Aa:>:= {a＼3)if
J4=(aiJ-)-

It is known as a simple group of order 25-33-7

=6048. PSL(3, 2) denotes the injective image in PGL(3, k) (in case char(£)

―2) of a finitegeneral linear group GL(3, 2). It is known as a simple group

of order 23-3.7^1fi8

A part of proof. First we note that in case where char(&)=7, K is a

singular plane curve, so we omit this case. Now it follows that 1*{K)―K,

t*(K)=K and a*(K)~K in k＼_xux2>x3~]by direct calculationusing (1.2). So

GK is containedin Aut(K) (in PGL{3, k)). On the otherhand, when char(&)^2

or 3,it follows from [7] that #Aut(/Q^84(g-l) with g=3. Thus we get that

Aut(K) = GK in these cases.

The excluded cases are settledin §2,(2.2.1)and §3,(3.1.1).

§2. The case char(£)=2.

Throughout thissectionwe assume that char(&)=2. Firstwe write down

rather general notationsfor the use in Part II.

2.1. Notations. We define distinguished subgroups of GL(3, 2):

G8:=<R+, #_>, G24(+):=<5+, R+R->, Gsi(-): = <S-, R+R->

where

R+: ―

I1'

0 1

＼0 0

:)
/I 0 0＼

/?_:=! 0 1 1

＼0 0 1/

n 0

S+:= 0 0

＼0 1

i)
s

(I
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2.1.1. Lemma. We have: F2i(+)=F(G2i(+)) and F24(-) = F(Ga4(-)). Hence

F(PSL(3, 2))= {K2}.

Proof. Comparing coefficients we see easily that ir≪i?+i?_≫=the set of

curves C(a, h, c2,c3), where C{a, b, cz,c3):= x*+axt-＼-bxi+(xixl-＼-c2xlxl+cixlxl)

+ x1X2X3(x1+x2+x3) + (l+e3)xlx3+(l+c3+a + c2)x2xi+(l+c3)x1xi with a, b, c2

and cs in k. Again comparing coefficientsas for S+ (resp. S-), we get that

F≪S+, i?+i?_≫=the set of curves of the form C(a, a, a, 1) i.e. F24(+), and that

F≪S_, i?+i?_≫=the set of curves of the form C(l,b, 1, 1) i.e. F2i(-). Since

<S+, S-, J?+/?_>is equal to PSL(3, 2),it follows from these facts that F(PSL(3, 2))

=ir24(+)ni724(-)={C(L 1) i.e. iU. Q.E.D.

2.2. We shall prove (2.2.1)using (2.2.2).

2.2.1. Proposition. (K, Aut(K))s*(Kt, PSL{3, 2)).

2.2.2. Lemma. Let C he a curve in Fg, and let T be an element of GL{3, k).

If T*(C) is again a curve in F8, then T is contained in PSL(3, 2) (in PGL(3, k)).

Proof of (2.2.2).Let C=C(a, b) and T=(atj) be as above. We denote Tm :

―{a＼j),A:=(Ai}) where Atj are the cofactors of the matrix {ai}),and put lA-Tm

= {bij). Then we have (In k[xlt x2, x3~]):

1 (XiX2x3(Xi-rX2~rX3,))―1 (x＼XiXz'T'x2.xsXi~rx%x＼X2)

= (a2uxl+a212xi+a21Bxf)(a21x1+a22X2+a2Sxs)(a31x1+a32x2-{-a33x3)

+ (al1x＼+alzxl+ a29xl)(asix1+a3zxz+ a3sXB)(anXi+ a12x2+ alsxs)

+ (al1Xi+aszxl-＼-alsxl)(anXi+aizXz+a13x3)(aziX1-＼-azzXz+azsXs)■

Thus we have:

(the coefficientof xfx2x3 in T*(C(a, b)))

= (the coefficientof x＼x%x%in T*(x1x2x3(x1+X2+^3)))

= a2nAn+aiiA21+ai1A31=bn-

Similarly we have:

(the coefficientof x|x2x3 (resp. x|x2x3) in T*(C(a, b)))= b12 (resp. b13).

