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ON STABILITY OF A CERTAIN MINIMAL
SUBMANIFOLD IN SU(3)/SO(3)

By

Osamu IKAwWA

§1. Introduction.

Let M be a compact irreducible symmetric space. It is known that the
first conjugate locus F,(M) of M with respect to p=M has a stratification.
We denote by FY(M) the maximal dimensional strata. H. Tasaki proved the
following theorem:

THEOREM ([8]). For any point p in M, Fy(M) is a noncompact minimal
submanifold of M. If M is a compact connected simple Lie group, then FI(M)
is stable.

If M is of rank one, then FYM) is stable. These resuits are obtained by
Berger [1].

In this paper we shall study on stability of a noncompact minimal submani-
fold Fp(M) in the compact irreducible symmetric space M=SU(3)/SO(3).

In general, a noncompact minimal submanifold F in a Riemannian manifold
M is said to be stable if the second variation of the volume of F is nonnega-
tive for every variation of compact support.

The purpose of this paper is to prove the following theorem :

THEOREM. [f M is SU(3)/SO(3), then F)(M) is stable.

In §2 we explain the structure of FYM) when M is simpley connected
which is obtained by T. Sakai and M. Takeuchi. In §3 we shall give the
proof of the theorem.

The author would like to express his hearty thanks to Professors Tsunero
Takahashi and Hiroyuki Tasaki who gave him valuable advice during the pre-
paration of this note.
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§2. Preliminaries.

1. Let (G, K) be a compact symmetric pair and ¢ be the involutive auto-
morphism of G associated with (G, K). Let g and t be the Lie algebras of G
and K respectively. We denote also by @ the induced involutive automorphism
of g. Take a bi-invariant Riemannian meric {,)> on G and denote also by {,>
the induced G-invariant Riemannian metric on M=G/K. Then M is a compact
symmetric space with respect to {,>. Let n denote the natural projection
from G to M. Put o=n(e), where ¢ is the identity element of G. Since K
lies between

Go={gcG; 0(g)=g!

and its identity component, we have

t={Xe=g; 6 X=X}.
Put
m={Xcg; 6 X=—X}.
Since 6 is an involutive automorphism, we have a direct sum decomposition
of g:
g=f+m.
Take a maximal abelian subspace a of m and a maximal abelian subalgebra t
in g containing a. Then the complexification 1€ of 1 is a Cartan subalgebra of
the complexification g¢ of g. For an element a<t, put

ga={X<g®; [H, X]=27z+v—1<a, HYX  for each He&t}.

An element act— {0} is called a root if g, {0}. We denote by >}(G) the set
of all roots. We have a direct sum decomposition of g¢:

gé=t4+ X ga.

aEZ(G)
For an element y<a, put

§¢={Xe<g¢; [H, X]=2rz+v -1y, HYX for each Hea}.

An element of y=a— {0} 1s called a restricted root if 3¢ {0}. We denote by
SXG, K) the set of all restricted roots. We denote by - the orthogonal pro-
jection from t to a. We have

(G, K)=2(G)—2«(G),
where 2(G)=2(G)NE.
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Choose lexicographic orderings > on { and a such that
as(G), a=20=— az=0.

We denote by 3*(G) the set of positive roots and by 33*(G, K) the set of posi-
tive restricted roots. We put

E=IN@F+8%), my=mN@+i%)
for each y=3*(G, K) and
t={Xet; [a, X]=1{0}}.
Then we have the following lemma:

LEMMA 1 ([7], Lemma 1.1). We have the orthogonal direct sum decomposi-
tions

f=t,+ +26Kfr, m=a+4+ > my.
G,

rex > 7EZT(G. K)

We can choose S,=t and T,=m for each a3 G)—3(G) in such a way that:
(1) For each 737 (G, K), the sets {Sa; a=2"(G)—2(G), a=r} and

{Ta; a=>3H(G)—2u(G), @=7} are orthonormal basis of ¥, and wmy respectively;
(2) For each a=>"(G)—3«(G) and each H=aq, we have

[H, S.]=2xrla, H)T., LH, Tol=—2ra, H)S.,
Ad(exp H)S,=(cos 2n{a, H))S,+(sin 2rnia, H))T,,
Ad(exp H)T y=—(sin 2n{a, H»)S,+(cos 2r<a, H))T4;
3) For each a=>3HG)—323d(G), we have
[Sa; Tol=2zc .
2. From now on we assume that M is irreducible. Then 3(G, K) is irre-
ducible and there exists a unique highest root § in 2J*(G, K). Let r be the

rank of M and [I(G, K)={7:}.s:c- be the fundamental root system of 3G, K).

