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APPROXIMATIVE SHAPE I

―BASIC NOTIONS―

By

Tadashi Watanabe

§0. Introduction.

Many mathematicians discussed the classicalquestions of the expansions of

spaces and maps into polyhedral inverse systems. For expansions of spaces

Freudenthal [9] showed that

(i) any compact metric space X admits a polyhedral inverse sequence 3C

whose inverse limit is X.

(i) has very important meanings. Because it gives us a method to investi-

gate X by means of a polyhedral inverse sequence DC. This idea goes back to

Alexandroff and Lefschetz. It is a good and fruitfullidea in topology.

Naturally we have the question: Can we use thisidea for maps ? Essenti-

ally thisis divided in two questions (ii)and (iii)stated below: Let X and Y be

compact metric spaces. Let DC={Xi} piJt N} and ^―{Yi, qitj,N] be polyhedral

inverse sequences such that YimX=X and ＼imcy=Y. Here lim.3? and N denote

an inverse limit of DC and the set of all positiveintegers, respectively.

(ii) For any map /: X->Y, is there a system map f: DC-+<y for some DC

and <V such that f―llmf?

(iii) For any DC, V and any map /: X->Y, is there a system map f: 3£-+cy

such that /=limf ?

When we handle maps by this idea, we encounter some troubles. By

examples we consider the above questions. Let C, / and R be the Cantor

discontinuum, the unit interval and the real line, respectively. There is an

onto map /: C―>/.

First we consider question (iii). Let C―{d, pih N＼ and S―{Iu Qa, N} be

inverse sequences such that C―limC, /=lim#, all d are finite sets, all U―I

and all q^ are the identity map 17 :/->･/. Let p―{pi:i^N):C-;>-C be an

inverse limit. Let all qtil-^I be 17. Then q={qi'.i<BN) :I-+S forms an

inverse limit.

We assume that there is a system map f―＼f,fi:i^.N) :C-*g such that

limf―/. Then qif=fipfw for each i. Since qt and / are onto, ft must be

Received February 4, 1986



18 Tadashi Watanabe

onto. Since CfW is finite,I=Ii=fi(Cfci)) is also finite. This is a contradiction

Hence there is no such system map. Thus, in general, question (iii)is negative.

Next we consider question (ii). We may assume that C and / are closed

subsets of R. Since R is an absolute retract,there exists a map F:R->R such

that F(x)=f(x) for xeC. We can choose polyhedral neighborhood systems

{Ui＼ and {Vi＼ of C and / in R, respectively, such that Ui+1aUi, Vi+1(ZV'u

F(Ut)<zVt for each i and C=C＼{Ui:i^N), I=n{Vt:ic=N}. We put /,=

F＼Ui: t/f―>Vffor each i and pi5:Ui-^Uj, qtj:Vi-+Vj are inclusion maps for

i^j. Then f={lN, fi'.i^N] :DC={Ui} piJtN}->cy={Vi, gtJ,N} forms a system

map and f=limf: C―lim 36-^-1=＼lmty. Thus in this case question (ii) is

positive.

By dimX we denote the (covering) dimension of a space X. Though

dimC=0, in the above construction dim/7i=l for each i. We can not choose

O-dimensional neighborhoods Ui of C in R. This is a disadvantage of this

method.

The questions (ii)and (iii)are positively answered in the homotopy category.

They gave the ANR-systems approach and Borsuk's original approach to shape

theory (see Mardesic and Segal [18]).

Many mathematicians considered these phenomena. How to handle the

maps ? The most successfull treatment is given by Mioduszewski [19]. He

showed the existence of approximative expansions of maps into polyhedral

inverse sequences. However, his descriptionis neither simple nor categorical.

In this paper we shall give a systematic approach to approximative expan-

sions of maps into polyhedral inverse systems. Our method is natural and

categorical. To do so we need some ideas and notions which are developed in

shape theory.