(the coefficientof x＼x%xx(resp. x＼x3xx,x＼x3x＼,x＼xix2,xlxiX2, xixix2)

in T*(C(a, b)))=bSi (resp. b22,b23>bn, b32,b33).

Since T*(C(a, b)) is a curve in F8, we have that tA-Tm = (bij)=I in PGL(3, k).

On the other hand we have lA-T=I in PGL(3, k). It follows that T=Tm in

PGL(3, k). This means that T is contained in PSL(3, 2). Q. E. D.
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Proof of (2.2.1).It follows from (2.1.1)and (2.2.2)that Ant{K2)^PSL(3, 2).

On the other hand it is easy to see that S(/3i,au 1)*K=K2 (as curves) by (1.2).

Thus we conclude that (K, Aut(K)) is isomorphic (as AM curves) to

(K2,PSm,2)). Q.E.D.

Also from (2.1.1),(2.2.1)and (2.2.2)we get:

2.2.3. Remark. G24(+) and G24(―) are not PGL(3, &)-conjugate to each

other.

§3. The case char(fc)=3.

In this section we assume that char(£)=3.

3.1. We shall prove (3.1.1)using (3.1.2).

3.1.1. Proposition. (K, Aut(K))^(Kif PSU(3, 32)).

3.1.2. Lemma. Let T be an element of GL(3, k) such that T*(K4) isin F24

Then T is contained in PS 17(3,32)(in PGL(3, k)＼and T*(K^=KA.

In the above, F24:denotes (in general when char(&)=£2),the set of AM

curves (C(a),G24) where C(a) is a plane curve defined by: xl+xf+*3+

fl(xfxl+xlxH-x|xi),a&k, and G24 is a subgroup <i?,S> of GL(3, k),with

r

R = ＼ 0

＼1

1

0

0 0/

:

Proof of (3.1.2). Let T={ai}) and 'TTt"=y. First we note that:

T*(Ki) = (auX1+a12x2+alzxsy+(a21x1+a<,2X2+a23X3)i+(aiiXiJraS2X2Jra33x3Y

― Oii^iXi~ryi2XiX2 i b＼%x 1X3~t~U2i%2^-11 bz<>x2-^-21 023^2-^-3

Hence it follows by the assi.nption that T*(Kt)=Kt and that tT-Tw=I (in

PGL(3, k)). Then we have also that Tm*(KA)=K4, so that ≪TC3)-TW=/ i.e.

*TW-T =I. Hence we get that T = TW (in PGL(3, k)). Put C'8-T = TW in

GL{?>, k) with some c in k. Then we have that cT is in GU(3, 32) and so that

(det(cT))5-cT is in SU(3, 32). Q. E. D.

Proof of (3.1.1.)-It also follows from the above proof that PSU(3, 32) is
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contained in Aut(/f≪). So we have that Aut(Ki)=PSU(3, 32). On the other hand

it is easy to see that S(($u at, l)*(K)=Kl by (1.2). Thus we conclude that

(K, Aut(K)) is isomorphic to (K4, PSU(3, 32)). Q. E. D.

3.2. Remark. In the similar line (as in (3.1))we also have that Aut(ZQ+1)

is isomorphic to PU(3, q2),if char(k)―p is positive and q=pn>3 with n^l. In

the above, Xq+1 denotes the (nonsingular) plane curve (of genus 2~1-q(q―1))

defined by: x＼+1-＼-x＼+l+xl+＼Hence the order of Aut(Zg+1) is (^3+l)g3(^2―-1).

Moreover if (3, ?+l) = l, then PU{2>, q2)= PSU(3, q2)is a simple group. Here we

note that this curve is isomorphic to the curve defined by: yq+y ―xq+＼(e.g.

[8, p. 5281).

Part II. On curves of genus three which have automorphism groups

isomorphic to c4.

§1. Normal forms.