Put
S={Hea;<{H, é>=1/2,<H, 1520 for 1<i<r},

S'={Hea; (H, §)=1/2, <H,1>>0 for 1<i<r},
F,(M)=gKExp S,
FyM)=gKExpS® for p=r(g)eM, where g=G,

my=—21 Y (cot 2zle, H))x .
ac=t(G)-Zo(G), @#0
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Then F,(M) is the first conjugate locus of M with respect to a point p (see
[2], Chap. VII, §3). The vector (k exp H)ymy is the mean curvature vector
of K Exp H at kexp H for each H=S°. Let (R6)* denote the orthogonal com-
plement of R§ in a. The submanifold F3(M) is open and dense in Fp(M). H.
Tasaki proved the following theorem:

THEOREM 1 ([81). For each point p in M, Fy(M) is a noncompact mimamal
submanifold of M. Furthermore, if M is a compaci connected simple Lie group,
then F(M) is stable.

For each X<g, we define a vector field X*=X(M) by
X*:—d—exth-l)l:» .
Pt =

We denote by ¥V the covariant derivative of M. We have

2.1) gx(TxeY )=V sacpran(Ad(Q)Y )*,

for g in G and X, Y in g, and

0 for Xem and Yem,

—[X,Y] for X=m and Y ¢,
2.2) (T #)o==

0 for Xt and Y <¢,

0 for Xetand Yem

under the identification of m with the tangent space To(M) of M at the origin
0. Let m(r) denote the multiplicity of 733G, Ky Then we obtain the follow-
ing relations:
Texp u(Exp S%)=(exp H)«(Rd)*,
T exp u(H Exp H)=(k exp H)x P my,

7ER(G, K)—18)

Thwxp n(FAM)=(k exp Ha( __ 3 my+(RE)),

€2(G) K)-(0)
(2.3) Nigxp a(Fy(M))=(k exp H)x(Ri+m5),
codim (F§(M))=1+m(3),
N exp a(K Exp H)=(k exp H)s(a+m;),

for H=S® and k<K (see [8]).
Let A, B and R denote the shape operator, the second fundamental form
of FYM)cM and the Riemannian curvature tensor of M, respectively. We



On stability of a certain minimal submanifold 339

define symmetric linear transformations R, kxp# and ﬁkEpo on the normal
space Nggxpu(Fo(M)) at k Exp H, where k=K and H& S, as follows:

R exp n0)=(R(e,, v)ey)*,
Ak EXp a(v)=2B(e;, A%;),

for each v&= Ny gxp a(FYM)), where {e;} is an orthonormal basis of the tangent
space T, gxpa(FYM)). Let N(FYM)) denote the normal bundle of FYM) and
' (N(FYM))) denote the vector space of all C* sections of N(FYM)). Put

DyNFXMM)={V<(N(FYM)); V has a compact support}.

Let j=A+I?—ﬁ denote the Jacobi operator, where A is the negative of the
rough Laplacian of the normal connection of N(F3M)).
Then F3(M) is stable if and only if the following inequality holds (see [5]):

Spuv, V)dvrian=0  for each Vel N(FYM)).

Identifying Ri+ms; with Ny gxp #(FYM)) by linear isometry (% exp H)y, we
can consider R, gxp # and A rExpz as the symmetric linear transformations on
R6+m;. Then we have the following theorem:

THEOREM 2. As a linear operator on R5+w;, the symmetric linear trans-
formation R, Exp”—;lk expu 1S of the following form:
- ~ 4r? (@, o) .
exp — A :{_. i _.___’_.._.__] _
Riexpn—=Asexo Ié12 aez+(a>§oca>.wssmzznm, 7
PrOOF. For the sake of brevity, we denote Ripxpn by R, Aspxpr by A,
and ezt -z, a4 DY Sa.  Let {H} be an orthonormal basis of (R§).
Then
{(k exp H)xHi}\U{(k exp H)«To; a=Z¥(G)—2(G), @+4}

forms an orthonormal basis of Ty gxp a(FI(M)).
We shall show that B and A are scalar operators. We define a closed sub-
group Ky of K for H=S® as follows:

2.4) Kup={k=K; k Exp H=Exp H}.

