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ON STABILITY OF A CERTAIN MINIMAL

SUBMANIFOLD IN SU(3)ISO(3)

By

Osamu Ikawa

§1. Introduction.

Let M be a compact irreduciblesymmetric space. Itis known that the

firstconjugatelocus FP(M) of M with respect to p<=M has a stratification.

We denote by F$(M) the maximal dimensional strata. H. Tasaki proved the

following theorem:

Theorem ([8]). For any point p in M, Fl{M) is a noncompact minimal

submanifold of M. If M is a compact connectedsimple Lie group, then F°P{M)

is stable.

If M is of rank one, then F°0{M)is stable. These results are obtained by

Berger [1].

In this paper we shall study on stabilityof a noncompact minimal submani-

fold Fl(M) in the compact irreducible symmetric space M―SU(3)/SO(3).

In general, a noncompact minimal submanifold Fin a Riemannian manifold

M is said to be stable if the second variation of the volume of F is nonnega-

tive for every variation of compact support.

The purpose of this paper is to prove the following theorem:

Theorem. // M is SU(3)/SO(3), then F£(M) is stable

In §2 we explain the structure of Fl(M) when M is simpley connected

which is obtained by T. Sakai and M. Takeuchi. In §3 we shall give the

proof of the theorem.

The author would like to express his hearty thanks to ProfessorsTsunero

Takahashi and Hiroyuki Tasaki who gave him valuableadvice during the pre-

parationof thisnote.
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§2. Preliminaries.

1. Let (G, K) be a compact symmetric pair and 6 be the involutive auto-

morphism of G associated with (G, K). Let g and f be the Lie algebras of G

and K respectively. We denote also by 6 the induced involutive automorphism

of g. Take a bi-invariant Riemannian meric <,> on G and denote also by < ,>

the induced G-invariant Riemannian metric on M―G/K. Then M is a compact

symmetric space with respect to <,>. Let z denote the natural projection

from G to M. Put o=n(e), where e is the identity element of G. Since K

lies between

Ge={g<EG;0(g)=g}

and its identity component, we have

t={X(EQ;8X=X}.

Put

m={X(EQ; 6X=-X}.

Since 6 is an involutive automorphism, we have a direct sum decomposition

of g:

8=f+m .

Take a maximal abelian subspace a of m and a maximal abelian subalgebra t

in g containing a. Then the complexification tc of i is a Cartan subalgebra of

the complexification gc of g. For an element asi, put

ga={Xegc; ＼_H,Z]=2^V-"K≪, H}X for each i/ei}.

An element aei- {0} is called a root if ga^{0}. We denote by S(G) the set

of all roots. We have a direct sum decomposition of gc:

9 C ― fCi y< n

For an element fsa, put

SC={A-£Egc; [//, Z]=2^V-I<r, /f>X for each i/eo}.

An element of ^gq- {0} is called a restricted root if §£=£{0}.We denote by

S(G, if) the set of all restricted roots. We denote by ~the orthogonal pro-

jection from 1 to a. We have

S(G,/D=2(G)-2o(G),

where 2o(G)=2(G)nf ･
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Choose lexicographic orderings > on i and a such that
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We denote by S+(G) the set of positive roots and by S+(G, K) the set of posi-

tive restricted roots. We put

fr=fn(S?+g£r), rar=≫n(8f+8c-r)

for each reS+(G, K) and

U={X(Et;[a,Xl={0}}.

Then we have the following lemma:

Lemma 1 ([7], Lemma 1.1). We have the orthogonal direct sum decomposi-

tions

!=fo+ 2 tr m=a+ S mr

We can choose S≪ef and Tffem for each aGS+(G)-2o(G) m suc/za w;a^ J/ia^:

(1) For eac/z reS+(G, A"), the sets {Sa; ≪eS+(G)-S0(G), a=y] and

{Ta; aES+(G)-So(G), a=7*} are orthonormal basis of lr and ＼x＼rrespectively;

(2) For each ≪sS+(G)-S0(G) arcd each ifea, we /iaw

[i/, S≪]=2^<≪, /^>Ta , [//, Ta] = -2^<≪, H>Sa ,

Ad(exp H)Sa=(cos 2tt<≪,//≫5a+(sin 2r<a, H≫T≪ ,

^rf(exp//)Tar=-(sin2^<a, H))Sa + (cos 2;r<≪,//≫Ta ;

(3) For eae/iaeS+(G)-20(G), u;e have

[Sa, Ta~]=2Kd .