The purpose of thissectionis to prove the followingtheorem:

1.1. Theorem.

G is isomorphic to

that:

(i)

(ii)

Let (C, G) be an AM curve of genus three. Assume that

c4. Then there is an isomorphism T (of AM curves) such

T*(C, G) is in FZ4, hF2i or hF'Zi,when char(&)^2, or

T*(C, G) is in F24(+) or F24(―),when char(^)=2.

In the above we denote:

F24=the set of AM curves (C(a), G2i) (with a parameter a),(3.1 of Part /),

hF2i= {the AM curve (C*, hG2i)},

hF'2i= {the AM curve (C*, /ii/24)},

where C* denotes the hyperelliptic curve (in case where char(&)=£2or 3) defined

by: j;2=x8+14;k4+1, and hG2i=<Ai-J> T3>, hH2i=<A4, T3>. In the above we

denote by / (resp.
^44,
T8) the automorphism of C* defined by (x, y)i-^{x,―y)

(resp. {ix, y), (-i{x-l)-(x + lY＼ -Ay{x + l)'A)),(i denotes V-l).

1.2. The case: char(^)^2 and C is nonhyperelliptic. Then we may assume

that (C, G) is a quartic plane AM curve. Since it is obvious that F(GZ4)―F2i

(cf.(2.1 of Part /)),it sufficesto show:

1.2.1. Lemma. Assume that char(&)^2. Let H be a suberoub of PGL(3. k)



On Certain Curves of Genus Three with Many Automorphisms 279

which is isomorphic to c4. Then H is PGL(3, k)-conjugate to G2i.

Proof. We denote by P-PGL (resp. D-PGL) the set of elements of PGL(3, k)

which are represented by {ai}),where a<n=aZ2=a1<s=a23:=Q (resp. Gjj=O if i^j).

Also we denote <S2, RS^R'1} by Gt.

Let V=(AU A2} be the (unique) normal subgroup of H of order 4. We may

assume that A1=Si by the Jordan's canonical form. Then A2 is contained in

P-PGL, which is equal to the centralizer of S* in PGL(Z, k), CPGL(S2). Since

Al=I (in PGL{3, k)), there is an element T in P-PGL such that T*(A2) is in

D-PGL. Thus we get that T*(I/)= <T*(^1), T*U2)> = G4. So we may assume

that V is equal to G4.

Next it is easy to show that CpGL{Gi)=-D-PGL and that the normalizer of

G4 in PGL(3, k),iVFGZ.(G4)eguals to <i?,Sv>-CFc;L(G4)Jwhere S' = S2-RSR. The-

refore H contains an element of the form RD, where D=D{a, /3,1) (cf.(1.2 of

Part /)). Let v be a solution of the equation afivs=l. Then we have that D{fiv2,

v, 1)*(RD)=R (in PGL(3, k)). Thus we may assume that R belongs to H.

Since // is isomorphic to c4, we have that A^i?≪i?≫=<i?,S'D'> for some

D' = D{j, 8, 1). It follows from (S'D')2=I that rtf= l. And it follows from

S'D'-RiS'DT'-^R-1 that r2=<5- Then we have that D'*(S'JD/)= S/. Since this

D' is in CpGL<S2,R>, we get that D'*(H)--=<.D'*(S2),D'*(R), D'*(S'D')> = G2i.

This completes the proof of (1.2.1),and hence the theorem (1.1) in case where

char(&)=£2and C is nonhyperelliptic.

1.3. The case: C is hyperelliptic.

First we show:

1.3.1. Lemma. Assume that charO)^2.

(1) Let H be an abelian subgroup of PGL{2, k) of type (2, 2). Then H is

PGL{2, k)-conjugate to Hi} where HA denotes (A2, By.

(2) NPGL(2ik)(H4) is equal to <A T3> and is isomorphic to <&,.

In the above we denote . fresp.

Also we shalldenote by D(a, /3).

ro 1

LI 0

]

■

[
1

i

■/])
by A (resp. B, T8).

Proof. (1) Let H=(Alf A2}. We may assume that A1―Ai by the Jordan's

canonical form. Then A2 is of the form D{a, 1)B. Put T = D(fi,1)5 with ^=a.