Let ty denote the Lie algebra of K. Then tz=%+¥%. The group Ky acts
on the normal space Ngyxpu(KExp H) naturally. Identifying a+m; with
Nexp n(K Exp H) by linear isometry (exp H)y, we can consider that X acts
on a-+ms. Let pp(k) be the action of k=K, on a+m;. Since (5, H)=1/2 for
each H=S®, we get
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(2.5) ou(R)=s-Ad(k)s,

where s=id on a and s=—id on m;. In particular, py is equivalent to the
adjoint representation of Ky on a+m;. Put

M;=Exp (Ré+mj;).

The manifold M; is a maximal dimensional totally geodesic sphere in M of
constant curvature x, where k¢ is the maximum of the sectional curvatures of
M. The manifold M; is called the Helgason sphere of M. Then the pair
([m3, ms]+¥5, R6+m;) is the symmetric pair of Mz and ad(f54+[ms, ms])|(Ré+mj)
=8o(R6+m;) (see [2], Chap. VII, §11).

It is well-known that the natural representation of &o(n) on R" is irreducible.
Since f;+[ms, ms]Ct+¥;, the symmetric linear transformations R and A are
scalar operators.

Since M is symmetric, we have

<E(5): 5>:Z:)(<(R(Ta; (§>Ta)_‘-; 5>+2i<(R(H“ S)H’L)L! 5>
=—(Zul[Te, 81, Tal*, >+3K[H,, 01, Hi1*, )

:_Zla<[[Tnv 5], Tajl) 5> ’

where we denote by 1 the orthogonal projection from m to Ré+m; Thus we

have
‘.___47i rem o SNe,
R= THE i@, oy¥d .
From (2.1), (2.2), we have
__1 _
~1 N i - -1 * QYL
(2.6)  (exp H)i'B((exp H)xTa, (exp H)sHl)= s a1 (exp H)x'(Vu2 S%)

=2r cot 2n<a, H>T:=0.
Since Exp S° is totally geodesic, we have

2.7 (exp H)x'B((exp H)«H;, (exp H)«H;)=0.
The following is proved in [8]:
(exp H)x' B((exp H)x T, (exp H)«T g)=(cot 2a<B, H))[Ta, Spl*
Using the above equation, we have
A@), H=3 T} (cot’2x(B, HYX[Ta, Ss], 5*

=3 (cot®2nla, HY)2r<a, 6))
Thus we have
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4r?

A= 5] Za(cot2nca, HY)Xa, 8)%id.

Q.E.D.

3. From now on, we assume that M is simply connected. Put
K,={k=K; Exp Ad(k)H=Exp H for each H=S"}.

Then clearly K, is a closed subgroup of K. Let ¥, be the Lie algebra of K.
Then f,=f,+1;.

PROPOSITION 1 ([4], Lemma 3.10, [6], p. 52, Cor. 1). K (defined by (2.4))
is a closed subgroup of K which is independent of the choice of H=S® and con-
sequently equal to K.

PROPOSITION 2 ([4], Prop. 3.11). We denote by @ : K/K, XS —>M the mapp-
ing defined by ®(kK,, H)=Exp Ad(k)H. Then we have the following :
(1) @ is a differentiable mapping into M whose image is FY(M).
(2) @ is an injective mapping.
(3) D is everywhere regular.
4) FXM) is an embedded submanifold of M, i.e., the topology on FYM)
induced by @ coincides with the relative topology of M.

From Proposition 1 and (2.5), py is independent of the choice of HeS".
From now on, p is to stand for py.

LEMMA 2.
(1) The space Ré+mj; is invariant under the action of K,.
(2) The group K, acts trivially on (RS)*.

PROOF.

(1) °xNexp n(FYM)C Nexp n(FYM)) for each k=K,. Hence we obtain @)
using (2.3).

(2) Let k=K, H=S" and X=(Ré)*. For sufficiently small £, H+tX is in
S°. Using Proposition 1, we get

d
ky(exp H)y X= prii Exp (H+tX)| =

d
=g EXp (H+1X)] e

=(exp H). X .
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Hence p(k)X=X. Q.E.D.