2. From now on we assume that M is irreducible. Then S(G, K) is irre-

ducible and there exists a unique highest root 8 in S+(G, K). Let r be the

rank of M and n(G, K)={yi}).sisr be the fundamental root system of S(G,A).

Put

5={/fea; <//,5> = l/2, <//, n>^0 for 1^'^r},

S°={//eEa; <i/,5>=l/2, </f,r*>>0 for l^i^r},

Fp(M)=gKExpS,

F°p(M)=gKExpS° for p=n(g)(EM, where ^gG,

rnH = -2K 2 (cot 2?r<≪;//≫a.
ae2+(C)-S0(G),a^=5
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Then FP(M) is the first conjugate locus of M with respect to a point p (see

[2], Chap. VII,§3). The vector (k exp H)*mH is the mean curvature vector

of K Exp H at k exp H for each //eS°. Let CRd)-1-denote the orthogonal com-

plement of Rd in a. The submanifold F%(M) is open and dense in FP(M). H.

Tasaki proved the following theorem:

Theorem 1 ([8]). For each point p in M, FP(M) is a noncompact minimal

submanifold of M. Furthermore, if M is a compact connectedsimple Lie group,

then F°P(M)is stable.

For each Zeg, we define a vector fieldX*^%(M) by

X$=-j-texptX-p＼t=0.

We denote by 7 the covariantderivativeof M. We have

(2.1) tf*(7z.r*)=7M≪f>*>.(i4d(£)y)*,

for g in G and X, Y in g, and

(2.2) (7x*F*)0

(0 for iGm and Fern ,

-IX, F] for Zem and Kef,
v o

0

for Zel and Fei,

for X(=i and Fgii

under the identificationof m with the tangent space T0{M) of M at the origin

o. Let m(Y) denote the multiplicityof ^gSIG, K)' Then we obtain the follow-

ing relations:

TExp //(Exp S°)=(exp H)*(R5Y ,

Tk exP h(K Exp H)~{k exp H)* 2 mr,

Tk Exp H{Fl(M))=(k exp H)J S mr+(R8y)

(2.3) Nk Exp H(F°(M))=(k exp H)*(R8+mg),

codim (F≫(M))=1 +m(<5),

N* exP //(^Exp H)=(fe exp i/)*(a+ma),

for ifeS0 and ^g/^ (see [8]).

Let A, B and i? denote the shape operator, the second fundamental form

of F0o(M)aM and the Riemannian curvature tensor of M, respectively. We
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define symmetric linear transformations RkY.-x.pH and AkExpH on the normal

space AT*ExpH(F2(M)) at k Exp H, where k^K and /feS0, as follows:

i?*Exp≫(i>)=S(fl(e,,v)ef)＼

for each v^NkExpH(Fo(M)), where {<?*}is an orthonormal basis of the tangent

space Tk Exp H(F°0(M)). Let N(F°0(M)) denote the normal bundle of F°0(M) and

r(N(F°0(M))) denote the vector space of all C~ sections of N(F°0(M)). Put

ro(N(F°0(M)))={V(=r(N(F°(M))); F has a compact support}.

Let /―A+$―A denote the Jacobi operator, where A is the negative of the

rough Laplacian of the normal connection of N(F°0(M)).

Then F°0(M)is stable if and only if the following inequality holds (see [5]):

＼jiJV,
V)dvFoiMi^O for each Ve=r£N{F%M)))-

Identifying Rd + ms with NkEKpH(F0o(M)) by linear isometry {k exp //)*, we

can consider RkE*pii and AkExpH as the symmetric linear transformations on

Rd+ms. Then we have the following theorem:

Theorem 2. As a linear operator on Rd + ma, the symmetric linear trans-

formation RkExpn―AkExx>H is of the following form:

R k Exp H~~A k Exp ―

*_ (a, df

2 ≪eS +(G)-20CG).a#5Sin227r<a, H)

~＼
id

Proof. For the sake of brevity,we denote RkExPn by R, AkE%pH by A,

and 2aes+cG)-so<G>.a*3by S'ff. Let {Ht} be an orthonormal basisof (R5)x.

Then

{{k exp H)*Hi}V{(k exp H)*Ta ; aeS+(G)-So(G), ≪^<5}

forms an orthonormal basisof TkExpH(F%(M)).