In §1 we give the terminology. In §2 we introduce approximative pro-

categories and discuss their basic properties. In §3 we introduce approximative

resolutions for spaces. This notion is related to inverse limits. In §4 we

introduce approximative resolutions of maps. This notion is the central notion

of this paper. We show that any map has an approximative resolution with

respect to any approximative polyhedral resolutions. This gives a positive

answer to question (iii)by approximations. In §5 we introduce the approxi-

mative shape category. This category is analogous to the shape category. In

§6 we show that the Tychonoff functor and the completion functor induce

functors on the approximative shape category. In §7 we introduce the reali-

zation functor. Finally we show that the approximative shape category is

categorically isomorphic to the topological category of complete Tychonoff
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spaces. This gives us a method to investigate bad spaces and bad maps by

means of polyhedra and maps between them.

The principle of shape theory is to investigate bad spaces and bad maps

by means of the homotopy category of polyhedra. On the other hand, our

principle of approximative shape theory is to investigate bad shapes and bad maps

by means of the category of polyhedra without any homotopies. We say that the

approximative shape theory is a shape theory without homotopies.

Our theory has many applications in topology. For example we will apply

it to generalized absolute neighborhood retracts, fixed point theorems, shape

fibrations, UVn-maps, Steenrod homology (see [28]), Cech homology (see [28])

and so on. These applications shall be published in the sequels.

The author thanks Professor Y. Kodama who encouraged him to develop

this theory, and also Dr. K. Sakai and Dr. A. Koyama. They carefully read

the firstmanuscriDt T261 and crave valuable advices.

§1. Preliminaries.

All spaces and maps are topological spaces and continuous functions,

respectively. For a space X lx: X-^X denotes the identity map. For a subset

XadX IntZ0 and Xo denote the interior of Xo and the closure of Xo in X,

respectively.

We assume that,the reader is familiar with the theory of ANRs and with

shape theory. Borsuk [5] and Hu [11] are standard textbooks for the theory

of ANRs. Borsuk [6] and Mardesic and Segal [18], which is quoted by MS

[18], are standard textbooks for shape theory. Without any specification we

shall use the terminology and notions from the theory of ANRs and from shape

theory. For undefined terminology and notions see Hu [11] and MS [18].

TOP denotes the category of all spaces and all maps. TOP3.5, M, COM

and CM denote the full subcategories of TOP consisting of all Tychonoff

spaces, all metric spaces, all compact (Hausdorff) spaces and all compact metric

spaces, respectively. Polyhedra denote realizationsof simplicial complexes with

the CW-topology. AR and ANR denote an absolute retract and an absolute

neighborhood retract for metric spaces, respectively. POL, POL/, AR and

ANR denote the full subcategories of TOP consisting of all polyhedra, all finite

polyhedra, all ARs and all ANRs, respectively.

Without any specificationcoverings mean always normal open coverings (see

[1], [12] and [18]). Normal open coverings are equivalent to numerable open

coverings or to open coverings with a partition of unity. Cov(X) denotes the
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set of all coverings of X. Let HJ, HJ'^Cov^X). We say that 1/ is a refiement

of HJ', in notation CU<CU/, provided that for each U^V there exists U'^HJ'

with U(ZU'. For a subset Xo of X we define st(X0, <U)=U{17e<U: Ur＼Xo=t0}

and V |Xo= {L/nXo: U(=HJ}e=CoV(X0). We define sW= {sf(£7,HJ):[/g<U}gC≪(I).

For each integer n^O we inductively define st°HJ=HJ and s£n+lcU=sif(si!incU).

Note that for each HJ^Cov(X) and for each positive integer n there exists

HJ'e=Cov(X) such that stnHJ'<HJ. Let <U*, f=l, 2,■･･,n, be coverings of X

cU1AcU2A---AcUn denotes the covering {U1r＼U2r＼---r＼Un:Ui^cUi and ≪= 1, 2,

･･･,n) of X

Let Xo be a subspace of X We say that Xo is P-embedded in X provided

that for each cU0g^O!;(X0) there exists i/eCo^X) such that cU|Xo<cl/o (see

[1]). In MS [18, p. 89] such an Xo is said to be normally embedded in X

dimX denotes the covering dimension of a space X with respect to coverings

(see [22]).