4. The restriction N(FYM))|K Exp H of the vector bundle N(FM)) on
K Exp H is a homogeneous vector bundle isomorphic to KX ,Nexp n(F§M)). A
section of this vector bundle is identified with an element of

C=(K; Ro-+ms)x,
={feC=(K; Ri+m;); f(hu)y=pu-")f(k) for k=K, ucik,}
by the following mapping:
(2.8) I"(KX pNexp a(FAM)) —> C~(K; Ré+mzg, s VoV",

where V'(k)=(k exp H)z'V,gxpn for each keK. From Proposition 1 and
Lemma 2(1), we obtain the following bundle isomorphism:

KX ,Nexp n(FYM)) - > KX p Nexp o (Fy(M))
KExp H —— KExp H;
[(k, )] ————> [k, exp(H'— H)xv]
PExpH —— kExpH’,

where H, H'=S°. We remark that the above bundle isomorphism is independent
of representation of K-orbit K Exp H by Proposition 2(2). We may identify
I (KX ,Nexp n(FY(M))) with I' (KX ,Nexp u(Fo(M))) by the bundle isomorphism
above:

2.9) (KX »Nexp a( FYM))) <—> I' (KX g Nexp n(Fo(M)))
V>V,

where Vigxpn =Fkx eXp (H'—H)xk%'V puxpn for each kc K. Then we can con-
sider I" (KX ,Ngxp n(F3(M))) as a subspace of L(N(FYM))) by (2.9) and the above
remark. Let V' denote an element of I'(N(FYM))) corresponding to V&
T (KX oNgxp a(FS(M)). Then the following relations hold in correspondence
(2.9):

yi=ym on CK; Ré+m§k,,

Vi=yH on I'(N(FYM))).
Define a mapping Jx from I' (KX ,Nexp a(FS(M))) to itself by

TaV=(JV"\K Exp H for each V& I'(KX ,Nexp n(FYM))).
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We can consider [, as a mapping from C=(K; Ro+ms)g, to itself by using
(2.8). We shall prove the following theorem:

THEOREM 3. The mapping [y: CK; Ro+ms)g,—C(K; Ri+mpg, is
given by the follourng equation:

1 ~
— S G
Ju aeE+(G)—2§o(G),1‘#351!]2271'((1, 0> “
4r® {a, 0)*

181 aest @ For. arisin? 2nla, H)’

where S, denote the left invariant vector field on K such that (§,,)G=S,,.

PROOF. For the sake of brevity, we denote 2laeTt6r-Sge.a#5 DY 2a. Let
7 denote the left invariant vector field on G such that Z~e=ZEg. Let ve
T.(M), WeX¥(M) and x=nr(g) for some g=(G. We take an element Ze<g
satisfying dn(Z,)=v and write Z=X+Y for some Xem and YV =f. Then the
following equation holds (see [3]):

- d ,
(2.10) Vol =(exp (—tAUDZNW g exp rzrii=o

— £ exp (~tAdDY D s 100

Let A: D'(N(FYM))—-T (N(FYM))) be the negative of the rough Laplacian of
the normal connection of N(FYM)). Define a mapping

Ap 2 I'(KX pNexp u(FYM))) — I' (K X , Ngxp u(FY(M)))
by
ApV=(AV"KExp H for each V&l (KX ,Ngxp u(FAM))).

We consider Ap as a mapping from C*(K; Ri+m)g, to itself by using (2.8).
We shall prove the following equation :

SV 1 I o
211 An=—2% sin?2n<a, H>S“ '

Then the proof will be finished by using Theorem 2. We consider the homo-

geneous vector bundle AKX Tpyxp #(Exp S°) on K Exp H. Then we get by Lemma
2(2),

T'(KX Texp n(Exp S7))
=Vl (N(KExp H)); Vi pxp = ks Trep u(Exp S°) for each keK}.

We consider /(KX Tgxp u(Exp S%) as a subspace of ¥(FYM)) in the way above.
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Let X" denote an element of X(FM)) corresponding to X&' (KX Tgxp n(Exp S%).
Let H, be an orthonormal basis of (R5)* and define H,=I" (KX Texpn(Exp S%)

by
(H)rexpr=C(k exp H)H; .

Then, by (2.10), we get

(2.12) (Vau H3)Exp H)= %(exp (—t)Ad(exp H)Hp)sx(HDexp o exp eag10-0
d I7n
= d—t(eXp (—tH))s(HDexpcr+empie=o

d
= d—t(eXp (—tH))slexp (¢ Hy+H))s Hiyomo
=0.