Then we have that T-1-HT = <T-1A1T, I-M2T> = <42, By^-H,.

(2) It is easy to show that CPGLC2,kAHi)~-=Hi- Since we have that B'A2B'"1
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= A＼ B'BB'-l = AzB, where B'~-=A2TSATS and that Tt1dtI≫=S, TSA2T^=AZB,

it follows that NPGLc2,k^H4)=(Ts> 5'>-CpGLC2,*3(//4).Therefore we have that

NPaLit,≫(Hi)= <la, £>, since <A＼ B, Ts, B'> = <TS> A>. Since (A^YMIsA)^

(A~1T3A)S=I, and since ^Npgl(2,^(U4) = 24, we have an isomorphism of <34 onto

NpouLHiHt). Q.E.D.

Next we shall show the theorem (1.1) in case where C is hyperelliptic. In

this case we have a natural exact sequence </>―>Aut(C)-*PGZ,(2, k). Since G

is isomorphic to c4, we have that the image G of G in PGL(2, k) is also

isomorphic to <54. Thus char(fe) must be different from 2, because there is no

elements of order 4 in PGL(2, k) in case char(&)=2. Then C is determined

by f(x, z), where /(%, z) is a homogeneous form of degree 8 which is a semi-

invariant with respect to G. Then we may assume by (1.3.1)that G=A^pGi(2, *)(H4).

Since f(x, z) is a semi-invariant for A, we have that f(x, z)=ax%-＼rfSxizAJrjzB

for some a, ft and j. Moreover since f(x, z)is a semi-invariant for B, we have

that Case 1: ≪+;r=G, /3=0, or Case 2: a=7". In Case 1, f(x, z) cannot be a semi-

invariant for T3. So Case 1 does not happen. In Case 2, since f(x, z) is a semi-

invariant for Ts, we have that 14a:=/3 i.e. fix, 2)=≪(x8+14x4z4+z8). Thus we

see that C is defined by 3>2=;*:8+14x4+l. Since G=</4, T3>, and since yt4 and

Ts are automorphisms of C, we have that G is contained in (A4, Ts, J). On the

other hand T3 is in G, because there are no element of order 6 in <S4. Thus

we obtain that G = (AAJ, T3> or (Aiy T3>. This completes the proof of the fact

that (C, G) isomorphic to (C*, /iG24)or (C*, hH2i),in case where C is hyperelliptic.

1.4. The case: char(&)=2. Then we may assume that C is nonhyperelliptic.

And it follows from the Jordan's canonical form that we may assume that R+R-

is in G. Then C equals to some C(a, b, c2, c8)in F≪i?+i?_≫ (cf. (2.1.1 of Part /). If

(a, p in k), then T is in CPGL(R+R-) and T*(C) = C(a', b', c'2fc'3)

in F≪R+R-≫, where c2=c2+c3(≪2+≪)+a4+≪3+^2+i3, and c'3= cs+a2+a. For

suitable choice of a and /3,we get that T*(C) is a curve in F8. Hence we may

assume that C is in F8 with R+R- in G. It follows from (2.2.2 of Part /) that

Aut(C) is contained in PSL(3, 2). It is easy to see that CFSZC3,2)<(i?+i?-)2>= G8.

So we have that G8 is contained in G. Therefore the normal subgroup of G of

order 4 is either <i?+,(R+R-)2> or </?_,(i?+i?_)2>. Since AWc3,2)<#+, (i?+i?-)2>

= G24(+), and iVP5iC≫,≫<i?-,(i?+i?-)2>=G24(-), we have that G = G24(+) or G24(-).

On the other hand, since F(G24(+)) = F24(+) and F(Gg4(-)) = FM(-) (2.1.1of Part /),

we get that (C, G) is a member of F24(+) or F24(―). This completes the proof
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of (1.1) in case where char(&) = 2.

in

a

§2. Isomorphism classes.

