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Abstract. This paper is devoted to the functional analytic approach
to the problem of construction of Feller semigroups with Dirichlet
boundary condition in the characteristic case. Intuitively, our result
may be stated as follows: One can construct a Feller semigroup
corresponding to such a diffusion phenomenon that a Markovian
particle moves continuously in the state space until it “dies” at
which time it reaches the set where the absorption phenomenon
oceurs.
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Introduction and Results

This paper is devoted to the functional analytic approach to the problem
of construction of Feller semigroups with Dirichlet boundary condition. The
problem of construction of such Feller semigroups has never before, to the
author’s knowledge, been studied in the characteristic case. In this paper, we
consider the characteristic case and solve from the viewpoint of functional
analysis the problem of construction of Markov processes with Dirichlet condi-
tion, which we formulate precisely. For detailed study of the elliptic or non-
characteristic case, the reader might refer to Bony-Courrége-Priouret [BCP]
and Cancelier [C].

Let D be a bounded domain of Euclidean space RY, with C* boundary 0D ;
its closure D=DaD is an N-dimensional, compact C* manifold with boundary.
Let A be a second-order, degenerate elliptic differential operator with real co-
efficients such that

N
Au(x)= 2=

i,

”(X) ——(x)+ Z b‘(x)
ox 6 0x;

1

where :
1) a¥cC=(R"), a¥=a’* and
N

31 a¥(x)2£,20, xeRY, §=RY.

1, j=1
2) bte C=(RY).
3) ¢c=C>(RY) and ¢=0 on D.
Following Fichera [F], we introduce a function b(x’) on the boundary dD

§¥ ga' |

ax] ))nz »

where n=(n,, n,, -+, ny) is the unit interior normal to the boundary dD. We
divide the boundary 0D into the following four disjoint subsets:

by the formula:

b= 3 (b’(x )—

2,={x'cdD;

, a¥(x"yn;n; >0},

1

“u“Mz
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2,={x'€dD; la“"'(x’)nmj———O, b(x")< 0},

1,

M=

2i={x'€dD; ) gjl a*(x"yn;n;=0, b(x’)>0},
=

Sy={x'cdD; 3 a(x')nin,=0, b(x')=0}.
%, j=1

Our fundamental hypothesis for the operator A is the following (cf.
Figure 1):
(H) Each set X, consists of a finite number of connected hypersurfaces.
It is worth pointing out (cf. [OR], [SV]) that one may impose a boundary con-
dition only on the set
M=Y,0%,.

Figure 1.

Let C(D) be the space of real-valued, continuous functions f on D. We
equip the space C(D) with the topology of uniform convergence on the whole
D; hence it is a Banach space with the maximum norm

i fll=max| f(x)].
xeD
Now we introduce a subspace of C(D):
CoD\M)={ucsCD); u=0 on I,UJ,}.

The space Co(D\M) is a closed subspace of C(D); hence it is a Banach space.
A strongly continuous semigroup {7}, on the space C,(D~\M) is called a
Feller semigroup on D\M if it is non-negative and contractive on Co(D\M):

fEC(D\M), 0<f<1 on D\M ==0<T,f<1 on D\M.

It is known (cf. [Ta, Chapter 9]) that if T, is a Feller semigroup on D\M,
then there exists a unique Markov transition function p, on D\M such that
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T=_ b, dnf),  FECDM).

Furthermore, the function p, is the transition function of some strong Markov
process; hence the value p(x, E) expresses the transition probability that a
Markovian particle starting at position x will be found in the set E at time 1.

The next theorem asserts that there exists a Feller semigroup on D corre-
sponding to such a diffusion phenomenon that a Markovian particle moves con-
tinuously in the state space D until it “dies” at which time it reaches the set
PRI

THEOREM 1. Assume that the operator A satisfies hypothesis (H):

(H) Each set X, consists of a finite number of connected hypersurfaces.
We define a linear operator A from the space Co(D~M) into itself as follows.

(1) The domain D(A) of A is the space

D(A)={ucsCAD); u=Au=0 on 2,\J24}.

(2) Au=Au, uesD(A).

Then the operator A is closable in the space C(D~M), and its minimal closed
extension A is the infinitesimal generator of some Feller semigroup {Ti}izo on
D\M.

Theorem 1 is proved by Bony-Courrége-Priouret [BCP] in the elliptic case
(cf. [BCP, Théoréme XVI]) and then by Cancelier [C] in the non-characteristic
case: 0D=23, (cf. [C, Théoréme 7.2]).

By a version of the Hille-Yosida theorem in semigroup theory, the proof of
Theorem 1 is reduced to the study of the Dirichlet problem in the theory of
partial differential equations. The essential step in the proof is the following
existence and uniqueness theorem for the Dirichlet problem in the framework

of Hélder spaces:

THEOREM 2. Assume that hypothesis (H) is satisfied and that

¢c<0 onD,
and
¥ @a¥ X obt =
x— sy 9% %
¢ zﬂfél 0x,0%; El axi+”<° on D

Then, for each integer m=2, one can find a constant A=A(m)>0 such that,
for any function f in the space Crm+2+2f (I 0< <1, there exists a unique solu-
tion ue Cm*%D) of the Dirichlet problem:
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(A—Ru=f in D,
® {

u=0 on 22\,}23.
Moreover, the solution u satisfies the inequality
lullem+0 @ ZCmso (DI Sl crm+er20 7

where Con,e(A)>0 is a constant independent of [.

Theorem 2 is an improvement of Theorem 1.8.2 of Oleinik-Radkevic [OR].
We remark that Theorem 2 is proved by Cancelier [C] in the non-characteristic
case: aD=2Y, (cf. [C, Théoréme 4.5]).

The rest of this paper is organized as follows.

Section 1 provides a brief description of the basic definitions and results
about Feller semigroups, which forms a functional analytic background for the
proof of Theorem 1. Our proof of Theorem 1 is based on a Feller semigroup
version of the Hille-Yosida theorem (Theorem 1.4) in terms of the maximum
principle.

In Section 2, we study the Dirichlet problem

Au=f in D,
(D) {

u=g on 3,2,

in the framework of spaces of bounded measurable functions, and prove ex-
istence and uniqueness theorems for problem (D) (Theorem 2.3 and Theorem
2.6), by using a method of elliptic regularization as in Oleinik-Radkevi¢ [OR]
and also as in Cancelier [C]. It is hypothesis (H) that makes it possible to
develop the basic machinery of Oleinik-Radkevic [OR] with a minimum of
pother and the principal ideas can be presented more concretely and explicitly.

In Section 3, we prove regularity theorems (Theorem 3.1 and Theorem 3.5)
for the weak solutions of problem (D) constructed in Section 2 in the frame-
work of Holder spaces. In the proof, uniform estimates for approximate solu-
tions of problem (D) play an essential role (Lemma 3.4 and Lemma 3.7). Theo-
rem 2 follows from these theorems by a well-known interpolation argument.

The final Section 4 is devoted to the proof of Theorem 1. We verify all
the conditions of the generation theorem of Feller semigroups (Theorem 1.4)
in Section 1.

The author would like to express his hearty thanks to the referee whose
helpful criticisms of the manuscript resulted in a number of improvements.
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1. Theory of Feller Semigroups

This section provides a brief description of the basic definitions and resuits
about Feller semigroups, which forms a functional analytic background for the
proof of Theorem 1.

1.1. Markev Transition Functions and Feller Semigroups

Let (K, p) be a locally compact, separable metric space and @ the g-algebra
of all Borel sets in K.

A function p,(x, E), defined for all t=0, x€K and E€ 8, is called a (tem-
porally homogeneous) Markov transition function on K if it satisfies the follow-
ing four conditions:

(a) pu(x, -) is a non-negative measure on B and p,(x, K)<1 for each t=0
and each x=K.

(b) p(-, E) is a Borel measurable function for each {=0 and each E< 3.

(¢)  polx, {x})=1 for each x&K.

(d) (The Chapmen-Kolmogorov equation) For any ¢ s=>0, x&K and any
Ec 3, we have

1.1 bk, B)=| pilx, d9)puy, B).

The value p.(x, E) expresses the transition probability that a physical particle
starting at position x will be found in the set F at time ¢{. Equation (1.1) ex-
presses the idea that a particle “start afresh”; this property is called the
Markov property.

We add a point ¢ to K as the point at infinity if K is not compact, and as
an isolated point if K is compact; so the space K;=K\U{d} is compact.

Let C(K) be the space of real-valued, bounded continuous functions on K.
The space C(K) is a Banach space with the supremum norm

$If||=sug!f(x)i.

We say that a function feC(K) converges to zero as x—dg if, for each
¢>0, there exists a compact subset £ of K such that

[ flo)<e, xeK\E,

and write lim,.; f(x)=0. We let

CoK)={feCK); lim f(x)=0}.
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The space C.(K) may be identified with the subspace of C(K; which con-
sists of all functions f satisfying f(6)=0:
CoK)={feC(Ks); f(0)=0}.

A Markov transition function p, is called a C,-function if we have
FECHK) == Tof={ b, d9)S()ECUK).

A Markov transition function p, on K is said to be uniformly stochastically
continuous on K if the following condition is satisfied: For each ¢>0 and each

compact ECK, we have

lim sup [1— p.(x, U(x))]=0,

ti0 TEE

where U.(x)={yEK; p(x, y)<e} is an e-neighborhood of x.
Then we have the following (cf. [Ta, Theorem 9.2.3]):

THEOREM 1.1. Let p, be a C,-transition function on K. Then the associated
operators {T.} .z, defined by the formula

12) Tuw=| pix, dnf),  fecd),

is strongly conlinuous in t on Co(K) if and only if p, is uniformly stochastically
continuous on K and satisfies the following condition (L):
(L) For each s>0 and each compact ECK, we have

lim sup p.(x, E)=0.