We shallshow that R and A are scalaroperators. We definea closed sub-

group Ku of K for #e S°as follows:

(2.4) KH={k<=K;kExpH=ExpH}.

Let iH denote the Lie algebra of KH- Then fff=fo+f5. The group KH acts

on the normal space NE%pH(K Exp H) naturally. Identifying a+mj with

A^Exph{K Exp H) by linear isometry (exp H)*, we can consider that KH acts

on a+mg. Let pH(k) be the actionof k<^.KH on a+mj. Since(§,H)=l/2 for

each H^S＼ we set
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(2.5) pH(k)=$°Ad(k)°s,

where s=id on a and s=―id on ms- In particular, pH is equivalent to the

adjoint representation of KH on o+ntg. Put

Mg=Exp (Rd+ms)
■

The manifold Mg is a maximal dimensional totally geodesic sphere in M of

constant curvature k, where k is the maximum of the sectional curvatures of

M. The manifold Ms is called the Helgason sphere of M. Then the pair

([ntg,ms]+ts, Rd+m$) is the symmetric pair of Ms and ad(i-s-＼-[m,-d,xas~])＼{Rd+ms)

=So(/25+m3) (see [2], Chap. VII, §11).

It is well-known that the natural representation of§o(w)on Rn is irreducible.

Since Is+Cntg, ma]c!0+^, the symmetric linear transformations R and A are

scalar operators.

Since M is symmetric, we have

<R(d), d) = ^'a((R(Ta, 8)Tay, 8>+%<(R(Ht, §)Ht)＼3}
i

=-(S/≪<[[7i≪,a], ray, 5>+s<[[#i, ≪5],hj＼ s≫

= -2'≪<[[T≪,5],Tay, 8},

where we denote by _L the orthogonal projectionfrom m to RS+ms. Thus we

have

n
4tt2

£'a<a, 8>2id

From (2.1),(2.2),we have

(2.6) (exp H)ilB((exp H)*Ta, (exp H)M)= ^2^Tff>(exp H)*1(^H*S*}±

= 27TCOt27T<a,H>TZ = 0.

Since Exp S°is totallygeodesic,we have

(2.7) (exp H)ilB((exp H)*HO (exp H)*Hj)=O .

The followingis proved in [8]:

(exp H)^B((exp H)*Ta, (exp H)*T^)=(cot 2tt<^ H))lTa> S^

Using the above equation,we have

<k*), 3>=2; S^cot22;r(i3,H≫<lTtt,S^, d>>

-SUcot227r<≪, //≫(2ff<a,5≫2

Thus we have
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4tt2

Q.E.D.

3. From now on, we assume that M is simply connected. Put

K1={k^K;ExpAd(k)H=ExpH for each //eS0}.

Then clearly Kx is a closed subgroup of K. Let tx be the Lie algebra of Kx

Then f,=fn+h.

Proposition 1 ([4], Lemma 3.10, [6], p. 52, Cor. 1). KH (defined by (2.4))

is a closed subgroup of K which is independent of the choice of HeS° and con-

seauentlv eaual to K,.

Proposition 2 ([4], Prop. 3.11). We denote by 0: K/K1xS°-+M the mapp-

ing defined by 0(kK1, //)=Exp Ad(k)H. Then we have the following:

(1) 0 is a differentiablemapping into M whose image is F°0{M).

(2) 0 is an injective mapping.

(3) 0 is everywhere regular.

(4) F°0(M) is an embedded submanifold of M, i.e., the topology on F°(M)

induced by 0 coincides with the relative topology of M.

From Proposition 1 and (2.5), pH is independent of the choice of H<=S°.

From now on, p is to stand for pH.

Lemma 2.

(1) The space Rd + vcisis invariant under the action of K

(2) The group Kx acts triviallyon (R5Y.

Proof.

(1) k*NExpH(F°o(M))c:NExpH(F0o(M)) for each k^K,. Hence we obtain (1)

using (2.3).

(2) Let k<=Ku H(eS° and Xg(R3)l. For sufficientlysmall t, H+tX is in

S°. Usiner Prooosition 1. we oret

£>*(exp H)*X= j k Exp (H+tX) ＼t=0

= jtExp(H+tX)＼t=0

= (expH)*X.
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Hence p(k)X=X. Q.E.D.