Let f,g:X-+Y be maps and cV^CoV(Y). f'lcV denotes the covering

{f~＼V):Fecy} of X We say that / and g are cy-near, in notation (/, g)<<=V,

provided that for each xgZ there exists V'eCF such that f(x), g{x)^V. f^g

denotes that / and g are homotopic. We say that / and g are cV-homotopic

provided that there exists a homotopy h:XxI-+Y such that for each *eX

h(x, O)=/(jc), h{x, l)=g(x) and h(xXl)dV for some Fecy. Here /=[0, 1] is

the unit interval. H(f) denotes the homotopy class of /.

HTOP, HPOL and HANR denote the homotopy categories of TOP, POL

and ANR, respectively. //:TOP-+HTOP denotes the homotopy functor. Sh

and S: HTOP-^Sh denote the shape category and the shape functor. Let C

and D be categories. ObC and MorC denote the collectionsof all objects and

all morphisms in C, respectively. When X, FeObC, C(X, Y) denotes the set

of all morphisms from X to Y in C. Sometimes XeC means XeObC When

ObDcObC, C(D) denotes the full subcategory of C consisting of ObD. From

our notations Sh(CM) is the shape category on compact metric spaces.

A preordering > on a set A is a binary relation on A which is reflexive

and transitive,i.e.,(i) a>a for each a^A and (ii) both a>a' and af>a"

imply that a>a". We say that a preordered set (A, >) is directed provided

that for any a, a'^A there exists a"^A with a">a, a'. We do not assume

the antisymmetry condition: (iii)Both a'>a and a>a' imply a'―a. We say

that a directed set (A, >) is cofinite provided that for any a^A P{a)~

{a'<=A:a>a'} is a finiteset Let (B, >) be a directed set. Let s, t:A-+B

be functions. s>t means that s(a)>t(a) for each ogA We say that s is an

increasing function provided that s(a')>s(a) for ar>a. We can easily show
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the following.

(1.1) Lemma. Let {A, >) and (B, >) be directed sets. Let SiiA-^B, i=

1, 2, ･･･,n, be functions. If (A, >) is cofinite,then there exists an increasing

function s:A-*B such that s>Si for each i. M

The mark m denotes the end of a proof or of an example. When it

appears just after a statement of a theorem, a proposition or a corollary, it

mpans that thf≫sf-afpmpnf i≪nhvinn≪1v valid

§2. The approximative pro-category.

In this section we introduce the notion of approximative pro-categories.

This notion plays a fundamental role in our theory. It has a role similar to

that of pro-categories in shape theory (see MS [18]).

Let C be a subcategory of TOP. We say that (DC, HJ)-{(Xa, VJ, Pa'.a, A}

is an approximative inverse system in C provided that it satisfiesthe following

three conditions:

(All) 3C={Xa, pa>,a, A} is an inverse system in C, and A is cofmite and

directed.

(AI2) For each aeA Va is a covering of Xa satisfying that PaKacOa>cUai

for a'>a.

(AI3) For each cl<eA and for each HJe.CoviXa) there exists a'>a sucr

that paKaVyVa"

Let (3/,cV)={(Yb, <Vb),qb<tb,B) be an approximative inverse system in C

We say that f={f, fb:b^B) :(3C, <U)-≫((V,CV) is an approximative system maf

in C provided that /: B-^A is a function and fb: Xfm->Yb is a map in C foi

each b^B satisfying the following two conditions:

(AMI) f^cv.y^fw for b^B.

(AM2) For each b'>b there exists a>f(b), f{b') such that {qv.bfvpa./wy

fbPa.fmX^b.

Sometimes we refer to approximative inverse systems in C and approxi

mative system maps in C as to approximative C-inverse systems and approxi

mative C-system maps, respectively.

Let {Z,cW)―{{Zc,<Wc),rC'iC,C} be an approximative inverse system in C

and g={g, gc:ce.C} :(Q/,c^)―K.Z,<W) an approximative system map in C. W<

define gf={fg, gcfgco'-c^C}. In general, gf is not an approximative systen

man from (%"..IJ) to (Z. <W) in C. Therefore we need some tricks.
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(2.1) Lemma, gf forms an approximative system map from (3f, HJ) tc

st(Z, <W)={(ZC, stWe), re,a, C} in C.