The purpose of this section is to prove the following theorem:

2.1

F2i,

― a
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Theorem. Assume that char(&)=£2. Let C(a) and C(a') be two curves

where a^36i or 3#2- Then C{a) is isomorphic to C(a') if and only if

Proof. To prove the "only if" part, we assume that C(a)=C(aO and

a^a'. First it is easy to see that CpGL(Gti)―{I}. Since any automorphism of

c4 is an inner automorphism, we also have that NpGL(GZi)=Gti. Therefore by

the assumption it follows that Aut(C(a)) contains strictly G2i. Then we apply

a result on the classificationof nonhyperelliptic AM curves of genus three [5],

and it follows that C(a) is isomorphic to K or K4.

(1) The case: C(a)szKt. When char(&)=3, it follows from (3.1.2of Part /)

that a=0, where this is the excluded value. When char(&)^3, we note that

#Aut(iQ=96, and that CAut<i<:4)(S2)is a 2-Sylow subgroup of Aut(/Q with

(D(i, i, ―1)> as its center. So any 2-Sylow subgroup of Aut(iQ has a cyclic

subgroup of order 4 as its center. Since CPGL(S2, RS2R~1} is contained in

D-PGL, Aut(C(a)) contains an element of D-PGL of order 4. Then we have

at any rate that a=0. Also we have that a'=0. These lead to a contradiction

to the assumption on a and a'.

(2) The case: C(a)^K. We may assume that char(&)^3, by (1.4.1 of Part

/). If we denote by So (resp. So) S(Cas, Q^, 1) (resp. S(Ca3, C≫pu1)) (cf. (1.2

of Part /)) then by direct calculations we see that St(K)=C(361) (in FZi) and

S$(K)=C(3d2) (in F2i). Let T be an isomorphism of K onto C(a). Then T*(G24)

is G^-conjugate to either So1*(G2i) or S01*(G24), since GK=Aut(K) (1.4.1 of Part

/) and GK is isomorphic to PSL(2, 7). Hence replacing T if necessary, we may

assume that TS0 or TS0 is contained in NpGL{G2i)=G2i, which is contained in

Aut(C(a)). Thus we have at any rate that a=2dx or 362, which are the excluded

values. This completes the proof of (2.1).

2.2. Remark. We have an analogous result for the case char(&)=2, by

(2.2.2 of Part /):

Assume that char(&)=2. Let C(a, b) and C(a'',b') be two curves in F8. Then

C(a, b) is isomorphic to C{a', b') if and only if a ―a' and b=b'.
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§3. Subgroups of Mod (3) which are isomorphic tc c4 and their

representations.

In thissection we work in the category of (compact) Riemann surfaces.

3.1. Notations and theorem.

3.1.1. Let Wo be a fixed Riemann surface of genus 3. For each Riemann

surface W of genus 3, we consider the pairs (W, a), where a are homotopy

classes of orientation-preserving (or shortly o.p.) homeomorphisms of Wo onto

W. Two such pairs (W, a) and (W, a') are said to be conformally equivalent

if there is a conformal mapping of W onto W which is an element of a'a'1.

We denote by <W, ≪> the equivalence class of (W, a). And the set of these

classesis called the Teichmuller space T(3) of genus 3. T(3) becomes a metric

space [9], and moreover a (simply connected) complex manifold of dimension

3g-3 with g=3 [2].

Let G(W0) be the group of o.p. homeomorphisms of Wo. Each c in G(W0)

defines a well-defined permutation c* of T(3) sending (W, a) to <W, cc-c'1}.In

fact this c* is a biholomorphic mapping. And so we have a group homomor-

phism of G(Wo) into Aut(T(3)), the group of biholomorphic mappings of T(3).

We denote its image by Mod(3). For (W, a} in T(3), we have a natural group

homomorphism (denoted by Ma) of Ant{W) into Mod(3) defined by o-i-^crVa)*.

It is known that Ma defines an isomorphism of Aut(W0 and the isotropy sub-

group of Mod(3) at <W, a) (e. g. [6, p. 16, Corollary]). For an AM Riemann

surface (W, G) (defined as in (1.4 of Part I)), taking a homotopy class a of Wo

onto W, we define a homomorphism (denoted by M(W, )) of Aut(W) into Mod(3)

as above. Then we note that its image M(W, G) is determined up to Mod(3)-

coniueacv.