4. The restriction N(F°(M))＼K Exp H of the vector bundle N(F°0(M)) on

KExpH is a homogeneous vector bundle isomorphic to Kx pNExpH{Fa0(M)). A

section of this vector bundle is identified with an element of

C°°(K;R8 + ms)Kl

= {/GC^;^+mi); f(ku)^p{u~')f{k) for k<=K, uelK,)

by the following mapping:

(2.8) r{KxpNExpH{F°0(M))) ―* C"(K; Rd + ms)Kl; V^V",

where V＼k)=(k exp H)^Vk ExpH for each k<=K. From Proposition 1 and

Lemma 2(1), we obtain the following bundle isomorphism:

KxpNExpH(Fl{M)) > KxpNKKprr(F°0(M))

I 1

K Exp H > K Exp H';

I I

ifeExp H i > k Exp //',

where H, i/'eS0. We remark that the above bundle isomorphism is independent

of representation of ^"-orbit K Exp H by Proposition 2(2). We may identify

r(KxpNExpH(FXM))) with r(KxpNExpir(F°0(M))) by the bundle isomorphism

above:

(2.9) r(KxpNExpH(F°0(M)))≪-+ r(KxpNExpn<Fa0(M)))

V <―> V ,

where V'kExpH'= k* exp (//'―H)^k^VkKxpH for each k(EK. Then we can con-

sider r(Kx pNExp
H(F°o(M)))as

a subspace of r(N(F°0(M))) by (2.9) and the above

remark. Let 7" denote an element of r(N(F%(M))) corresponding to Ye

F (Kx pNExp n(F°0(M))). Then the following relations hold in correspondence

(2.9):

V*=V* on C~(K; R8+ms)K1 ,

V*=Vfli on r(N(F°0(M))).

Define a mapping /H from P(KxpNExpH(FXM))) to itself by

JHV=(IV")＼KExpHfor each Fer(tfx≪ArExp/r(F2(M))).
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We can consider JH as a mapping from C°°(K;R8-＼-ms)K1 to itself by using

(2.8). We shall prove the following theorem:

Theorem 3. The mapping JH: C (K; Rd+m^K^C^K; R8 + ms)Kl is

given by the followingequation:

Jn = ―

1

≪e2+(R)-s0cG).a^5sinz2^<a5 H}

4?r2

C2O a

<a, dY

|[<5||2aes+(G)^20(G),≪^sin227i:<a,H)'

where Sa denote the left invariant vector field on K such that(Sa)e=Sa

Proof. For the sake of brevity,we denote Saes+co-soccj.s^ by S'≪.Let

Z denote the left invariant vector fieldon G such that Ze=Z<=q. Let t>e

TX(M), W(=%(M) and x = n(g) for some gEiG. We take an element Zsg

satisfyingdx(Zg)=v and write Z = X+Y for some A'eittand Fg{. Then the

followingequation holds(see [31):

(2.10)
VvW=-(exp(-tAd(g)Z))*WgsxptzKlt=0

-j(exp(-tAd(g)Y))*WgKit=0.

Let A: r(N(F°0(M)))~>r(N(F°0(M))) be the negative of the rough Laplacian of

the normal connection of N(F°0(M)). Define a mapping

AH:[＼KxpNExpH(FXM)))―≫r(KxpNExpH(FXM)))

by

AuV=(AV*)＼KExpH for each Vc~r(KxpNEKpH(F°0(M))).

We consider AH as a mapping from C°°(K;R8 + xns)Kito itself by using (2.8).

We shall prove the following equation :

(2.11) ― V
1

sin227r<≪, //>
C2O a

Then the proof will be finished by using Theorem 2. We consider the homo-

geneous vector bundle KxTExp H(Exp S°)on KExp H. Then we get by Lemma

2(2),

A^xrExpi/(Exps°))

= {V^r(N(KExpH)); nExpffe£*TExp7/(Exp S°)for each k^K).

We consider F(KxTExvH(Exp S°))as a subspace of %(F°0(M))in the way above.



mw ･ VXExptf).

By (2.10), we have

(7S*FN)(exp tSa Exp H)= -j-(exp(-sS J)*F£xptsaexpssaexP≫i,=0

―― (exp(―s)Ad(exptSa exp //)(cos 2x(a, Hy)Sa)*VixptsnEyPH＼s=o-
as
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Let X* denote an element of 3e(F°(M))corresponding to XgF(KxTExpH(Exp S0)).