To prove (2.1) we need the following:

(2.2) Lemma. Let f:X->Y be a map. Let HJ and cv be coverings of X

and Y, respectively. If f~xcV>HJ, then f-1stn<V>stncU for each integer n^O. m

Proof of (2.1). First we show (AU)-(AI3) for st(JZ,<W). (All) is trivia!

and (AI2) follows from (2.2). We show (AI3). Take any csC and anj

<WseCoV{Zc). There exists WeCoV(Ze) such that sfW'^W. By (AI3) foi

(Z, <Wr) there exists c'>c such that ri＼^W'><W^. By (2.2) we have that

r-c>,£W>r7tCst<W'>stcWc<. This means (AI3) for st(Z, W). Hence st{Z, <W) forms

an approximative inverse system.

Next we show that gf: (30, V)->st(Z, W) is an approximative system mar.

in C. We show (AMI). Take any c&C. By (AMI) for f and g feUg7lcWc>

fg＼ncVgW>cUfgie) and then by (2.2) (gcf'g^YlsttWe>stcUfgM>VfSco This

means (AMI) for gf.

We show (AM2). Take any c'>c. By (AM2) for g there exists b>g(c),

g(cf) such that

(1) (geQb.gw, rc＼cgciQb.g(.c">)<cWc.

Since b>g(c), g(c'),by (AM2) for f there exists a>fg(c),fg(c'), f{b) such that

(2) (fg(c~>Pa,fg(.c->>Qb,g(ofbPa,f(b))<CCVg<;c')arid

(3) (f gU")Pa,fgW)> Qb,gW)> fbPa,f(b-))<lCV'g(,c')･

By (2),(3) and (AMI) for g

(4) (gcfgMpa.fgM, gcQb,gwfbpa,fm)<cWc and

(5) (gc'fgW )Pa.fg(.C>,gc'Qb,gW -ifbPa./<&))<(We> .

By (AI2) for (Z, <W) and (5)

(6) (rc',cgc'fg(c')Pa,fgW),rV,cgc'Qb,gW)ibPa, /(6))<^c ･

By (1)

(7) (gcQb,girtfbPa,f<.b),rC',cgc'Qb,g(c')fbPa,f(.b))<CCWc-

By (4),(6) and (7)

(8) (gcfgMpa.fgM, T~c'.cgc'fg(.c'->Pa.fg<.c'y)<St'Wc'

(8) means (AM2) for gf. m
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Let f'=lf', f'b:beB}:(2C,<V)-+W,<V) and g'={g', g'c:ceC} :(<y,q/)->

CZ, <W) be approximative system maps in C. We say that f and f' are simply

approximative^ equivalent, in notation r=:f, provided that for each be.B

there exists a>f(b), f'(b) such that (fbpa.fc≫,fbPa.fwX^b- We say that f

and f are approximative^ equivalent, in notation f= :f, provided that there

exists a finitecollectionof approximative system maps ft:{2C,lO-K'V, CV) in

C, i=l,2,―,n, such that f=fu f'=fn and fi=:fi+1 for z=l, 2, ･･･,n-1.

Obviously this relation =: forms an equivalence relation, [f ] denotes the

equivalence class of f.

lc3f.v>={U, lxa'-a^A} :{!£,1/)->(3f,≪U)is the identity approximative sys-

tem map. Let s:A->A be an increasing function with s>lA. We define

(2.3) Lemma. p(s):(3£,£U)->(J£>,HJ) forms an approximative system map in

C and n(s)= :lrv <m. M

We say that s is an n-refinement function of (3C, V) provided that

t7L, r.cUn>stncU.m, for o£A

(2.4) Lemma. // s and s' are n-refinement and m-refinement functions of

(3C, HJ), respectively,then s's is an (n-{-m)-refinement function of (3C, HJ). M

(2.5) Lemma. Any approximative inverse system in C has an n-refinement

function for each integer n>0.

Proof. We show that (3f, <U) has an n-refinement function. Since each

HJa is a normal open covering, there exists IJa^CoviXa) such that s^VaKVa.

By (AI3) there exists a function s': A-^A such that s'>lA and /v^.a^'^^s'ca)

for seA By (1.1) there exists an increasing function s: A-^A with s>s'.