Let V be the covariant derivative of FYM). The following is proved in [8]:

, 1
“sin?2n<a, H>

=(exp H)smy<(exp H)«(Ro)* .

= (VsxSEXExp H)

For sufficiently small ¢, tmz+HeS'. Using this fact and (2.10), we get

1

’ T+ o+ H
(2.13) S gmgn ca i VsV NExp H)

d
= Zi_t(eXp (—tmu))sV ixp tm g Bxp H12=0

=0, for each V=T (KX ,Nexp n(F3(M))).

Similarly we can prove
(Va1 Vg V*)Y(Exp H)=0.

Using (2.6), (2.7) and the above equation, we have
(2.14) (VEVEVH(Exp H)=0.
Using (2.12), (2.13) and (2.14), we obtain

1

P =—a—E 5~
ArViXEXp H)=—2a s

(Vax Vs Vi)(Exp H).
By (2.10), we have

= d
(VS;;V"XCXD tSa EX—D H): —d’;(exp (—Ssa»*Vgxp tSoexpsS, Exp His=0

d
— E(exp(—s)/ld(exp 1S, exp H)(cos 2nda, H>)S)xVixp 1S, Exp His=0-
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By taking the normal components to FY(M) of both sides in the above equation,
we get

d
(V:#;;V")(eXD 1S« Exp H)= ?l?(exp (— Ssa))*vgxp tS 4 exp sS  Exp His=0 +
Hence we get

(V53 V4: V*XExp H)= a‘%(exp(—tsa»*(v;;w)(exp tSa Exp H)jec

— L exp(—1) Ad(exp H)cos 2n<a, HY)S:)u(ThV(Exp H)imy

2

0
:a_sﬁ(exp (—1Sa))s(exp(— SSn))*Vexp 18, expsS, Exp Hit=s=0

aZ
_aﬁ(e}{p (——t)fld(exp H)(COS 27E<(1, H>)Sa exp (—“ S)Sa>*Vexp $S A EXD HIt=3=0+

If we take the normal components to F¥M), we have
(V4 V") Exp H)

62
:aia‘s*(eXp (—1S5a))x(exp(— SSn))*Vexp tS,expsS,Exp Hit=5=0 -

Put f=V" Then we get
1

— SV Je
(A f)e)= Zasing%m’ H>(Saf)(e)-
Hence we get (2.11). Thus the proof is finished. Q.E.D.

Put
C=(FyM )k
== C(Fy(M)); ¢(k Exp H)=¢(Exp H) for k=K, H=S.

By Proposition 2(2), an element f of C<(S°) is extended to an element f' of
C=(Fy(M))x in a natural manner. Namely we put f"(k Exp H)=f(H) for each
k=K and H=S°. Put

CASH={f=C>(S"; f has a compact support}.

By Proposition 2(2), we extend g=C~(K Exp H,)(H,=5°) to g'=C=(FYM)) by
g'(k Exp H)=g(Exp H,) for k=K and H=S°. Then

Wwa=|vie for each VGT(KX,,NEXPHO(FS(M))).

We denote by grad and gradrour; the gradient on S° and FY(M) respectively.
Then we shall show the following lemma :
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LEMMA 3.

lgradryon fHl=lgradfl"  for each f=C(S").

PrROOF. Let {H;} be an orthonormal basis of (R4)*. Theh {(exp H).H}
is an orthonormal basis of Tgxpw(Exp S°). We have

(S* F)Exp H)= % Foexp tS. EXp H)iio

d
:af(H)lw
=0,

and

((exp H)uH) "= G [{EXDUH A+ o

= ditf(H+tHi)ll=0

=(H,fXH).

Thus, we obtain
lgradroan fAIM(Exp H)=2{(H; X H)}?

=|lgradf|*H).
Since f%k Exp H)=f"(Exp H), we get

ligradroon fPl(k Exp H)=llgrad f|(H)
=|gradf|"(k Exp H).
Q.E.D.
§3. Proof of theorem.