-0 0<ts$

A family {T.}.., of bounded linear operators acting on C,(K) is called a
Feller semigroup on K if it satisfies the following three conditions:
(i) Ts=T.Ts t, s=0; Ty=I=the identity.
(ii) The family {T,} is strongly continuous in ¢ for t=0:

lsif? 1Teesf=T.f]=0, feCyK).
(iii)y The family {7T,} is non-negative and contractive on C,(K):
feCy(K), 0<f<1l on K ==0<T,f<1 on K.

The next theorem gives a characterization of Feller semigroups in terms
of Markov transition functions (cf. [Ta, Theorem 9.2.6]):

THEOREM 1.2. If p, is a uniformly stochastically continuous C,-transition
function on K and satisfies condition (L), then its associated operators {T.} .=
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form a Feller semigroup on K.

Conversely, if {T.}.z0 is a Feller semigroup on K, then there exists a uni-
formly stochastically continuous C,-transition p, on K, satisfying condition (L),
such that formula (1.2) holds.

1.2. Generation Theorems of Feller Semigroups
If {T:}:s0 is a Feller semigroup on K, then we define its infinitesimal gen-
erator N by the formula

(1.3) Yy lim LL*H

tio

’

provided that the limit (1.3) exists in the space C,(K).
The next theorem is a version of the Hille-Yosida theorem adapted to the
present context (cf. [Ta, Theorem 9.3.1 and Corollary 9.3.2]):

THEOREM 1.3. (i) Let (T} be a Feller semigroup on K and W its in-
finitesimal generator. Then we have the following :

(a) The domain D(N) is everywhere dense in the space C,(K).

(b)y For each a>0, the equation (al—Wyu=f has a unique solution u in D(A)
for any f=CyK). Hence, for each a>0, the Green operator (al—U)"1: C(K)
—Co(K) can be defined by the formula

u=(al—-Af, feCy(K).

(¢) For each a>0, the operator (al—UN)"' is non-negative on the space
CoK):
feCy(K), =0 on K== (al—-U)'f=0 on K.

(d) For each a>0, the operator (al—U)™' is bounded on the space C,(K)
with norm

llal—=A) =

Q[

(ii) Conversely, if W is a linear operator from the space Co(K) into itself
satisfying condition (a) and if there is a constant a,=0 such that, for all a>ay,
conditions (b) through (d) are satisfied, then U is the infinitesimal generator of
some Feller semigroup {Ti}iz0 on K.

We conclude this section by giving useful criteria in terms of the maximum
principle (cf. [BCP, Théoréme de Hille-Yosida-Ray]; [Ta, Theorem 9.3.3 and
Corollary 9.3.4]):
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THEOREM 1.4. Let K be a locally compact metric space and let B be a linear
operator from the space Cy(K) into ilself. We assume that:

(a) The domain D(B) of B 1s everywhere dense in the space C(K).

(B) If ueD(B) and supg u>0, then there exists a point x of K such that

{ u(x)=supg u,
Bu(x)=0.

() For some a,=0, the range Rla,]—B) of a,J—B is everywhere dense in
the space Cy(K).

Then the operator B is closable in the space C\(K), and its minimal closed

extension B is the infinitesimal generator of some Feller semigroup {T},., on K.

2. The Dirichlet Problem—(1)—

In this section, we shall study the Dirichlet problem in the framework of
spaces of bounded measurable functions, and prove existence and uniqueness
theorems for problem (D), by using a method of elliptic regularization as in
Oleinik-Radkevic [OR] and also as in Cancelier [C].

2.1. Function Spaces

First we recall the basic definitions and facts about the function spaces
which will be used in subsequent sections.

If Q is an open subset of Euclidean space R”, we let

L=(£)=the space of equivalence classes of essentially bounded,
Lebesgue measurable functions u on £.

The space L=(2) is a Banach space with the norm
lullo=ess supzeo|u(x)|.
If & is a positive integer, we let

Wk =(Q)=the space of equivalence classes of functions ue L=()
all of whose derivatives 0%u, |a!<Fk, in the sense of
distributions are in L*(£).

The space W* =(2) is a Banach space with the norm
fulliw= > 0% .
lajsk

Let 0<<@#<1. A function u defined on £ is said to be Hilder continuous
with exponent @ if the quantity
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- Ju(x)—u(ni
[uls; 0= J;%%Q————‘x_w

is finite. We say that u is locally Holder continuous with exponent 6 if it is
Hélder continuous with exponent # on compact subsets of Q.
We let

C9()=the space of functions in C(£) which are locally Holder
continuous with exponent § on £.

If £ is a positive integer, we let

CH () =the space of functions in C*(2) all of whose k-th
order derivatives are locally Holder continuous
with exponents 6 on £.

Now assume that 2 is bounded. We let

C(2)=the space of functions in C(2) having continuous
extensions to the closure @ of Q.

If k£ is a positive integer, we let

C*(2)=the space of functions in C*(£2) all of whose derivatives

of order <k have continuous extensions to £.
The space C*((2) is a Banach space with the norm

4l ced=max sup |0°u(x)|.
la1sk 28

Further we let

C?(©2)=the space of functions in C(£2) which are Holder
continuous with exponent § on 2.

If % is a positive integer, we let

C**?(2)=the space of functions in C*(2) all of whose
k-th order derivatives are Holder continuous
with exponent # on 2.

The space C**?(2) is a Banach space with the norm
fullcerom=lulcrad+ max [0%uls;0-

If M is an n-dimensional compact C* manifold without boundary and m is
a non-negative integer, then the spaces W™ =(M) and C™*%(M) are defined re-



Existence of Feller semigroups with Dirichlet condition 387

spectively to be locally the spaces W™ =(R") and C™*?(R™), upon using local
coordinate systems flattening out M, together with a partition of unity. The
norms of the spaces W™ =(M) and C™*?(M) will be denoted by ||| m . and
- lem+o, respectively.

We recall the following results (cf. [Tr]):

I) If k is a positive integer, then we have

Wk"”(M):{gpeCk"(M);max sup ‘aaq)(—x)i—rf(y)!<oo},

lalgkflx%gEM JX—*y|
where |x—v| is the geodesic distance between x and y with respect to the
Riemannian metric of M.
II) The space C**%(M) is a real interpolation space between the spaces
Wke(M) and W *t=(M); more precisely we have

CHIM)=W (M), W =(M))p,

fuemean g K0 )
where
K, wy= inf ([uos, etthitsllesr o).
U=ug+i;

2.2. Formulation of the Dirichlet Problem

Let D be a bounded domain of Euclidean space RY with C* boundary oD.
Its closure D=D\UaD is an N-dimensional, compact C* manifold with boundary.

We let

Au(x):iljz;l w(x)a 5r

be a second-order, degenerate elhptxc differential operator with real coefficients
such that:
1) a¥eC=(RY), a¥=a’* and

(x)+ 2 b’(X)

)

$ 008820,  xeRY, RV

i, =1
2) b*e C=(RY).
3) ceC=(R") and ¢<0 on D.
Following Fichera [F], we introduce a function #(x’) on the boundary 6D
by the formula:
N y i A Y y _(?_a‘ji ’ .
b= 2 (00— B 5 ),

where n=(n,, n,, ---, ny) is the unit interior normal to the boundary 0D. The
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function b will be called the Fichera function for the operator A. It is easy

to verify that the Fichera function & is invariantly defined on the characteristic
set:

N )
E”:{x’eaD; = a”(x’)n,«n,-:O}.
i.5=1
Let A* be the formal adjoint operator for A:

av

A= 5 el o+ H(28 B )

13 1

N §%aY Y 5b* _
(.2, arar 0 B 5, (0 o).

It is easy to see that the Fichera function b* for the operator A* is given by
e/ vl — N y B at N\ da¥ ’
bHx)y=—bx)=— 5 (H0)= 5 G- )

In order to formulate precisely the Dirichlet problem for the operator A4,
we divide the boundary 9D into the following four disjoint subsets:
N

2326[)\2":{36’661); St at(x')n, "’>0f

i, j=1

3, :{x oD 3 at(x")nn,=0, b(x'><o}

i, j=1

2 :{x coD; % a¥(x"yn;n;=0, b(X’)>0}
el

i, 1

S={x'cdD; 3 atx" =0, bx")=0}.
i j=

We remark that the sets Y, X,, 3, and %, are all invariantly defined.
Our fundamental hypothesis for the operator A is the following:

(H) Each set X, consists of a finite number of connected hypersurfaces.
This hypothesis makes it possible to develop the basic machinery of Oleinik-
Radkevi€ [OR] with a minimum of bother and the principal ideas can be pre-
sented more concretely and explicitly.

We shall consider the following Dirichlet problem: For given bounded
measurable functions f and g defined in D and on Y,U2,, respectively, find a
bounded measurable function u» in D such that

{ Au=f in D,
u=g on X,\UZ;.

(D)

Now we give the precise definition of a weak solution of problem (D):
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DEFINITION 2.1. A bounded measurable function » in D is called a weak
solution of problem (D) if, for any function v C¥D) satisfying v=0 on 3, U%,,
we have

(2.1) SS u-A*vdx:SS fvdx—s g(zgda—i—g bgvdo ,
D D 3.7 oy 2y
where 0/dv is the conormal derivative associated with the operator A :
a N .
i iy,
a]:’ igla n]axi,

and b is the Fichera function and de is the surface element of oD.

Our definition of a weak solution may be justified by using the following
Green formula for the operators A and A* (cf. [OR, formula (1.1.14)7):

THEOREM 2.2. For all functions u and v in C¥D), we have

(2.2) SSD(Au-v—u-A*v)dx:—gsg(—aﬁu—u@ﬁa—g buvdo .

ov oy amz,

2.3. Existence Theorem for Problem (D)
First we prove the following existence theorem for problem (D) (cf. [OR,
Theorem 1.5.1]):

THEOREM 2.3. Assume that hypothesis (H) is satisfied and that

(2.3 c<0 on D .