Thus by (AI2) and (2.2) Pi^,acUa>PiU,,astncU'a=Pila,,srCa,pj,＼ahastnVfa>

Pita),s'(.a>stncUs.CcO>stncUsia>for each aeA Then s is the required n-refme-

mpnt K

Let t:B->B be an increasingfunction with t>lB. By (2.3)q(,t):(V,cV)->

Cy, a^) is an approximative system map. From the definitionsand (2.5)it is

not difficultto show the following two lemmas:

(2.6) Lemma.

C and q(t)f= :f.

q(t)f:(3C,'U)―K^/,CV) forms an approximative system map in

as
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(2.7) Lemma. f=:f iff there exists an increasing function t:B―>B such

that t>lB and q(t)f= :q(t)f. R

(2.8) Lemma. Let u, u':C->C be 1-refinement functions of (Z, (W).

(i) r(u)(gf) forms an approximative system map from (3C, CU) to {%, 'W)

in C.

(ii) r(u)(gf)=:r(u')(gf).

(iii) // f= : f, then r(u)(gf)= : r(u)(gf').

(iv) If g=:a' then r(u)(af)= :r(u)(g'f).

Proof. We show (ii).

->C of (Z, <W). We show

cgC and then

(1) rulM,c'Wc>sf<Wu,cc>

By (2.5) there exists a 2-refinement function u" ＼C

that r(u")(r(u)(af))=:r(u")(r(u')(af)). Take any

Take any cf>uu"(c), u'u"(c). Since gf: (3C, 1J)^>st(Z, <W) is an approximativi

system map by (2.1), there exists a>fg(c'), fguu"(c), fgu'u"(c) such that

(2) (guu'iof guu"(.c)Pa,fguu"(.c)> Tc< ,uu"(O§c'fg(.c")Pa, f gCc'))<^St'Wuu"<.c) &HQ

(3) (gu'WCcV gu' u'Cc^Pa.f gu' u"(.c1, ?V ,u' u'Cogc'fgdc'lPa, f g(.c'))<Z.St<Wu> U≪(C)
.

By (AI2) and (2.2) rZ1wcc),u"wStcWu.M>st'Wuu.M and r^Ii.(c)iU-(c)sf<:^u.Cc)>

st^u'u'M- Thus by (2) and (3)

(4) Vuu'CO, u"(.c')guu"(c')Jguu"(.c}Pa, f guu"Cc~>>

Tv.' u"(c~),u"(.c')gu'u'ic'tjgu' WCclPa, f gu'u'COJ^St >^u"(.c~>･

By (1) and (4)

＼p) v uw'Cc), cguu"(.c)f guu"(.c~)Pa, f guu"(c~)> ^u'u'(c), cgu' u'COj gu' u"(.C)Pa, f gu' w'CoJ'C
Wc ･

(5) means that r(u")(r(u)(gf))= : r(u")(r(u')(gf)). Hence by (2.7) r(u)(gf) =

r(u')(gf). We have (ii). By similar ways as for (ii) we can prove the othei

assertions. W

(2.9) COROLLARY. // f= :f, g= :g' and u, u' :C->C are 1-refinement func-

tions of (Z, CW), then r(u)(gf)= : r(u')(g'f). m

Now we introduce a composition of equivalence classes of approximative

system maps as follows: {.g][.f] = [r(u)(gf)~] for a 1-refinement function u.

By (2.9) this notion is well defined and does not depend on u. It is not difficult

to show that
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(2.10) Lemma. For any approximative system maps f: (3f, CU)-*{C>4,q/),

g: (<V, C^)^(Z, <W) and h :(Z, W)->(e, JC) in C

(i) VttniUx.nttUw&n and

We define the approximative pro-category of C, in notation Appro-C, as

follows: Objects are all approximative inverse systems in C. Morphisms from

(3C, CU) to (Si,<^V) are equivalence classes of all approximative system maps

from (DC, <U) to (<y, <V) in C. Obviously the collectionof all morphisms from

(3C, V) to (<V,cy) forms a set. The composition is defined above. This com-

position is associative and [lc^,v)] is the identity morphism of (3C, HJ) by (2.10).