3.1.2. For an AM Riemann surface (W, G) of genus 3, taking a basis <plt<p2,

<ps of the space of hoiomorphic differentials,we define a representation, p{W, ),

of Aut(W) on the space which is defined by: p{W, o)= {au) in GL(3, C), where

3
o*(<Pi)= 2 ciij<p}(<reAut(W)). Then we note that the image p(W, G)

determined up to GL(3, C)-conjugacy.

The purpose of this section is to prove the following theorem:

of G is

3.1.3. Theorem. Let (W, G) be an AM Riemann surface of genus three.

Assume that G is isomorbhic to c>. Then we have:
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(1) M(W, G) is Mod(3)-conjugate to either MG24 or MH24, p(W, G) is GL{3, C)-

conjugate to either G2i or H2i.

(2) M(W, G)~MG2i (resp. MH2i) if and only if p(W, G)~G2i {resp. H2i).

In the above we denote by MG2i (resp. MH2i) the subgroup M(C*, hG2i)

(resp. M(C*, hHit)) of Mod(3). And we denote by G24 (resp. H2i) the subgroup

</?,S> (resp. <#, -S≫ of GL(3, C) (cf.(3.1 of Part /)).

3.2. Our proof is based on the following several lemmas:

3.2.1. Lemma. Let (C(a), GM) is an AM Riemann surface in F2i. Then

p(C(a), G2i) is GL(3, C)-conjugate to G24.

Proof. Let F(xu x2, x3) be the homogeneous polynomial defining C(a).

And we denote by x and y the functions on C(a), xx/x3 and xz/x3. Since C(a)

is a nonsingular plane curve which meets the line defined by x3=0 transversally,

the differentials xF2ldx, yF^dx and F2~1dx form a basis of the space of

holomorphic differentials,where F2=F2(x, 3;)=("o―Fj (x, y, 1). If p{C{a), ) is

the representation with respect to this basis, then we have that p(C(a), S)=S,

since S^xFr^dxy^-yF^dx, S*{Fiidx) = Fi1dx and S^iyF^dx^x-F^dx. On

the other hand we have that R＼F2-1dx)=(4x-3+2a((yx-1)2x~1+x-1))-1d(yx-1)=

(A-＼-2a(x2Jry2))~1x(xdy―ydx)―xF21dx, since Fi(x, y)dx-{-F2(x, y)dy―Q.

Hence we also have that R*(xF2~1dx)-=yx~1R*{F＼~1dx)=yFl1dx, and that

R*(yF21dx)=x-1R*(F21dx)=F21dx. Thus we get that p(C(a), R)=R. The-

refore we conclude that p{C(a), G2i)=G2i. Q. E. D.

3.2.2. Lemma. Let C* be the hyperellipticsurface in (1.1). Then p(C*, hG2i)

(resp. p(C*, hHu)) is GL(3, C)-conjugate to G24 (resp. Hu).

Proof. Let p(C*, ) be the representation of Aut(C*) with respect to the

basis: i(x2―l)y~1'dx, (x2+l)y~1-dx and 2ixy~1-dx. First it is obvious that

p(C*, /)=―/. Next it follows easily that:

(AiJ)*(i(x2-l)y-1dx)=i＼-x2-l)(--y)-1dx = -(x2+l)y-1dx,

(AJ)*((x2+l)y-1dx)=i(x2-l)y~1dx, and

(AJ)*(2ixy~1dx)^2ixy~1dx .

Hence we obtain that p(C*, AtJ)=S and p{C*, ^4)=―S. We also have that:

Tf(y-1dx)=i(x + m2y)-1dx, Tt{xy-1dx)^{x2~l){2yY1dx and
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Tt{xz-y-'dx^-Hx-lfilyY'dx .

Hence we obtain that:

Tf(i(xa-l)y-1dx)=(xi-{-l)y-1dx, Tz{{xz+l)y~1dx)^2ixy-1dx and

Tt(2ixy"1dx)=i(x2-l)y-1dx .