Then, for any f& L(D)and any g= L~(3,\U3,), there exists a weak solution
ue L>(D) of the Dirichlet problem :

Au=f in D,
(D)
u=g on X,\ U2, .
Furthermore, the solution u satisfies the inequality

(2.4) ess supp | u | gmax(cless supp| f1, esssups,us,|gl ) ,
0

where
Cn=n}7in (—e)>0.

ProoF. 1) First we construct approximate solutions of problems (D) by
making good use of a method of elliptic regularization, just as in Oleinik-
Radkevi€ [OR].
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Let f be an arbitrary function in the space L*(D), and choose a sequence
{f»}3_ in the space C?(D) (0<@<1) such that

(2.5a) max| f,| <esssupp| |,
D

(2.5b) fo—f in L¥D) as n—oo,

and also a sequence {g.}3-, in the space C**%(D) (0<#<1) such that
(2.6a) max|g.| <esssups,ux,|gl,

(2.6b) gn—> & in L¥(2,\U2;) as n—oo .,

This can be done by using regularizations (mollifiers) of f and g.
Now let u. , be a solution of the Dirichlet problem for the elliptic operators
A.=ed+A (¢>0):

Asus,n:fﬂ in D »
(De, )

Ue n=Fn on oD,

where 4=3¥,6%/9x% is the usual Laplacian. We know (cf. [GT]) that such a
solution u. , of problem (D, ,) exists and is unique in the space C**?(D). Thus,
applying the maximum principle (cf. Theorem A.2) to the elliptic operators A,
we obtain from inequalities (2.5a) and (2.6a) that

1
< —
2.7 sgplum! :max(c0 mlg)ixlfnl, n};all)xigﬂ)

1
gmax(c—ess supp| f1, esssups,us,| g!).
0

II) Next we show that the limit function u, of u., when ¢ |0 is a weak
solution of the Dirichlet problem for the operator A:

Au,=fn in D,
(Dr) {

Un=gn on 2,2, .
If we let

Ze,n=Ue,n—8n,

then it follows that z. ,=C?*?(D) and satisfies :
Aeze n=fr—A:gn inD,
{ 2, n=0 on dD .

II-1) In order to estimate the z. ,, we need the following lemma (cf. [OR,
Lemmas 1.5.1 and 1.8.3]):
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LEMMA 2.4. Let feC%D) (0<0<1) and let u.=C***(D) be a unique solu-
tion of the Dirichlet problem for the elliptic operators A.=ed+A (¢>0):

{ Au=f m D,
u.=0 on oD .

Do)

If hypothesis (H) and condition (2.3) are satisfied, then the solution u. satisfies
the estimates

(2.8a) rgaX\grad ) =M\ fllew ,
3
(2.8b) rr;axlgrad u) =Ml flew ,
2
(2.80) max| grad .| < o flleco
% Ve

where M>0 and C>0 are constants independent of ¢>0.

Proor. Let x; be an arbitrary point of the set X\ U2,\U2,. We choose

a local coordinate system (y,, v, -+, yx) in a tubular neighborhocod U of x;
such that:

x,=0,

D={yy>0},

6D: {yN:O} ,

and assume that, in terms of this coordinate system, the operator A.=c¢d+ A
is of the form

2 A 2
nv 0

2.9) A(Z”a + 20 ) a
: = ayiay, i=1" 0y, 0%

1S O S O gy O g @
= dyn0y; u5=1  0y:0y; dyy 217 ay,

-

+c.

We remark that:
(a) a¥M0)>0 if xjsX,.
(b) a¥¥(0)=0 and BY(0)<0 if x;=2,.
() a"¥(0)=0 and BY(0)=0 if x;=2..

In order to prove estimate (2.8), it suffices to prove that

(2.82") | <M1 flow .

5

(2.80") | e ) <ML,
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(2.8¢") a"ﬁ

(O)l/ = flcw ,

since u#.,=0 on dD and hence aus/ay,:O on oD, for 1<;<N—1.
(a) First we prove estimate (2.82’): We let
bi(y', yv)=exp[—kyy]1—1, y=0' ynEY,
where k>0 is a large constant to be chosen later on. Then it follows from
formula (2.9) that
Adb)=e(p" N k?—y k) +a¥ ¥ k2 — BV k+-cb; in U.
Thus, since a¥¥(0)>0, we have for k sufficiently large
Ab)Z a k? in U,

with some constant a,>0.
We let
th(y)—_—Mbk(y)tue(V).

where m=m(k)>0 is a constant given by

__LHch(f)) fuelea
TR a minpy(—by)

Then it is easy to verify that

by
B = <<
o lpus (1+ min pu(— bk>>’|us]|0(1))=0,

and
¢=lx,=0.
But we have
Adp)=mAby)= f

>magk®+ f

=1 o= (el g e

min pa(—by)

o Nullew N .
é( minzj\cu("bk)>a0k
>() in E‘J .

Thus, applying the maximum principle (cf. Theorem A.1) to the functions ¢.,
we obtain that
in U.

S
IA
o

Hence it follows that
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ou. 0. .
iayN 0) mk—ayN(O)éO.
This proves that for al/ sufficiently large k
ou 1 k
e < —( =\ ~ A _
(2.10) 3y s O == ) e+ (s el

On the other hand, applying the maximum principle to the functions u.,
we obtain (cf. estimate (2.7)) that

@.11) e < =1 flom.

Therefore, the desired estimate (2.8a’) follows by combining estimates (2.10)
and (2.11).

(b) Next we prove estimate (2.8b"): Since B¥(0)<0, it follows that if %
is sufficiently large, we have for some constant B.>0

As(bk):E(FNNkZ_VNk)‘l_aNNkZ'_‘BNk+Cbk
gﬂok in .
We let
Du(3)=1bp(y)tuly),

where [=I(k)>0 is a constant given by

l_iﬂf”ca’» sl w)

kB minpa(—be)

Then, just as in case (a), it follows that

(/)t ‘f)\‘l]go ’

¢:l5,=0,
and

AdP)=1Abr) |

Z( luellc k)>ﬁok

min p(~—b
>0 in U.

Thus, applying again the maximum principle to the functions ¢., we obtain
that
¢.<0 in U.

Hence we have (just as in case (a))
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ou. _ k )
|3y | sth= ﬁﬂfﬂmm-}'(m)”ue%m)
1 k
é(ﬁ—o **-—mmpw(——bk) - )lf“om)

This proves estimate (2.8b’).
(¢) Finally we prove estimate (2.8¢c’): We take a function ¢.€C*RV™)
such that

if |y'1<d,
= JE z—g%)? .

Py) (1 (“’2'756 " itesiyi<o,
where >0 is a small constant to be chosen later on. It is easy to verify the
following :

1) |ge|<+/e  on RV,
o
2 ¢ N-1,
@) ay}\_ax/e on R
N-1
3) |ay,ay #352 on RY-'.

Let Q; . be a subdomain of D defined by

Qs..={y=0’, ymERY; |y'1<28, 0<yx<P(y)}.

Here we choose a constant >0 so small that the domain Qs . is contained in
a tubular neighborhood U of x;=(0,0). In the domain Q,., we consider a
function

w(y)=K,(e=*¥’—1),
where

)= (Ve =),

Here K,>0 and K,>0 are large constants to be chosen later on.
Then we have the following :

CLamM 1. A w)=c K, in the domain Q; . if K,>0 is sufficiently large (in-
dependently of K,) and if ¢>0 is sufficiently small. Here recall that

Co= mli)n (—e)>0.

PROOF. Since the matrix (p%) is positive definite and the matrix (a¥) is
non-negative definite, it is easy to see that
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212) A=K 3o (s 25 ey 5 0300
dy; u=t 89,3y,

2 N1 ¢e 2 iagbs
KK ONE S S KK e N O +2 ayl)

e L 0 | N1 ,,0¢ 0.
2 ,-2(y) NN 5 a¥
+K K2 v E< ngla ]ayj i.jz: aytay.)

-z A‘I_ R a¢€ o Ny N0
+ KK e rw v i,éla ayla + KK et —— < B iglﬁ a_y,)

+cKoe? V) —cK,

¥y o =5t v 13,
2KD[K?(# 2\/6,-;1# Ve ay1>

ool az‘/’; — _,~ —— i._l_a(ﬁs
+Kie 3 u ayiaijrKn/E( Ve D \/e‘ayi)

N 1 g By
ij = _
+K1i,§1a Ve 0y.0v; 'We

+K, 2 _L@SLL_{_C} LK, .

But we find that
BY=0(v¢) in Q;.,

since 8¥=0 on %,.
Therefore, we obtain from inequality (2.12) that

Adw)=c,K, in Q.

if K,>0 is sufficiently large (independently of K,) and if ¢>0 is sufficiently
small.

CLAM 2. Afw-+u.)>0 in the domain Q; . if K,>0 is sufficiently large.

Proor. By Claim 1, if follows that

Awru)=A(w)+ f=c Ko+ >0  in 0Q;.

if K,>0 is so large that
Koo e

Co

(2.13)

CLAIM 3. w+u,<0 on the boundary 0Qs.. if K,>0 is sufficiently large.