Let Hi be an orthonormal basis of (R3)L and define Hi^T(KxTUxpH(Exp S6))

by

(#i)≫ExPtf=(£exp //)*#*.

Then, by (2.10), we get

(2.12) (7*5 J/SXExp H)=
^(exp

(-0Arf(exp H)HtUH^P h exP t^u=o

= ^(exp (―tHi^H^piH+tHo i≪=o

= jf(exp(-?Hi))*(exp(^+//))*//ilt=0

= 0.

Let 7 be the covariant derivative of F°n(M). The following is proved in [8] :

S'≪
sm

1

22tt<≪, H}
(7s*S*)(Exp if)

=(exp /f)+m#e(exp H)*(Rd)L.

For sufficientlysmall t, tmH+H^S°. Using this fact and (2.10), we get

(2.13) Z-ia sin2

_J
2x(a, H)

(7vs* <F")(Exp //)

for each V^r(KxpNExpH(F°0(M))).

Similarly we can prove

Using (2.6),(2.7) and the above equation, we have

(2.14) (7^7^F")(Exp H)=0.

Using (2.12),(2.13) and (2.14), we obtain

(AffF")(Exp//)=-S;

1

sin227r<≪,H)
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By taking the normal components to F%M) of both sidesin the above equation,

we set

(V^Fl1)(exp tSaExp H)= _(exp(-

Hence we get

sSa))*Vexp tsn exp sSn Exp tfis= o ･

(Vs*V£*n(Exp //)=-(exp(-*SJ)*(^*n(expfSa Exp H)lt=0

-jt(exp(-t)Ad(exp H)(cos 2it<a, J/≫S≪)*(7£*F')(ExpH)H=0

= ^-(eXp( ―tSa))*(eXp(―sSn))*VexptSaexpsSnExpH＼t=!,=o

d2
―Q7fe(exp(―t)Ad(expHXcas27c<a, H≫Sa exp(―s)Sa)*VexplSaExp Hit=,=0-

If we take the normal components to F°0(M),we have

{lk*lxs*V*){ExV H)

d2

―s^-(exp (―tSa))*(exp(―sSa))^Vexp tsnexPssnexP hu=≪=o.

Put f=V＼ Then we get

(AHfXe)= S°Sin'2,<a.//>(^/)W

Hence we set (2.11). Thus the proof is finished.

Put

Q.E.D

C°°(F%M))K

= {<p^C°°(F°0(M));(p(kExpH)=<p(ExpH) for k^K, //eS0}.

By Proposition 2(2), an element

C°°(Fo(M))Kin a natural manner.

k<=K and Hz=S°. Put

/ of C^iS0) is extended to an element f* of

Namely we put f＼k Exp H)=f(H) for each

C£(S0)={/eC°°(S0); / has a compact support}.

By Proposition 2(2), we extend g<= C°°(KExp H0XH0<=S°) to g{^C°°(F°0(M)) by

g＼k Exp H)-g{Exp Ho) for k<=K and //eS°. Then

||F"||= ||7||" for each VgF(KxpNe,pHo(F°0(M))).

We denote by grad and gradFocin the gradient on S° and Fa0(M) respectively.

Then we shall show the following lemma:
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＼＼gradFyM,p＼＼ = ＼＼gradfr

Proof. Let {Ht} be an orthonormai

is an orthonorma! basis of TExp w(Exp S°).

for each /eC°°(S0).

basis of (R3)1-. Theh {(exp H)*Ht}

We have

(S*/*)(Exp H) = -f＼exptSa Exp tf)lt=0

=s/(//),=.

=0.

and

((exp H)*Ht)p=jfXExp(tHt+H))lt=0

= ftf(H+tHt)it-0

Thus, we obtain

WgradFocmpnExpH)=J]{(HifXH)}z

= ＼＼gradf＼＼＼H).

Since f＼k Exp H)=f＼Exp H), we get

＼＼gradFoCM,p＼＼(kExp H)=＼＼gradfW)

= ＼＼gradf＼＼XkExp H).

<,>

Q.E.D

§3. Proof of theorem.

In this section, we put G=SU(3), K=S0(3), 0(g)=g for each g<=G and

=the negative of the Killing form. We put

a=i=

~x 0 01

V-l 0 y 0 ; x, y, z(eR, x + y+z=0

0 0 z＼

and introduce a lexicographic order in t defined by

En~>E22>EM .