Therefore it follows that p(C*f TS)=R. Combining these results, we have that

o(C*, hG2i)=G2i and p(C*, hH2i)=H2i. Q.E.D.

3.2.3. Remark. G2i and Hu are not GL(3, C)-con jugate are each other, since

<S> and <･―S> are not conjugate.

3.3. Now we prove the following proposition:

3.3.1. Proposition. Let C{a) and C(a') be two Riemann surfaces in Fu.

Then there exists an orientation-preservinghomeornorphi$m f of C{a) onto C(a')

such that f-A=A-f for each automorphism A in G24.

Proof. We shall prove this proposition in several steps.

Step 1. We denote by C' a Zariski-open subset {a＼C(a)^FZi} of C. We fix

an element a0 of C". Let L be a topologicalembedding of R to C" such that

L(0)=ao. For s>0, we denote by LS the restrictionof L to the open interval

(―£,s). And we also denote by Le its image in C".

Then it sufficesto show:

Claim. There existsan s>0 such thatfor any a in Ls, there is an o.p.

homeomorphism fa of C(a0) to C(a) with the property thatfa-A=A-fa for each

A in Goa.

If we prove this Claim, then we obtain a desired mapping after composing

of finitely many such mappings as in the Claim.

In the following we shall prove this Claim.

Step 2. Let a0 and L be as above. If n^a) and nz(a) are the two solutions

(in C) of the equation: n2+2an+(a+2)=Q, then we denote iV-(a)=l+2(ni(a)+l)2

･riiiaY1 (i―l, 2). If e is sufficiently small, then we may assume that the map-

ping N'i of LE to C is continuous, since N[(a) and N'2(a) are distinct (and

different from 0) for each a in C＼

Next we choose a quasi-conformal mapping <p of P1 onto Pl such that

<&(0)=0, ^(oo)=oo, d>(N[(ao))=l and <l>(N'2(a0))~t. We denote the continuous
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mapping <pN'iby Nt.

Let C be the complex subspace of P2xLe defined by the locus of the

equation:

xi+xi+xi+aixUt+xlxl+xUi^O.

Then we have the following Claim:

Claim. (1) If we define the continuous mapping k of C onto FxL£ by

sending {xu x2, x8, a) to (^(H-(xf+xl)(xl + x|)(x|+xf)(xiX2x8)"2,a), then it is

the quotient mapping of C onto C/G2i.

(2) The o. p. continuous mapping 7ra:it~1(a)―*P1(the fiber of tc over a) is

the natural mapping of C(a) onto C(a)/G2i.

(3) The branch points of 7ta are 0, oo, JVi(a) and N2(a).

Proof. We have (1) and (2) from the fact that the holomorphic mapping

of C(a) to P1 defined by (xu x2, Xs)^l+(x21 + xi)(xl+xl)(xt+xt)(x1x2X3)'2 is the

quotient mapping C(a)―*C(a)/Gu-

Since G2i is isomorphic to >4,it is easy to see that the branch points are

the images of the following 4 points of C(a); (1, a),af): a fixed point of R (in

C(a)), where cois a solution of the equation o>2+<y+l=0, (*, 1, 0): a fixed point of

S2, (1, 1, Vnja)): a fixed point of S2RSR (*'=1, 2). These images are in fact 0,

oo, N^a) and N2(a). Q. E. D.

Step 3. We define a mapping g of FxL£ into FXXL£ by {P, fl)>->

(Re(P)N1(a)-{-Im(P)N2(a), a) (if P^cxd), and (oo, g)^(cxd, a). If £ is sufficiently

small, then it follows easily that:

(1) g is a homeomorphism such that g(Q, a)=(0, a), g(oo, a) = (oo3 a) and

g(Nt(a0), a) = (^(a), a) 0 = 1, 2).

(2) the fiber of p- over a (denote it by ga) is an o. p. homeomorphism.