ProoF. First, since we have for |y’| <20
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uy’, 0)=0,

w(y’, 0)=Ky(e~ K1/ /e _1)<() ,
it follows that on the set 0Q; .\ {yy=0}

w(y’, 0)+u(y’, 0)=<0.
Next we recall that

1, .,

ludem=—lflew -
Co

Hence it follows that on the set 0Q; N\ {yxy=¢(¥")}
w(y’, PN Euly’, gy N=Kie X1 —=1)xuly’, ")
<Kye 1=+ udlewm
1

éKn(e_K‘—‘lH-c—Hf”C(ﬁ)

=0,

if K,>0 is so large that

1
(2.14) K0>m|1f”0(5)-

By virtue of Claims 2 and 3, we can apply the maximum principle (Theo-
rem A.1l) to the functions w=+u., we obtain that

w+u.<0 in Qs,c.
Hence it follows that

aue ___KoKl__ d
155;(0) - .__a—yN(wius)(O)ém
so that
au; KOKl

In view of inequalities (2.13) and (2.14), this proves estimate (2.8¢c’).
The proof of Lemma 2.4 is now complete.
11-2) Now, applying Lemma 2.4 to the functions z. . (n being fixed), we
obtain that
ggglgrad Ze.nl EMR(| frlem Hgallc2am),

C,
mQXI grad ze, | é—‘\/f U fallem+lgalezd),
P €

and hence that
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(2.15a) Erilgz)glgrad Ue | EML S 2lle +lgallexn),

. < Cn

(2.15b) mzaxlgrad Uen| = Ve =l fallem Flignlcem),
o

since u, ,=2:,,—g» and g,=C* D). Here M,>0, M,>0, C,>0 and C,>0
are constants independent of e.

Then, applying Green’s formula (2.2) to the operators A.=ed+A and A¥=
ed+A*, we find that for all veC¥D) satisfying v=0 on 3,\UX,

(2.16) Sgpfnvdngsnfleus,n-vdx

0te, n

:SSDuE,n-Afvdx g vv— enz )da
*San 5 bu, ,vdo— (S (a—lé;—" v— s,n—g—;}l)do)
:aSSDus,n-dvdx-%SSDus,,,-A*vdx-l—szugng—zda

a—eg auéivdc

vz, on

ov
ang "a—nd
But we recall (cf. [Y, Chapter V, Section 2, Theorem 1]) that the unit ball in
the Hilbert space L%D) is sequentially weakly compact. Hence, by estimate
(2.7), one can find a subsequence {u., .}i-; which converges weakly to some
function u, in L%D) as e, 0. Thus, we can let ¢, |0 in formula (2.16) to
obtain that for all ve C¥*D) satisfying v=0 on Y, \UJ,;

@2.17) Sgbfnvdnggbun-A*udx+Sxagng—sda—g%bg,,uda .

~Ss2bg,,vda+eg

Indeed, by estimate (2.15), it follows that the last term of the right-hand side
of formula (2.16) tends to zero as &, | 0.
On the other hand, it is easy to verify that the set

K= {wELZ(D) esssupﬂwl«max(lesssupD1f| esssupvzugslgo}

is convex and strongly closed in the space L*D). Thus it follows from an
application of Mazur’s theorem (cf. [Y, Chapter V, Section 1, Theorem 11])
that the set K is weakly closed in L*D). This proves that u,=K:

(2.18) €ss supp| Uy, | gmax(cl esssuppl f1, ess supzzu;3|g1>,
[}

since u. =K for £>0.
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Therefore, we have proved that the function u, is a weak solution of
problem (D,) and satisfies estimate (2.18).

I[II) Finally we show that the limit function u of u, when n—oo is a
weak solution of problem (D):

{ Au=f in D,
u=g on X,UZ,.

D)

By estimate (2.18), it follows that the sequence {u,}%-, is weakly compact
in the space L¥D). Hence one can find a subsequence {u, .} =1 Which converges
weakly to some function u in L%D) as n,—oo.

Therefore, letting n,—oo in formula (2.17), we obtain from assertions (2.5b)
and (2.6b) that for all ve CXD) satisfying v=0 on I,\U%,

SSvadnggpu A dx—{—gl,sgg—zda—g%bgvda.

Furthermore, since u,,=K, it follows from an application of Mazur’s theorem
that ue K, that is, the function u satisfies inequality (2.4).
The proof of Theorem 2.3 is now complete.

REMARK 2.5. It can be shown (cf. [OR, Theorem 1.5.2]) that if g is a
function in the space C(2,\UJY,), then the weak solution u constructed in Theo-
rem 2.3 assumes the given boundary values g on the set 2,\ 2.

2.4, Uniqueness Theorem for Problem (D)
Next we prove the following uniqueness theorem for problem (D) (cf. [OR,
Theorem 1.6.1]):

THEOREM 2.6. Assume that hypothesis (H) is satisfied, and that
vy 9%a% N gbt

—+c¢<0  on D.

s, .
(2.19) ¢ "i,jsl axiaxj i=1 axi

Then any homogeneous solution we L=(D) of problem (D) is equal to zero
almost everywhere in D, that is, if we have for any function ve C¥D) satisfving
v=0 on 3, U,

(2.20) SSD” A*ydx=0,
then the solution u is equal to zero almost everywhere in D.

Proor. I) We modify the domain D and the operator A* so that the set
202, is of type 2, or of type 2.
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By hypothesis (H), one can choose a bounded domain £ with C* boundary
08 such that (cf. Figure 2)
{ DuX, w3, cQ,

2 u2,cof,

and one may assume that

(2.19" ¢*<0 on 2.

Figure 2.

Now we take a function a= C<() such that
{ a=0 in D,
a>0 in O\D,
and consider the Dirichlet problem for the elliptic operators ed+A*+ad (e>0):
N (ed+A*+adp.=¢p in 2,
(D¥
v:=0 on 982,
where 4=31¥,0%/0x% is the usual Laplacian. We remark that:

(i) The Fichera function b* for the operator A*+ad is equal to —b on
2, and so

b*(x)<0 on X,.

(i) 2= a¥(x)nn;+a(x) 2L, ni>0 on 0N2.
In other words, the boundary 682 is of type X, or of type 2, for the operator
A*+ad.

Let ¢ be an arbitrary function in the space C5(D). Then we know (cf.
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[GT]) that problem (D¥) has a unique solution v, in the space C*(£) and that
_1

(2.21) mglxh,s é&mf?x[q)‘,

where

c¥=min (—c*)>0.
D

Since v.eC=(2) and v,=0 on Y, U5, and since ¢=0 in D, it follows from an
application of Green’s formula (2.2) and condition (2.20) that

(2.22) Sgpugodx:sgvu -edv.dx +SSDu -A*vedx+SSD1t ~adv.dx

:SS u-edv.dx .
D
We choose a sequence {#,}%.; in the space C3(D) such that

Uy —> U in L%D).

Then we have by Schwarz’s inequality

(2.23) l Sgnu cedv.dx l = N SSD(u —uedvdx +S§Dun cedv.dx i

A

HSD(u—un)eAuedx \ +e } SSDAM,, v dXx (
}Z(SSD";Z(AUe)de)UZH U—unllL2m

+¢ n%tx!z;a{SSD\Aun\dx .

II) In order to estimate the first term on the last inequality, we need the
following lemma due to Oleinik-Radkevi€ ([OR, Lemma 1.6.1]):

LEMMA 2.7. Let feC%D) (0<0<1) and let v.=C**%(D) be a unique solu-
tion of the Dirichlet problem for the elliptic operaiors ed+A (¢>>0):
{ (ed+Aw,=f in D,
v.=0 on 9D.

De)

Assume that condition (2.3) is satisfied and that for some constant C >0 inde-
pendent of ¢

max|grad I/—C—
aD' g be =«/e' ’

Then we have the estimate
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[] cavrax=c,
with some constant C’ >0 independent of .

[lI) Since the boundary o2 is of type X, or of type I, for the operator
A*4ad, it follows from an application of Lemma 2.4 that

max lgrad ve| <M*|¢llcw) ,

where M*>0 is a constant independent of ¢. Hence, applying Lemma 2.7 to
the operator A*--ad, we obtain that

(2.24) ||, cvrax=ce,

where C*>0 is a constant independent of .
Therefore, combining estimates (2.23), (2.24) and (2.21), we find that

I R N PR B VPR

0

so that

lim SS u-edvdx=0,
D

g40

since u,—u in L* D). Hence, combining this fact with formula (2.22), we have

SSDugpdx:() .

This proves that u=0 a.e. in D, since p=C7(D) is arbitrary.
The proof of Theorem 2.6 is complete.

3. The Dirichlet Problem—(2)—

In this section, we prove regularity theorems for the weak solutions of
problem (D) constructed in Theorem 2.3 in the framework of the spaces W™ =(D)
and C™*9(D) where m=1.

3.1. Lipschitz Continuity for Weak Solutions

First we prove a regularity theorem for problem (D) in the space W' =(D)
(cf. [OR, Theorem 1.8.1]; [C, Théoréme 4.4]), which gives a sufficient condi-
tion for the Lipschitz continuity for weak solutions of the Dirichlet problem.

‘THEOREM 3.1. Assume that hypothesis (H) is satisfied and that condition

(2.3) is satisfied. Then one can find a constant 2>>0 such that, for any function
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f in the space W-(D), there exists a weak solution ueW (D) of the Dirichlet
problem :

(A—=Du=f in D,
|

u=0 on 2\ JY,.
Moreover, the solution u satisfies the inequality
(3.1 full, o= CilD fllt o0,

where C,(A)>0 is a constant independent of f.

Proor. I) We modify the domain D and the operator A so that the set
Y22, is of type X, or of type Z,.
By hypothesis (H), one can choose a bounded domain £ with C> boundary
082 such that (cf. Figure 3)
{ DUz, w22,

2,\UZ,CoR,
and one may assume that

(2.3 c<0 on Q.

Figure 3.

Now we take a function a=C=(J) such that
{ a=0 in D,
a>0 in O\D,
and consider the Dirichlet problem for the elliptic operators sd-+A+ad—24 (¢>0):
N (ed+A+ad—Du.=f in 2,
(De)
u.=0 on 9%,

where 4=31,0%/0x% is the usual Laplacian and 1>0. We remark that:
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(i) The Fichera function b for the operator A+ad—2 is equal to b on 3,
and so
b(x")<0  on 3,

(i) D=1 a9 (x)nm;+alx’) S, 08>0 on 92\3,.