In this section, we put G=SU(3), K=S0(3), #(g)=g for each g=G and
{,>=the negative of the Killing form. We put

x 0 0
a=t={+/—10 y 0|;x,y, z&R, x+y+2z=0¢,
0 0 =z

and introduce a lexicographic order in ¢ defined by

EH>E22>E33 .
Then we have
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/=1 o
+ — = T ii L),
ZHG)=2%(G, K)“{au 1271 (£ EJ]) ’ Z<]}

= {a,3, Ay, a13:5} s

EO(G):Q:
}_x—H 0 07
S={tav=1 0 —2x 0]; —tcrck
2 "3 3
l 0 0 x—1]
We put
"0 0 1 0 0 1
1 V-1
813—2-—¢§ 0 0 0y, Tls—zx/y() 0 0},
-1 0 0 1 0 0
0o 0 0 0 0 0
1 _V=1
523—2—?0 0 ]. y Tza—ﬁ 0 0 1 )
0 —1 0 0 1 0
0107 0 1 0
1 ! V=1
512—2*"/19? -1 0 OJ, IZ—WS_ 1 0 0
L0 0 O 0 0 0

Then S;;=Sa:;, Tij=Tai;. By a straightforward calculation we get the folow-
ing lemma:

LEMWA 4. (1) For H, H'eS', k=K and a, B=37(G)— {5},

<(S>clr<)k Exp H» (Sjl;)k Exp II>
<(Sz>k Exp H'> (Sﬁ)k Exp 11’>
is independent of the choice =K.
(2) sin®2nla, H> for H=S' is independent of the choice of a=3*(G)— {6}.

Let C be the negative of the Casimir differential operator of K relative to
<,>. Then using Theorem 3 and Lemma 4(2), we get

=L (c L
G Ju COSZ%R‘X (c 2 >,

x+1 0 0

1 S 4 1 1
- H=—7+/— — LI il
for H 5T 1 0 2x O!eS ( 3<x<3).

L0 0 x—1]
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Let dvr9an, dvse and dvg expn, denote the volume elements of F3(M), S® and
K Exp H,, respectively. Then we shall show the following lemma:

LEMMA 5.

igidypo
F M
SFS(M)fg °

dvg expu
SK_ ExXp Hog *P o

:‘M,_ﬁ_____gsof(H)\ Il  sin2z<a, H)|dvso

sin 2z<a, Hy)| B+ (G- (8)
agZ+t (G- (0)
for each f=CYSY) and g C~(K Exp H,).
PRrROOF. Put
gaﬁ(k Exp H)=4(S¥)k exp 11> (S?;)k ExpH) »

for k=K, H=S" and a, B&32*(G)—{0}. By the change of variable by the
mapping @, we replace the integration on FYM) with the integration on S°X
K Exp H,, By Lemma 4(1),

Ul dy o
SFg(M)fg PO

Vdetg,s(k Exp H)
J(H)g(k Exp Ho) e e xp Hy)

S dvg Exp ”ox dvso
S9% K Exp Hy

dVk Exp &
gKExp@g *PHo

sin 27 <a, Hyy | Sst(H)

11 sin 2n<a, H) |dvso.
aeZ+ (G- 10)
ac=t(G)-10)

Q.E.D.
Let Vel (KXNgxpn (FY(M)). We assume that there exists @=C=(5")
such that jV“:go'fV“. Then
JVH=Broan OV + fle"V",

for each f&CH(S®), where Aroan is the negative of the Laplace operator of
FYM). Since C*(FYM))x is invariant under Apg(m, we get by Lemma 3 and
Lemma 5

Lo, STV VS g

o IV Ik 5,
K EXp H

T I sin2nla H>igso(“g”df”2+f29”) 11, sin2ala, Hy|dvso.

TI QEEF(G)-(8)
agZH(G)-10)
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LEMMA 6. Let V,, V,&I'(KX ,Nexpu (FiM))) and ¢, @<= C=(S°).
If JVi=eiVi (1=1, 2) and ¢,<¢,, then

Vy, Vg>d1}1( Exp HD:O .

SK Exp Hy

PROOF. For each f=C(S%), /=0, f=£0, we get

Lo, TV, FVDAvmgan= , SV TSV dvrgars -

Fly

We calculate the equation above by using Lemma 5,

SSO(@Z_—%)][ ne}:+¥¢%)—(&sm 2nla, K>’dUSOSK Exp 110<V" Vordvgexpn,
=0.
Hence the lemma holds. Q.E.D.

THEOREM 4. If M is SU(3)/SO(3), then F3(M) is stable.

PrROOF. We may assume p=o0. We put

(0 t 0
u={|—t 0 0|;t=R
o 0 0
and
0 1 0
e
a=y = 1 0 0.
0 0 0

u is a maximal abelian subalgebra of . We introduce a lexicographic ordering
< on u such that a>0. Let D(K) be the set of all equivalence classes of
finite dimensional complex irreducible representations of K. It is well-known
that D(K) is identified with the following set:

{ma; m=0, 1, 2, ---}.