Hence we may summarize the above results as follow.

(2.11) Theorem. Appro-C forms a category.

Now we consider the properties of Appro-C.

(2.12) Proposition. Let (3C,cU)―{(Xa,cUa), Pa'.a, A} be an approximative

inverse system in C. If A' is a cofinal subset of A, then (J2f,cU)A' = {(3£a,1Ja),

Pa1, a, A'＼ forms an approximative inverse system in C and is isomorphic to (DC, V)

in Attro-C.

(2.13) Proposition. // (DC,V)={(Xa, HJalPa-.a, A} and (DC,cv)={(Xa, <=va),

Pa',a, A＼ are approximative inverse systems in C, then (DC, CU) and (DC, ^V) are

isomorbhic in Atvro-C.

Proofs of (2.12) and (2.13). We show (2.13). By (AI3) and (1.1) there

exist increasing functions m, n: A―*A, m, n'>lA, such that p^<,a),acVa>cUvUa)

and />re(a),ocya>c^nca)for seA By these conditions p(m)={m, pmCa),a '■a^A) :

(DC, V)^{X, <V) and p(n)={n, />B(a)>a: ae=A} :(DC, cy)->(3f, <U) form approxi-

mative system maps. It is easy to show that [jp(n)][Jp(ra)]= [lc3＼<u>]and

[i?(m)][j3(n)]= [l(^,q;)]. Hence we have (2.13). By a similar way we have

(2.12V m

In (2.1) we defined st(3£,HJ). Inductively we define stn(X, 17) for each

integer n^O as follows: st＼X, 17)=(3T, V) and stn+1(T, V)=st(stn(3C, 17)). By

(2.1) and (2.13) we have that

(2.14) Corollary. For each integer nSsO stn(2C,17) forms an approximative

inverse system in C which is isomorphic to (3C, HJ) in Appro-C. M
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We say that {a, b)^AxB is an admissible pair of f provided that a>f{b).

Let (af, b') and (a, b) be admissible pairs of f. We say that (a', b')>(a, b)

provided that both a'>a and bf>b.

We say that f is a special approximative system map provided that A = B,

/ = 1A: B=A-+A and it satisfiesthe following condition:

(SPAM) {faPa'.^Qa'.afa'X^a fora'>fl.

(2.15) Theorem. Let f: (DC, *U)->(<y, <V) be an approximative system map.

Then there exist approximative inverse systems (DC, cU)/= {(X'C) HJ'c),p'c>tC,C), (<V, c[7)'

= {(Y'C, <=V'e),q'c'.c,Q, approximative system maps s:(3C, cU)->(3f, HJ)', *:(≪/,cy)

-^Cy, ty)', and an approximative special system map g={lc, gc:ceC} :(3C, 17)'

―>(cy,c^)r satisfying the following conditions:

(i) Cflr]W = WCn.

(ii) [s] and [f] are isomorphisms in Appro-C.

(iii) all (X'c, HJ'e),p'c.c,(Y'b, <V'b) and q'b.tbare some (Xa> HJa), pa.,a, (Yb, <Vb)

and qb'ib,respectively.

(iv) all gc are composition of some pa>,a and fb.

Proof. Since B is cofinite,there exists an increasing function g: B-*A

such that

(1) g>f and

(2) (Qb'.bfb'Pgcb'xfib'i,fbpgwxfmX^b for b'>b.

We put gfb=fbpgW.fm:XBW-+Y> for be=B. Then by (2) g'={g, g'b:b<=B＼:

(DC, cU)-+(<y,<V) forms an approximative system map and f= : g'.

We put C={(a, b)^AxB:a>g(b)} and define an order ">" in C as fol-

lows : c'={af, h')>c=(a, b) iff both a'>a and &'>&. Then (C, ≫ forms a

cofinite directed set. Let X'c=Xa, HJ^HJa, Y'c=Yb and oj'c―a;h for c=

(a, 6)eC. Let pc',c=Pa',a and q'c'.c^qv.bfor c/=(a/, b')>c=(a, b). It is easy

to show that (3f, HJ)' and (^y,c^7)' form approximative inverse systems. We

put gc=fbPa,fw:X'c=Xa^Yb=Y'c for c=(a, b)z=C. By (2) g={lc, gc: c^C} :

(3C, CU)/-^(£V,cV)/ forms an approximative special system map.