Step 4. B(a) denotes the set {(Q, a) in PxxL£＼Q is a branch point of

7ua'･C(a)-*FX}, and B denotes the union ＼J B(a). Since the action of G2i on
aei£

C＼x~1B is fixed-point free, the restriction of k to C＼tc~1Binto P1xLs＼B is

surjective and locally homeomorphic.

For a point P of C(a0)＼^aJ'6(ao)and a in L£,let L(P, a) be the lifting with

initialpoint P (considered as a point of C) of the 12-curve from [0, ta~＼to PxxLe

(where L(ta)=a) defined by t>-+g(xao(P),L(t)). Then we have a homeomorphisrn

(denoted by /) of (C(ao)＼7talB(ao))xLs onto CXtt^jB, sending (P, a) to the end

point of L{P, a). This mapping has the property that f(AP, a)―Af{P, a) for
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any automorphism A in GZi, since Af(P, a) is the end point of the JR-curve

AL(P, a) which is equal to L(AP, a).

It is obvious that / can be uniquely extended to a homeomorphism (again

denoted by /) of C(ao)xLs onto C, and that / has the property that f(AP, a)

= Af(P, a), because C-*LS is a proper mapping.

Step 5. The fiber(denoted by fa) of / over aeL is the desired homeo-

morphism of C(a0) onto C{a) with the property that faA~Afa for each A in

G24. The fact that fa is orientation-preserving is followed from (2) of Claim in

Step 2 and from (2) of Step 3. Q. E. D. of (3.3.1).

3.3.2.Corollary. Let (C{a),G2i) and (C(a'),G24) be two AM Riemann

surfacesin F2i. Then M(C(a), G24) and M{C{a'),G24) are Mod(3)-conjugateto

each other.

Proof. Let / be as in (3.3.1).If we take a homotopy classa of Wo onto

C(a),then we have that Mfa(A)=((f-a)~1A(f-a))*={a-1-f-1Af-a)*=Ma(f-1Af)

=Ma(A). Thus we have that M{C{a), Gu)~M(C(a'), GM). Q.E.D.

3.4. Proof of the theorem: Let (W, G) be as In (3.1.3).

First we note by (3.2.1),(3.2.2)and (1.1) that p(W, G) is GL(3, C)-conjugate

to either G2i or H2i, and that p(W, G)~G24 (resp. H2i) if and only if (W, G) is

an element of F2i or hF2i (resp. of hF'2i),up to isomorphisms of AM Riemann

surfaces.

For the rest of this section we shall prove the similar results as above

concerning the subgroups of Mod(3). In general, when H is a finitesubgroup

of Mod(3), we denote by T(3)H the fixed point set {{W, a>|c*≪W', a≫=<W', a}

for all c* in H). If <W', ≪> is an element of T(3)H, we consider the AM

Riemann surface (W, G') where Gf=M~?(H), and we denote by d{H) the

number: 3-(genus of W/G0-3+#(branch points for W'-*W'/G'). Then it

follows from [4] that T(3)H is a simply connected submanifold (of T(3)) of

dimension d(H). Since the genus of C*/hG2i (resp. C*/hHZi) is 0 (resp. 0) and

# (branch points for C*^C*/hG2i (resp. C*/hHZi)) is 4 (resp. 3), we have by

definitionthat d(MG24) = l (resp. d(MH2i)=0). Thus in particular it follows that

MG2i is not Mod(3)-conjugate to MH2i. Since Mod(3) acts on T(3) properly

discontinuously, it follows from the classification(1.1) and (2.1) that T(3)MGzi

contains an element <W, ≪> such that (W, M^iMGu)) is an AM Riemann

surface in F2i up to isomorphisms. Hence by (3.3.2)we have that M(C(a), Gu)
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is conjugate to MG2i for any AM Riemann surface (C(a), G2i) of F2i. Thus we

obtain that M(W, G) is Mod(3)-conjugate to either MG2i or MH2i, and that

M{W, G)~MG2i (resp. MH2i) if and only if (W, G) is an element of F2i or hF2i

(resp. of hF'Zi),up to isomorphisms of AM Riemann surfaces.

The above two results completes the proof of (3.1.1).
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