Let V(2) be a representation space of an element of A=D(K). Let
LK X ,Nexp a(FY(M))) be the completion of 1" (KX ,Ngxp a( FY(M))C) relative to
the L*-inner product for each H=S. By virtue of the Peter-Weyl theorem,
we get

LK X, Nexp H(Fo"(M))C)=i DZ(K) V(AQHomg (V(4), (R6+ms))
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We know that the negative of the Casimir operator C of K is a scalar operator
a;id on each V()®@Homg (V(2), (Ré+m5)°) with a,=4z*(A+a, 1). Put

D(K)'={2=D(K); Homg (V(2), (R64m5))# {0}} .

For a fixed H,=S°, we denote ¢y the diffeomorphism from K Exp H, onto
K Exp H defined as follows:

¢ou: KExp Ho— KExp H; k Exp H,— k Exp H (REK).
Let V be in I'(N(FYM))). Then V|KExp HEI (KX ,Ngxpa(FM))* for
each H=S'. Let {Vi i}isizpcy (Where p(A)=dim (V(AQHomx (V(4), (R6+m3)))

be an orthonormal basis of V(A)®Homg (V(2), (Ro+mNCT (KX o Nexpn,
(FYAM)®). By (3.1), we have

1 1
JV ) =——5—(aa—5 Vi
cosszrx

Since {VY4,} forms an orthonormal base of ["(N(FYM)IK Exp H) on each K-
orbit A Exp H, we can express
pCAd

3.2) V=3 3 iV,

AeD(K)' i=1

where f;,,-(H):SKEpo<V|KEXp H, V4 | KExp Hydvg gxpn < C3(S).

The right-hand side of (3.2) is absolutely uniformly convergent to V|K Exp H
on each K-orbit K Exp H. We shall show the right-hand side of (3.2) 1s
absolutely uniformly convergent to V on each compact subset of F§(M). We
have

fi i(H):SK soo nVIKEXD H, Vii | K Exp H)dvi oo

H<V 1 K EXP HJ A(VZAK EXP H)> dUK Exp H

2 37 SK'Exp
2
1
=\ (A(VIKExp H), Vi KExp Hydvereon

=t | AV |Exp ), V3K Exp Hydvkeson
K Exp H

-]
a3cos’ 57X

Thus, by using the Cauchy-Schwartz’ inequality,
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1 ' 12

ot s g (] oIk alV | K Exp B dvssapn,)
a’cos® PEE xp o
Let D be any compact set in S°. Put

1 o 1/2
E=max(——g—\ oAk pxpu(VIKExD W) dvsgxpu,)
=2 costyy T BRI

Then

qu-,ivz,ingﬁ%j-i”.

Hence it is sufficient to prove the following equation :

o MAXIV 4l
im ——— =

i All-voo az

0.

Let {es}isksi+me be an orthonormal basis of Ré+mj;  Put d;=dim V(2). Then
di=2m+1 for 2=ma. Let p(1) be a representation of 2. We define o(} as
the following equation :

P(DG(R)=<p(AR)vy, vy  (R=K),
where {vy}ispse; 1S a unitary frame of V(2). Then we express V, ,=

Sabep(Die, (for some a%,=C, d;=3|a%|?. By the Cauchy-Schwarts’ in-
equality and the fact that each |a%|2=d;,

IV P d¥1+mNZ | ahe|* o} 1*

<diB (A% *=di1+m(3)).
Thus we get

max|[V; . - @2m+1°/1+m(5)

2 == 22— (0 (as m—oo).
az

{%—m (m+ 1)}2 )

Hence the right-hand side of (3.2) is absolutely uniformly convergence on the
compact subset. Thus, by Lemma 6, we have

SFg(m(jV’ V>dUFg(M)

sin 2z<a, H) | dvso

acnt(G)- 10}

= e pﬁ)gso{“gmdfz.z-112+f%.i<f“"£}

—ZEDK rog=1
O cos* 5T x

X V2l s i,

Since 0< a,< a2a=1/2<ay, -+ and Homg (V(a), (R+m5))={0}, we get
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JV, Vydvppanz0 for each Vel (N(FM)))° .

SF(?(M) =

Therefore FYM) is stable. Q.E.D.
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