In other words, the boundary 62 is of type 3, or of type X, for the operators
A+4ad—i, 2>0.

II) First let f be an arbitrary function in the space C*?(D), 0<6<1. We
show that there exists a weak solution x<=W'=(D) of problem (*) which satisfies
inequality (3.1).

One may assume that

fecHi(@),
and that

3.2 [fllcva SN fllers -
Then we know (cf. [GT]) that problem (INDE) has a unique solution u, in the
space C**%($) and that

1
mgXluei§7mf§1X|f|,

since (ed+A+ad—Nl=c—1<—4i on 0.

II-1) We show that there exists a subsequence {u.,} which converges uni-
formly in £ to a function uesWbt=(R), as ¢, | 0.

lI-1a) To do so, if p=C*(D), we define a continuous function B (¢, ¢) on
D by the formula

By, goxx):zL_%aﬁ(x%@)ﬁ%u)—c(m-go(x)% xeD,

where
RPN A RN
A= 20 (")axiaxﬁ}:‘b (x)a—xi +e(x).

We remark that the function B(gp, ¢) is non-negative on D for all o= C(D).
The next result may be proved just as in the proof of Théoréme 4.1 of
Cancelier [C].

LEMMA 3.2. If o= C=(D), we let
2

. X 1op =
Pl(x)——]gl la?;(x) xeD,

and
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R(n=An0)- 3832, 3Yn, xeD.

Then, for each 7>0, there exist constants $8,>0 and B,>0 such that we have
Jor all p=C=(D)

R0 5 B3, )0+ Bul gl
+8: |§0Hcl(D)+ ||A§D||cum, xeD.

REMARK 3.3. The constants 8, and 8, are uniform for the operators A+
ed—21, 01, A=20.

[I-1b) The proof that ueW =(D) is based on the following lemma (cf.
[OR, Lemma 1.8.1]):

LEMMA 3.4. Assume that hypothesis (H) is satisfied with 0D=2,U2%; and
that condition (2.3) is satisfied. Then one can find a constant 2>0 such that if f
is a function in the space C'*%(D), then the unique solution u.< C (D) of the
Dirichlet problem

{ (A+ed—Nu.=f in D,

u.=0 on aD
satisfies the estimate

3.3) luellerm < CoDI flicim

where C,(2)>0 is a constant independent of ¢>0.

PrOOF. We remark (cf. estimate (2.11)) that the solution u, satisfies the
estimate

1
(3.4) ]We”mmé']“”f”c@,

since (A+ed—NDl=c—A<—2on D. Thus, to prove estimate (3.3), it suffices
to show that

(3.5) mgxigrad uJ M| fllero
where M(A)>0 is a constant independent of ¢>0.
We let
0u. 2 —_
peo= 3 |5 (x ", xep,

and assume that the function pi(x) attains its positive maximum at a point x,
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of D. Then, since the matrix (a%) is non-negative definite, we obtain that

3.6) (A+ted) pi(xo) S c(x0) pilx,).
But it follows from an application of Lemma 3.2 with 7»=1/2 that
(Ated=0p1(0)= 3 Bas-is(Go, SEN0HRH),

with

T Bue)

N
3.7) RIS g 3 Bavea- (G 5 )

+Bolluclldep+ Bl u. Hcl(D)+ ”f”cl(m

405

Here we remark (cf. Remark 3.3) that the constants 8, and §, are independent

of ¢>0 and A>0.
Hence we obtain from inequalities (3.6), (3.7) and (3.4) that

ADi(xe) S(A—c(x0)) pilxo)
S(A—A—ed)pi(x,)

—((Atea=2pix0= 5 Bavesna(Zs G0

N

0u. Ou,
-2 BA+SA—ZI(aTj) a—x)(x(’)

1 ou, du,
§_§j§13A+EA_AI(aX ax >( 0)

, 1
+/30Huel|3<f»+ﬁl(lluellé<ﬁ>—l—l>i(xo))+*2—IIflléuzn

f

e
ilc1cm)-

<(BEB fi3 48 picra
This proves that

=71 (LR 12 1 e

Therefore, if A>0 is so large that

2>ﬁ1 )
then it follows that
Pix)=CDI &1 »

where C(2)>0 is a constant independent of ¢>0.
Thus we have proved that
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(3.8) max pi=C(l fllé1m+max pi,
or equivalently

3.8") mgX\grad .| ;<.M1(Z)IIchuerr%X?grad U],

On the other hand, it follows from an application of Lemma 2.4 that

(3.9) max|grad u.| < My(D) flow ,

since 0D=23,\UJt,.

Therefore, the desired estimate (3.5) (and hence estimate (3.3)) follows by
combining estimates (3.8’) and (3.9).

The proof of Lemma 3.4 is complete.

II-1c) Now it follows from an application of Lemma 3.4 with A=A+ad
and inequality (3.2) that

(3.10) leler < C:DIH e = CDI fllers -

This proves that the sequence {u.} is uniformly bounded and equicontinuous on
Q. Hence, by virtue of the Ascoli-Arzeld theorem, one can choose a subsequence
{u.,} which converges uniformly to a function uC(2), as ¢, | 0. Further-
more, since the unit ball in the Hilbert space L*R) is sequentially weakly com-
pact {(cf. [Y, Chapter V, Section 2, Theorem 1]), one may assume that the
sequence {d;u.,} converges weakly to a function ¢;in L), for each 1<j<N.
Then we have
o;u=¢,e L¥Q), 1<7<N.

On the other hand, it is easy to verify that the set
K={ve L¥2); [vl-<Ci(Dl fllcram}

is convex and strongly closed in L%£2). Thus it follows from an application
of Mazur’s theorem (cf. [Y, Chapter V, Section 1, Theorem 11]) that the set
K is weakly closed in L¥£). But we have

{ GjuskeK ,
dju., —> ¢; weakly in L*Q2) for each 1</<N.
Hence we find that

du=¢;eK, I<j<N,
that is,
10ulle=Ci(Dl fllcrmy, 1SN,

Summing up, we have proved that
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usWr=(9),
(3.11) {

], 0= C Dl fllcrs

where C,(4)>0 is a constant independent of f.
[I-2) Finally we show that the function u is a weak solution of the Dirichlet
problem :

(A—u=f in D,
(%) {

u=0 on ZQUZ:;.

That is, we show that for all v, C*D) satisfying v,=0 on 3,\U%,
(3.12) SS fula’ngg w-(A*—Dvydx .
D D

I1-2a) First, since u. is a solution of problem (J,), we obtain from Green’s
formula (2.2) that for all ve C¥@Q) satisfying v=0 on 62\,

(3.13) Sggfvdngggsdue-vdx+gggadu5-vdx
—l—SSQ(A—l)ue-vdx
:egggug vdvdx—kgggus -d(ev)d x

_|_SSQuE-(A*—2)va’x—aS de,

pJke
3, on
since a=0 on ¥, and hence av=0 on 0%.
But we recall that the subsequence {u.}i., converges uniformly to the
function ueW=(Q2), as ¢, | 0. Thus, letting ¢, | 0 in formula (3.13), we obtain
that

(3.14) Sggfvdngsgu-A(az))dx+SSQu-(A*—l)vdx.
Indeed, by estimate (3.10), the last term of the right-hand side of formula

(3.13) tends to zero as ¢, | 0.
[[-2b) By hypothesis (H), we can introduce in a tubular neighborhood of

6f2 a local coordinate system (v, v,, -+, yy) such that:
{ Q={yy>0},
02={yy=0}.
Assume that, in terms of this coordinate system, the operator A* is of the form
PR R B
t7= 0ydy; =" 0y,
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If 8>>0 is sufficiently small, we choose a function ¢;< C=($) such that 0<gs=1
on £ and that:

J 0 in the d-neighborhood G; of 2,2, and in 2\D,

Ps=
l 1 in D outside the 25-neighborhood G, of 3\U2,.

One may assume that the function ¢; depends only on the variable yy and that
we have as 6 | 0

0s

=001,
pyo. 0@
2
“@"2220(5“2)
0%

Let v, be an arbitrary function in C%*D) satisfying v,=0o0n ¥,\u%,;. Then
it follows that the function v,¢; belongs to C¥D) and satisfies v,9,=0 on 62\3..
Thus, applying formula (3.14) to the function v,¢; we obtain that

(3.15) Sgnf=1/,¢5dx:ggn1l (A*— D wgad

since av,¢;=0 in 2.
II-2c) We shall show that formula (3.15) tends to formula (3.12) as 6 | 0.
i) First, by the Lebesgue convergence theorem, it follows that the left-
hand side of formula (3.15) tends to the left-hand side of formula (3.12) as o | 0:

(3.16) 151551“1) fvlngadx:SSD foudx.

ii) We rewrite the right-hand side of formula (3.15) in the following form:

3.17) SSD" -(A*—Z)(v1¢5)dx=SSDu((A*—Z)vl)gb,;dx
—{—SSDuvl(A*(ﬁy—c*an)dx

N - aUl 6955
(%) -
+25§D(i,jz=la 0x; Eixj>d)L
=[3418+18.
We calculate the limit of the terms ¢, I and /§ as 6 | 0.
ii-a) For the term I, we have by the Lebesgue convergence theorem

H 6— . —_
(3.18) lim 1 —-SSDu (A*—wdx .

ii-b) For the terms J§ and I3, we remark that the integrals I} and I are
taken over the 2§-neighborhood G,; of the set X,\UX, where the functions
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0¢5/0x; and 0%°¢;/8x,0x, may be different from zero. Thus, passing to the local
coordinate system (yi, v, -, ¥y»), We obtain that

1§:SSG a( yy aé" +B8Y a¢5 )vxuxdy,
2

S NN_OZ’I_ 09, N_l‘g iv U1 o, a¢0 ,
13_255025a ayN ayzv uxdy+2'§13 GZBa Oyz ayN Kd}

since the function ¢; depends only on the variable yy. Here & is some C~
function.