Then we have
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S+(G)=S+(G, K)=
{≪≪=

So(G)=0,

^J(Etl-£,,)
;,-</}

r ＼x+i o o~

S°=U-n-V-i 0 -2* Q;-4<*<4

{ Loo x-i_

" 0

s - x o

_-l

>->23

~0

2VT°

_0

Sl8-2

" C

J

_ 0

0

0

0

0

0

1

1

1 0

0

1"

0

0~

1 ,

0_

0~

0

0

T ―

■* 23 ―

1 12 ―

0

0

1

0

0

0

1

0

0

0"

1

0

1 0"

0 0

0 0_
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Then Sij=Saij, Tij=Taij. By a straightforward calculation we get the folow-

ing lemma:

Lemwa 4. (1) For H, H'^S＼ k^K and a, i3eS+(G)- {8}

(.(S*)kExp H, (S g)kExp //)

((Sa)/,ExpII',(Sp)k Exp//'>

is independent of the choice k^K.

(2) sin227r<a, H) for //eS° is independent of the choice of aeS+(G)-{l},

Let C be the negative of the Casimir differentialoperator of K relative to

<, >. Then using Theorem 3 and Lemma 4(2), we get

(3.1)
Jh =

for H

l

_

2

c i)

0 x-

0"

0

1

-s°(4<*4)
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Let dvFoaf>,dvSo and dvK^xvHo denote the volume elements of Fl({M), S°and

K Exp Ho, respectively.Then we shallshow the followinglemma:

Lemma 5.

＼ gdvKvXpH

jKExpH0 °
II sin 2iz(a, //,> I

ae2 +(G)-(5)

f
f(H)＼ II sin27r<≪, H)＼dvso

for each feC^S0) and geC°°(KExp Ho).

Proof. Put

gap{k Exp H)= <(S*)kExp H, {Sf)k Exp H> ,

for kei'K, HeeS° and a, p^^£+(G)-{8}. By the change of variable by the

mapping 0, we replace the integration on F°0(M) with the integration on S°X

K Exp Ho. By Lemma 4(1),

f

Pg*dvF*<.tu

=
f

f(H)g(kExpH0)^^M^m^dvKExpIIoXdvSo
)s°xKExPH0JK sv Vdetgap(kExpH9) °

J^expj^
f{H) n s-m2x<a,H> dvs≫.

] II sin2^<a, Ho}＼ Js° aes+co-iS)

Q.E.D

Let V^r(KxNExpH (F°0(M))). We assume that there exists
p

such that JV*=(p*V＼ Then

;(/(v≫)=(A-o(jn/r+/yv",

(OGE C°°(S°)

for each /eC"(S°), where APo(if) is the negative of the Laplace operator of

Fl(M). Since C°°(F0o{M))Kis invariant under AFo(3n, we get by Lemma 3 and

Lemma 5

f

</(/Nn, pv*>dvFo(M>

jKExpH c

i n

＼W＼＼*dvKExpHo

.
n . =―＼

(＼＼gradf＼＼2+ f<p) n sm2x<a, H> dvso.
Sin2ff<≪, i/0> US0 ≪e2+(G)-(5)
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Lemma 6. Let Vlt V2e^r(Kx pNKxpHo(F°o(M))) and <pu y>2eC°°(S°).

// JV＼=<p＼V＼(*= 1, 2) and <p,<<p2,then

s

K Exp H0
<VU V2)dvKKxpHo=Q

Proof. For each faC^iS0), /^0, /^0, we get

JF^M)
<J{PV＼),fVt>dvF ≪on

jFgoV)
<pvi,j(f≪vi)>dvFoltn.

We calculatethe equation above by using Lemma 5

＼
n(^2―^i)/

II sin 2k{a, K) dvso＼

Hence the lemma holds.

and

=0

K Exp Ho
<Vi, V2}dvKExpHo

Q.E.D

Theorem 4. // M is SU(3)/SO(3), then F°P(M)is stable.

Proof. We may assume p

11=

=o. We put

0"

0

0

- o i

_ 0 0

; t^R

0~

0

0
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u is a maximal abelian subalgebra of f. We introduce a lexicographic ordering

< on u such that a>0. Let D(K) be the set of all equivalence classes of

finitedimensional complex irreducible representations of K. It is well-known

that DCK) is identified with the following set:

{ma; m=0, 1, 2, ■･･}.

Let V(X) be a representation space of an element of X^D{K). Let

L＼KXPNEXPH(F°O(M))C) be the completion of r(KxpNExpH(F°0(M))c) relative to

the L2-inner product for each H(eS°. By virtue of the Peter-Weyl theorem,

we get

L＼KxpNExpH(F°0(M))c)= 2 V(X)RHomK]<iV(X), (Rd + mtf)



350 Osamu Ikawa

We know that the negative of the Casimir operator C of K is a scalar operator

axid on each V(A)RUomKl(V(X), (Ro + n＼s)c)with ai=An%X+a, A). Put

D(KY={?^D(K); Hom^Ktf), (Rd + mtf)* {0}}.

For a fixed H0£eS°,we denote <p# the diffeomorphism from KExpH0 onto

K Exp i/ defined as follows :

<pH: K Exp H0->K Exp //; feExp Ho ^ k Exp H (k^K).

Let F be in ro(N(F°o(M)))c. Then FjKExp H^r(KxpNEKpH(F°0(M)))c for

each //eS°. Let {7,,,}^,^^) (where p(X)=-dim(V(X)^UomKl(V(X), (Rd + mtf))

be an orthonormal basis of V(2)(£)HomKl(V(A),(Rd + mc))(c:r(KxpNExpHo

(F°O(M))C). By (3.1), we have

cos2y7r%

Since {7lJ forms an orthonormal base of F (N(F°0(M))＼KExp H) on each K-

orbit KExpH, we can express

(3.2) y= a s/iiFii,

where fiti(H)=
JK Exp H

{V＼KExpH, V*it＼KExp H}dvKKxpH^C^S0).

The right-handside of (3.2)is absolutelyuniformly convergent to V＼KExpH

on each /C-orbitK Exp H. We shall show the right-hand side of (3.2) is

absolutelyuniformly convergent to V on each compact subset of F°0(M).We

have

fx i(H)=[ (V＼KExpH, Vit＼KExpH>dvKZxpH
JK Exp H

= ―Q
f

<V＼K Exp H, A(V

o O JK Exp HCtCOS -iflZX

≪A,i＼KExpH)>dvKEltpH

=
^-o [

<A(^IKExp H), Vlt＼KExp H)dvKExpH
o O JK Exp H

= -o
(

<A3(F |Exp H), niI^Exp H)dvK Exp7/ .
aIcos6f^x^ExpJ/

Thus, by using the Cauchy-Schwartz' inequality,



＼fUH)＼£
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1 /f ＼l/2

3
(^Exp//^!iAA-Exp//(^I^Exp//)||2d^Exp//o)

a;? cos6 -<y-izx

Let D be any compact set in 5°. Put

Then

Hence it

£=max

//ez>

(1 f ＼l/2
o ^A^Expff(F|^Exp//)||2^Exp//o)

cos24^xjA'Exp7/o J

Wfx.tViA <
E＼＼V,t＼＼

a＼

is sufficientto prove the following equation:

lim
max II7; .til

a＼

351

Let {ek)is*si+m(5) be an orthonormal basis of Rd-＼-m$. Put dx=dim V(X). Then

dx―2m+l for X―ma. Let
|O(>?)

be a representation of h We define p(X)qpas

the following equation:

p{X)qP{k)^<p{l){k)vp,vq} (k&K),

where {vp}iSp;idx is a unitary frame of V(X). Then we express Vx,i―

^akpqp(A)qpek (for some c*mgC, rf =̂ SI ap≪|z). By the Cauchy-Schwarts' in-

equality and the fact that each ＼akpq＼2^dx,

＼Wx,i＼＼2^d%l+m(d))^＼akM＼2＼pWl*

^dlT.lpmi^dn + mid))-

Thus we set

max
＼＼v

X,i

＼＼

Hence the right-hand side of (3.2) is absolutely uniformly convergence on the

compact subset. Thus, by Lemma 6, we have

<JV, V}dvFo,m

= S PS( Mlgradf^.r + fii^-^-W n sin27r<a,ff>dvSo

COS~H^7TX

Since 0<aa<a2a = l/2<a3a ■■■and Horn* (V(a), (Rd + ms)c)= {0}, we get
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<jv, vydvFoCM^o

Therefore F°a(M) is stable

[1]

[2]

for each V^r(N(F≫(M)))c .

Q.E.D
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