First we consider the limit of the term I as 6 | 0: Since we have a¥V—
0(3*), 0*¢3/0y%=0(d7?) near the set Y,\UY, and since the measure |G,;| of
G is of order 6, it follows that
(3.19) limsg ozNN—az‘—éa—vlulcdy:O.

Gag 0y%

g0
On the other hand, we remark that »,=0 on X, and that the function BY coin-
cides with the Fichera function b* for the operator A* on X,. This implies that
1, =0(0) near 3,
BY=0()  near X,.

Hence we have

(3.20) nmﬁr ﬁ“’%%«vlu/cdyzo,
-

dio

since 0¢s/0yy=0(0"") and |G,;|=0(d).
Therefore, we obtain from formulas (3.19) and (3.20) that

3.21) lim 74=0.
80

Next we consider the limit of the term [§ as | 0: Since we have a¥V=
0O(0%) and 0¢s/dy y=0(0"") near the set 3, UJY,, it follows that

. ov,  09;
NN;_;,77< —
(3.22) %131}5&6250: Sy vy urdy=0.

Furthermore, since the matrix (a*/) is non-negative definite, we find that

atv =0 on J,\UJZ,, 1<i<N-—1,
and so
at¥=0() near X, %, 1</i<N-—1.

Thus we have

.= v OV 05
(3.23) lalfxggsg%a T g urdy=0,
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since d¢;/0yy=0(3"") and |G.;|=0(9).
Hence, we obtain from formulas (3.22) and (3.23) that
(3.24) lim 74=0.
dL0
ii-c) Summing up, we obtain from formulas (3.17), (3.18), (3.21) and (3.24)

that the right-hand side of formula (3.15) tends to the right-hand side of for-
mula (3.12) as 6 | 0:

(3.25) 1515101“1)14 (A*—Dogadr=|| u- At

iii) Therefore, formula (3.12) follows from formula (3.15) by combining
formulas (3.16) and (3.25).

[I) Now let f be an arbitrary function in the space Wt=(D). Then one
can find a sequence {f.}5=: in C*9(D) such that
(3.26a) I falcim =N flie,
(3.26b) fa—>f in C(D)as n— co.

By step II), it follows that there exists a weak solution u,€Wr=(D) of the
Dirichlet problem:

{ (A_Z)un:fn in D,
un:O on 22\./23,

and the solution u, satisfies the estimate

(3.27) |l = CiDN fallordr S CLDN fll1 e

But, by a Sobolev imbedding theorem (cf. [A, Lemma 5.17]), this implies that
the sequence {u,}%-, is uniformly bounded and Lipschitz continuous on D (and
hence it is equicontinuous on D). Thus, by virtue of the Ascoli-Arzela theorem,
one can choose a subsequence {u,} which converges uniformly to a function
u in C(D) as n’—oo. Therefore, it follows from assertion (3.26b) that for all
ve CYD) satisfying v=0 on X,\UY; we have

Sgpu (A*—Dvdx= 713111”55014", (A*—Dvd x

= lim SS favdx
n'-so0 D

:SSvadx.
On the other hand, just as in the proof of step Il-lc) (cf. the proof of
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assertion (3.11)), we obtain from estimate (3.27) that
usWr=(D),
{ fulli, < CUDN 1o
Summing up, we have proved that, for any feW'=(D), there exists a
weak solution u in the space W*»=(D) of problem (*) which satisfies inequality

(3.1).
The proof of Theorem 3.1 is now complete.

3.2. Hélder Continuity for Weak Solutions

In this subsection, we study problem (D) in the framework of Holder spaces.
First we prove an existence theorem for problem (D) in the spaces W™ =(D)
where m=2, generalizing Theorem 3.1 (cf. [OR, Theorem 1.8.2];[C, Théoréme
4.47):

THEOREM 3.5. Assume that hypothesis (H) is satisfied and that conditions
(2.3) and (2.19) are satisfied. Then, for each integer m=2, one can find a con-
stant A=A(m)>0 such that, for any function f in the space W™*2=(D), there
exisis a weak solution ucW™ (D) of the Dirichiet problem :

{ (A=Nu=f in D,
u:O on 22\/23.

(*)

Moreover, the solution u satisfies the inequality
(3.28) ]l 00 = Con( DN 2 42,00,

where Cn(2)>0 is a constant independent of f.

Proor. I) We modify the domain D and the operator A so that the set
22 U2, is of type Xy, as in the proof of Theorem 3.1.

By hypothesis (H), one can choose a bounded domain £ with C* boundary
0%2 such that (cf. Figure 4)

{ DU, WX\ uZ,cQ,

2,CoR.
One may assume that

(2.3) ¢c<0 on 2,
(2.19) c*<0 on Q.



412 Kazuaki TAIRA

Figure 4.

Now we take a function a=C=(2) such that

a=0 in D,
(3.29) {

a>0 in Q\D,

and consider the Dirichlet problem for the elliptic operators ed+A-+ad—Ai(e>0):

(ed+A+ad—Nu.=f in 2,
B {

u.=0 on 042.

We remark that by condition (3.29)

%Nl a“(x"n;n;+a(x’) éln%>0 on 0f2.

1

In other words, the boundary a2 is of type X, for the operators A-+ad-—3,
A>0.

I) First let f be an arbitrary function in the space crm2vi(f) 0<f<1.
We show that there exists a weak solution u€W™ =(D) of problem (x) which
satisfies inequality (3.28).

One may assume that

fe c2m+2+0(§)’
and that
I fllcem+ac I flloem+ecm -

[I-1) We construct a function we Cm™+2+%( () such that the function (4A—A)w
— f vanishes on JY,, together with its derivatives of order<m, and that
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(3.30) [wlom+e@ = CDI flicem+z@ S CI fllczm+2m) -

Let x; be an arbitrary point of the set X,. We construct the function w
locally in a neighborhood of x,. To do so, we introduce a local coordinate

system (¥, Vs, -, ¥x) In a neighborhood of x{ such that

xo=0,

D= {yIV>0} s

2, ={yn=0},
and assume that the equation (A—A)v=/f takes the form:

N 0% N . Qv
ij__ 77 i_ Y _ —

(3.31) i,]lea 5997, +i§ﬁ 7 +(c—Av=f.

Since the matrix (a%) is non-negative definite and a"¥=0 on J,, it follows
that
aaNN
—:0 on Zz,
0yn
and that

a¥i=0 on Y, 1<j<N-1,

Nj
0 o on 3, 1<), k<N—1.
0y

Thus we have

N aafNj

(3.32) B¥=p¥— 3 =—=b<0 on 2,,

=1 0y,

and also

ov e O L No1oo Qv
6}11\' +<1 + ‘8 ¢

’ _ —_ QN
3.31)  (A—v=p D TR L

+(c—2)v>

Now assume that
v=0 on 2,.
Then we obtain from formulas (3.31’) and (3.32) that

f(»,0)
B8¥(y’, 0)°

Furthermore, differentiating equation (3.31’) with respect to the variable yu,

o , .,
‘ayT(y , 0)=

we obtain that
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o, 0>=—m[—g€%w, 0)#}5%
#3000 5 o)
+ 380, 0)%(%%
+(e(y’, 0)—4) ‘széi’y}:,,’o(i) - aifN (v, 0)]-

Similarly, continuing this process, we may find all the derivatives (6'v/dy%)(y’, 0)
for 1<(<m.
We define, in a neighborhood of xj,

m 1 gy
w(y’, yn)= 12_171 b (¥, Oyl

Then it is easy to verify that the function w satisfies inequality (3.30) and
that the function

(A—Dw—f
vanishes in a neighborhood of x{€X,, together with its derivatives of order
<m, and is of class C™*?.

In order to construct the function w in the entire domain £, we cover the
set 3, by a finite number of coordinates patches {w;}%-, such that, in each wj,
one may pass to a local coordinate system y=(yi, ¥,, -+, y») and construct a
function w; as above. Let {¢;}%., be a partition of unity subordinate to the
covering {U;}¢.,. Then it is easy to verify that the function

d
w= El‘ﬁjwj
=

satisfies the desired conditions. Furthemore, by hypothesis (H), one can (re)-
construct the function w so that

w=0 on ;.
11-2) We let
f=f—(A-w.
Then it follows that the function f vanishes on 3,, together with its derivatives
of order <m, and belongs to the space C™*?(2). Thus, letting

(3.33)

; { 0 in the tubular neighborhood U of 3, in O\D,
17 oW,

we obtain that f;eC"””(Q). Furthermore, it follows from inequality (3.30)
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that
(3.34) fo”cm(méc(l)\'if“czmw (D) -
Now we know (cf. [GT]) that the Dirichlet problem

- (ed+A+ad—Du.=f, in 2,
(Do) {

u.=0 on 9f2

has a unique solution u, in the space C™*2*%(Q), since f,&C™*’(Q).

II-3) We show that there exists a subsequence {u.,}i-, which, together
with all its derivatives of order <m, converges weakly to some function &
W™ =), as g, | .

We only show that #e W?*=(2). The proof that & € W™=(2) for each
positive integer m=3 can be carried out in a similar way.

[I-3a) The next result, analogous to Lemma 3.2, may be proved just as in
the proof of Théoréme 4.1 of Cancelier [CJ.

LEMMA 3.6. If goEC“’(D), we let

. N
pZ(x)_tyz=l ox ax,( )1
and
N aggo
Ro(x)=Apix)= 1?“113 (ax 0x;° 0x,0%; )(x), xeD.

Then, for each p>>0, there exist constants $,>0 and $,>0 such that we have
for all e C=(D)

a-z
£ Vo+8ilglém

N d%p
- o0y aa
]Rz<x)|:7]idz.ilBA(axiaxj © 0x.0x;

. 1 ‘ =
TBellglted + = 1 Agligem, x<D.

We remark that the constants 8, and j§, are uniform for the operators A+
ed—A4l, 0<e<1, A=0.

1I-3b) The proof that 4cW?*>=(2) is based on the following lemma (cf.
[OR, Lemma 1.8.1]):

LEMMA 3.7. Assume that hypothesis (H) is satisfied with dD=2; and that
condition (2.3) is satisfied. Then one can find a constant 2>0 such that if f is a
function in the space C***(D), then the unique solution u.=C**%(D) of the Dirichlet
problem
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{ (A+ed—ADu.,=f mm D,

u.=0 on 0D
satisfies the estimate

(3.35) luellcem < Col DI flliczm s

where Cy(2)>0 is a constant independent of &>0.

PROOF. We recall that
(3.3) luictm EC DN fllerw -

Thus, to prove estimate (3.35), it suffices to show that

*u, |\1/z _ |
axzzé;xj . > sM (i +i fllexan)

N
(3.36) (max >

D dg=1

where M,(2)>0 is a constant independent of &>0.
We let

pi(x)=

axax,( )1

i) First we assume that the function p§(x) attains its positive maximum

] 1

at a point x, of D. Then, since the matrix (a¢%) is non-negative definite, we
obtain that

(3.37) (A+ed)ps(x0)=c(x,) p3(x).
But it follows from an application of Lemma 3.6 with n=1/2 that
N N razug ] azus
(Ated=0ps0= 2 Busesir(5r50 0 grge)9HRG),
with
1 X 0%u, 0%u,
(3.38) R0 =5 2 Bacesir (G55 amx =)

+ B lu. |Icl(m+ﬁz||us”c2<1)>+ (AR

Here the constants 8, and B, are independent of ¢>0 and A>0.
Hence we obtain from inequalities (3.37), (3.38) and (3.3) that

Ap5(x0) S(A—c(x,)) P5(x0)
S(A—A—ed)pi(x)
(Ated=piCe0— 33 Buverns (e, 5w Yx)
i, 5=1

axiax]‘ Ox.;axj

— 8 B (e, T Y

i, j=1 axiaxj ’ axian
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- . 1, .
§,31Hue“gl<fn +‘82(H Uell&1my+ D3(x40))+ ‘é‘ I fl &2

<<131+,B )Cl(l)z"f”cl(0>+ﬂzpz Xo)+— Hf“c’(ln

Therefore, if 2>0 is so large that

A>0s,
then it follows that
(3.39) P3(x)ZCD filézan

where C(2)>0 is a constant independent of ¢>0.
ii) Next we assume that the function pj(x) attains its positive maximum

at a point x; of gD, and let

Q" o*u (v 1/2
ai=v D =(max 2 | S o))"

ii-a) Since ou./6x;,=0 on 9D for 1<7<N-—1, applying estimate (2.10)
to the functions ou./0x;, we obtain that:
For every 7>>0, there exists a constant M, >0 independent of ¢>0 such that

- S0 Y A eg— (9% | Ou |,
(3.40) (;neaa); ; L 0X,0xy (x ) z\n!‘([lJrSA D(axj)lcm) "ox; lew
But it follows that
(A+aA—2)(auE>:~—Q ((;1+a/J~/1)uc)+[AJraA—,Z i]u
ox; 0x; L Tox; 0t
_af 0
T ox; %[4—1—84’ 4, - 0x }
_of Y oda'™ o'u. N obt odu, ar
=ox, (l,%f:fa?‘ oxax, T2 ax, ox ox, " )
B ( yoop't  d%u, Yoot 0u>
Lm=1 0% Ox.0%, @ = 16x] 0x,
Hence we have with a constant C>0 independent of ¢>0
il ou.\| ‘ L
(A4 ed =0 (G55 )|y oy SV loror+-Claitelonim).
Therefore, combining this inequality with estimate (3.40), we obtain that
. aZuE , 2\ 1/2 1 ) :
@4 (max 3| 52 00)) S g et Clndern 1 flewn).

Here C’>0 is a constant independent of ¢>0.
ii-b) In order to estimate the term
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0%u,
AT (x())
0YN

we choose a local coordinate system (¥, ¥, -+, yn) in a neighborhood of xg
such that

x0=0,
D= {yx>0},
oD={yx=0},
and assume that, in terms of this coordinate system, the equation

(Ated—Nu.=/f
is of the form

azu N-1 . . o
_ (NN NNy O Me ij i
(A+ed—u.=(a""+ep™) vy —+—w2=1(a Tep )ayiay,-

+(BY +ev?) ET **-I- 2 (8 +6v1) +(C—2)us
=f.
Since u.=0 on 8D and x;c0D=23; (so a¥¥(0)>0), it follows that

a‘ue

1 N
T O= gy (JO-(B O+ <0>>a ©)-

Hence we have

t'ius

(3.42) O] SC o +1flle),

with a constant C”>0 independent of ¢>0.
ii-c) Finally we remark that

Therefore, combining estimates (3.41) and (3.42), we find that

1
g = ’2—1]2+C”'(|Iu dleran i fllerd),
so that
(3.43) GZ2C"({ucllerpy+ 1 fllerew) -

Here C”>0 is a constant independent of ¢>0.

iii) The desired estimate (3.36) (and hence estimate (3.35)) follows by
combining estimates (3.39) and (3.43).

The proof of Lemma 3.7 is complete.
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II-3¢) Now, since f,eC™* (D), it follows from an application of Lemm 3.7
with A=A-+a4 that the unique solution u.= C™***%(3) of the Dirichlet problem
N (ed+A+ad—Du.=f, in 2,
(Do)
u.=0 on a2

satisfies the estimate

luellezar S ColDli Frllc2 -

Hence, combining this estimate with inequality (3.34), we obtain that

luelcedn SCalDl fllczmrew
where C,(4)>0 is a constant independent of &>0.

Therefore, arguing as in step II-1c) of the proof of Theorem 3.1, we can
choose a subsequence {u.,}i., which, together with all its derivatives of order
<2, converges weakly to some function # in the Hilbert space L% ) as ¢, | .
Thus, passing to the limit in problem ([35), we obtain that # belongs to the

space W*=(2) and satisfies
~ [ (A+ad—Ni=f, in 2,
)
1 #=0 on 042,
and
[lle, 0= Cn(Dl fllozm+2p) -
Hence it follows from formulas (3.33) and (3.29) that

(A—Di=f=f—(A—=Dw in D,
and that
=0 on Y,

since the boundary 9£ contains the set X,.
1I-4) Finally we show that #=0 on Y, and hence #=0 on Y, UX,.
By formulas (3.33) and (3.29), we find that

(A+ad—2)i=0 in VU,

where U is the tubular neighborhood of ¥, in @\D. But we remark that the
set X, is of type X, for the operator A+ad—2A in the domain U and that
condition (2.19’) is satisfied. Hence it follows from an application of the uni-
queness theorem for the Dirichlet problem (Theorem 2.6) that

=0 in U,
so that
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=0 on 2,.
Therefore, since w=0 on XY, JY,, we obtain that the function
u=fi+weW>=(D)
is a weak solution of problem (x) which satisfies the inequality

]2, 0= ColDI fllczmr2e@ S ColD f czm+25 -

IlI) Now let f be an arbitrary function in the space W?™**=(D). Then
one can find a sequence {f,}%., in the space C*™*2*%(D)) such that

{ “fn”(}Zm*'Z(ﬁ)g”f”zm+2,w;
fo—>f in C(D) as n—co.

By step II), it follows that there exists a weak solution u,cW™>=(D) of the
Dirichlet problem :

{ (A=Nup=71, in D,
U,=0 on 2'2U23,

and the solution u, satisfies the estimate

!i un“m,wécm<2>”anCZm+2(D) gcm(z)”fﬂzm-w,w .

Therefore, just as in the proof of step lII) of Theorem 3.1, we obtain that
the limit function u of u, when n-—oco is a weak solution in the space W™ =(D)
of problem (%) which satisfies inequality (3.28).

The proof of Theorem 3.5 is now complete.

3.3. Proof of Theorem 2

Theorem 2 follows from Theorem 3.5 by a well-known interpolation argu-
ment (cf. [Tr]), since the space C**?(D) is a real interpolation space between
the spaces W#* =(D) and W**L=(D):

CHUD)y=W*=(D), W 1 (D))g, .

Furthermore, we can prove the following existence and uniqueness theorem
for problem (D) in the framework of Holder spaces:

THEOREM 3.8. Assume that hypothesis (H) is satisfied and that conditions
(2.3) and (2.19) are satisfied. Then, for each integer mz=2, one can find a con-
stant A=Am)>0 such that, for any feC™***2(D) and any ge C™*+20(F,U3,),
there exists a unique solution u=C™ % D) of the Dirichlet problem :
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(A—=Du=f in D,
(D) {

u=g on X\,

4. Proof of Theorem 1

The proof of Theorem 1 is based on Theorem 1.4 which is a Feller semi-
group version of the Hille-Yosida theorem in terms of the maximum principle.
We shall verify conditions (@), (8) and (7) of the same theorem.

4,1. The Space C,(D\M)

First we consider a one-point compactification K;=K' {8} of the space
K =D\M, where

M=Y,02%,.

We say that two points x and y of D are equivalent modulo M if either
x=y or x, yM. We denote by D/M the totality of equivalence classes
modulo M. On the set D/M, we define the quotient topology induced by the
projection g: D—D/M. Then it is easy to see that the topological space D/M
is a one-point compactification of the space D\M and that the point at infinity &
corresponds to the set M:

Ky=D/M,

0=M.

Furthermore we have the following isomorphism :
4.1) C(K;)={ucCD); u is constant on J,\JY,}.

Now we introduce a closed subspace of C(K;) as in Subsection 1.1:

CoK)={uesC(K;); u(@)=0}.

Then we have by assertion (4.1)
4.2) CoK)=Co(D\M)={ucsC(D); u=0 on X, UI,}.

4.2. Proof of Theorem 1

The next theorem summarizes the basic results of Sections 2 and 3 about
the Dirichlet problem in the framework of Hélder spaces:

‘THEOREM 4.1. Assume that hypothesis (H) is satisfied. Then, for each integer
m=2, one can find a constant a=a(m)>0 such that, for any fe cem+er20( By gpd
any e Cm4*20(3, 3, 0<0<1, there exists a unique solution usCm+(D) of
the Dirichlet problem :
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(a—Au=f in D,
(D) {

u=¢ on 2,\U2s.

Moreover, the solution u satisfies the inequality
4.3) max}u|gmax(lmax|f| maxhpl).
D - a b P XpuSy T

Theorem 4.1 with m=2 tells us that problem (D) has a unique solution u
in the space C**?(D) for any feC****(D) and any @=C***/(5,UZ,), if a>0
is sufficiently large. Therefore, we can introduce linear operators

Gg . C“M(B) —_ C“B(D)
and
H,: C*¥0(3,U%,) —> C*9(D)
as follows.

a) For any feC**?%(D), the function GSfeC?*?D) is the unique solution
of the problem:

{ (a—A)Gif=f in D,
G,‘,’,f:() on Zz\JZg.

b) For any ¢eC***(3,U5,), the function H.pesC**%D) is the unique
solution of the problem:

{ (a—A)H =0 in D,
H.p=¢ on X,U2,.

The operator CJ is called the Green operator and the operator H, is called
the harmonic operator, respectively.
Then we have the following result:

LEMMA 4.2. The operator G3a>0), considered from C(D) into itself, is
non-negative and continuous with norm

4.4) 1Gal=1G2l | =maxG2l(x)< +.
xeD 44

ProoF. First, in order to prove the non-negativity of G, we assume that :
fecD) and f=0on D.

Then one can find a unique solution u.= C*+2%(D) of the Dirichlet problem for
the elliptic operators A—a-+ed(s>0):

{ (a—A—edu.=f in D,
u.=0 on oD.
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Since we have
{ (A+ed—a)u.=—f=0 in D,

u.—0 on oD,
it follows from an application of the maximum principle (Theorem A.1) that
u.=20 on D.
But we know (cf. the proof of Theorem 3.5) that a subsequence {u.,} converges
uniformaly to the function GifeC?(D), as ¢, | 0. Hence we have
Gyf=0 on D.

This proves the non-negativity of G}.

Therefore, inequality (4.4) follows from inequality (4.3) by taking f=1
and ¢=0.

The proof of Lemma 4.2 is complete.

Similarly, we have the following:

LEMMA 4.3. The operator Hu(a>0), considered from C(Z,\JZ,) into Cc(Dy,

is non-negative and continuous with norm

| Hall={| Hol | =maxH.1(x)=1.
reD

PROOF OF THEOREM 1. We recall that 4 is a linear operator from the
space Co(D\M) into itself defined by the following:
(1) The domain D(A) of A is the space

D(A)={ucsC¥D); u=Au=0 on 3,UJ,}.

(2) Au=Au, usD(A).
1) First we verify condition (&), that is, the density of the domain D()
in the space C(D\M).
Now we assume that:
feC=D) and f=0 on 5,U%;.

Then we obtain that

AGg,f:a'Ggf’—f:O on 22U23,
so that
GyifeD().
But it follows from an application of the uniqueness theorem for the Dirichlet
problem (Theorem 2.6) that
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f—aGef=Ga(B—~A))—BGsf, B>0.

Indeed, the both sides have the same boundary value 0 on the set 2,\J%,; and
satisfy the same equation: (a—A)u=—Af in D. In view of inequality (4.4),
we have

1/~ aGaf IS =1 B= A+ L1,

and hence
lirp 1 f—aGiflii=0.
This verifies condition (a), since the space
CDINC(D\M)={feC=(D); f=0 on I, UL}
is everywhere dense in the space C,(D\M).
ID Next, in order to verify condition (8), we assume that:

ueD(J) and max u>0.
DN(TyuEa)

Then we have the following two cases:

(1) There exists a point x, of D such that

u(xy)= max u>0.
D\(Zguly)

(ii) There exists a point x; of X,\U2, such that

u(xe)= _max u>0.
D\(Zquly)

Case (i): In this case, we have
Au(xo)= Au(xu)— 2 a“(xo) (W)‘FC(XD)“

since the matrix (¢%) is non-negative definite and ¢<0 in D.
Case (i1): We choose a local coordinate system (v, v,, ---, y») in a neigh-
borhood of x;2,\U2; such that

x4=0,

D={yy>0},

0D={yx=0},
and assume that, in terms of this coordinate system, the operator A is of the
form
(4.5) A:a"’Nﬁf;v + /3‘”“6‘5; +i‘§1aff -—a—ﬁ;—ijr NE_: /9"5%—2; +e.
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We remark that:

(ii-a) a¥¥(0)=0 and B¥(0)>0 if x;=2..

(ii-b) a™¥(0)=0 and B¥(0)=0 if x;=3,.

But we have

- u(0)>0,

g;_ 0)=0, 1<i<N—I,
| ou
| Oyw

0)=0,

and also

N-1 02
&) a(0) ao .

i =1 yiayj

(0)=0.

Hence it follows from formula (4.5) that

-
ou

Au(x)=Au(x)< £ 0vy O +cOu®=0 if ey,
c(Ou(0)<0 if xe&l,.

Therefore, we have proved the following:

CLAIM. [If ueD(A) and maxpy u>0, then there exists a point x € D\M
such that
{ u(x)=maxpyi,

Au(x)<0.

This claim verifies condition (8).

III) It remains to verify condition (). By Theorem 4.1, we find that if
a>0 is sufficiently large, then the range R(al—.) contains the space C=(D)N
Co(D\M). This implies that the range R(al—) is everywhere dense in the
space C,(D\M), for a>0 sufficiently large.

Summing up, we have proved that the operator 4 satisfies conditions (a)
through (7) in Theorem 1.4. Hence, in view of assertion (4.2), it follows from
an application of the same theorem that the operator A is closable in the space
Co(D\M), and its minimal closed extension .1 is the infinitesimal generator of
some Feller semigroup {7}, on D\M.

The proof of Theorem 1 is now complete.

Appendix The Maximum Principle

Let D be a bounded domain of Euclidean space RY, with boundary 4D,
and let A be a second-order, degenerate elliptic differential operator with real
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coefficients such that

A= 31 a¥00) 5ot 3 (e e,

1 1 ax,«axj
where :
1) a¥eCRY), a¥=a’* and

$ aHEg20, xCRY, E=(E -, R,
2) bieC(RY), 1<i<N.

3) ceC(RY) and ¢<0 in D.
First we have the following result:

THEOREM A.l (The weak maximum principle). Assume that a function ue
C(D)NC¥D) satisfies either

Au=0 and ¢<0in D
or
Au>0 and c¢<0in D.

Then the function u may take its positive maximum only on the boundary oD.

As an application of the weak maximum principle, we can obtain a point-
wise estimate for solutions of the inhomogeneous equation Au=7f:

THEOREM A.2. Assume that
¢c<0 on D=DuUadD.
Then we have for all ueC(D)NCXD)

1
< —_
m%x!ul _max{ . S%p!Aul, rréall)x[ul}»,

where
cozmgx(—c)>0.

For a proof of Theorems A.l1 and A.2, the reader might refer to Bony-
Courrége-Priouret [BCP], Oleinik-Radkevi¢ [OR] and Taira [Tal.

Acknowledgements

This research was partially supported by Grant-in-Aid for General Scientific
Research (No. 03640122), Ministry of Education, Science and Culture.



[A]
[BCP]

[C]
F]
[GT]

[OR]

Existence of Feller semigroups with Dirichlet condition 427

References

Adams, R.A., Sobolev spaces, Academic Press, New York, 1975.

J.-M. Bony, P. Courrége et P. Priouret, Semi-groupes de Feller sur une variété
a bord compacte et problémes aux limites intégro-différentiels du second ordre
donnant lieu au principe du maximum, Ann. Inst. Fourier (Grenoble) 18
(1968), 369-521.

C. Cancelier, Probiémes aux limites pseudo-différentiels donnant lieu au principe
du maximum, Comm. P.D.E. 11 (1986), 1677-1726.

G. Fichera, Sulla equazioni differenziali lineari ellittico-paraboliche del secondo
ordine, Atti. Accad. Naz. Lincei Mem. 5 (1956), 1-30.

D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second
order, Springer-Verlag, Berlin Heidelberg New York, 1977.

O. A. Oleinik and E.V. Radkevi¢, Second order equations with nonnegative
characteristic form, (in Russian), Itogi Nauki, Moscow, 1971 ; English trans-
lation, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, New
York, 1973.

D. W. Stroock and S.R.S. Varadhan, On degenerate elliptic-parabolic operators
of second order and their associated diffusions, Comm. Pure Appl. Math. 25
(1972), 651-713.

K. Taira, Diffusion processes and partial differential equations, Academic Press,
Boston San Diego London Tokyo, 1988.

H. Triebel, Interpolation theory, function spaces, differential operators, North
Holland Publishing Company, Amsterdam New York Oxford, 1978.

K. Yosida, Functional analysis, Springer-Verlag, Berlin Heidelberg New York,
1965.

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305
JAPAN