We define s={s, sc: c&C} :(3C, 17)->(3f,CU)/ as follows: Define s:C->A

by s(c)=fl for c=(a, b) and sc=lxa:-^co:=-Xa->A'c=-Xo for c=(a, b). Then

clearly s forms an approximative system map.

We will now show the s induces an isomorphism in Appro-C. To do so

take any increasing function d : A-+B. Then gd: A-+A is an increasing func-

tion. By (1.1) there exists an increasing function eiA-^-A such that e>gd and

e>lA. We define an increasing function u:A―*C by u(a) = {e{a), d(a)) and we
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put ua=pelaiia:X'iUa) = XelcO-+Xa for asA Then u={u, ua : a^A) :(3C,HJ)'

―>(2£,V) forms an approximative system map. It is easy to show that us= :

lcr,v> and su= il^x.vr- Hence s induces an isomorphism in Appro-C

We define t= {t, tc:cgC} :(<y,cv)->(^, <V)f as follows : Define t:C->B by

t(c)=b for c=(fl, b) and tc=lYb: YUe>=Yb->Y'e=Yb for c={a, b). Then £forms

an approximative system map. In the same way as for s, we see that t forms

an isomorphism in Appro-C Since tf= :tg'=: gs, it is easy to show that

W[/r] = [flr][s]. Hence g is the required one. M

(2.16) Theorem. Let f: (3C, cU)->-(cy,CV) be an approximative system map

in C. Then f induces an isomorphism in Appro-C iff it satisfiesthe following

condition:

(ISO) For each admissible pair {a, b) of f there exist an admissble pair

{a', b')>{a, b) and a map k: Yb--+Xa in C such that

(1501) (Pa',a,kfb.pa.,fCb,>)<cUa,

(1502) k-lcUa>cvb, and

(1503) {qb',b>fbpa,fmk)<stcvb.

Proof. First we assume that f induces an isomorphism in Appro-C. Then

there exists an approximative system map h={h, ha:a^A) :(3/,c[7)-+(X, HJ)

in C such that [A][/"]= [l(2,ii)] and [T][/i] = [lc<y,q;:,].By the definition of

composition and (2.7) there exist 1-refinement functions s: A-^A, t: B―>B of

(T, HJ),(<y,<=[?),respectively, and increasing functions u : A-^A, v: B-+B such

that u>lA, v>lB,

(1) p(u)(p{s)(hf))=:p(u)l,x.v, and

(2) q{v){q{tWh))=:q(v)lw.<v>.

We show (ISO). Take any admissible pair {a, b) of /. By (AI3) and (2.5)

there exist ax>a and bx>b such that pa＼,acUa>stcUai and ^11,6cl;6>s?cV6l. By

(2) there exists b2>hftv{bi), vib^ such that

(3) (Qtv<ibi),b1ftv(b1)hftv(.b1-)Qb2,hftv<ib1-)>Qb^b^^^bx-

By (AM2) there exists a2>/£y(fra),f{bx), ax such that

(4) (fbPa2,fw, Qbx.bfbxPaz.fib^X^b and

(5) (fbxPaz.fCbx-))qtv(.b1-),b1ftv(.b1-)Pa2,ftv(b1-))<.CVb1'

By (1) there exists fl3>//zsu(a2),u(a2) such that

(p) ＼paz,az>Psu(.a2~),a^suia^I hsuia2')Pas,fhsuCa^)^ Ua%;

By (AM2) there exists bs>b2, hsu{a2) such that
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(7) ＼hftv(.b±>Qb%,hftvCb^t Psu(az-),ftvib-^hsuta^Qb^ hsuCa^)^^ ftvCb^-

By (AM2) there exists ai>a3, f(bs) such that

(o) (/hsuCa^Pai, fhsuCa^f Qbs,hsu(.a2')fbsPa4:,f(.boj)^C^'hsuCa2')-

From (3)-(8) it is not difficult to show that the admissible pair (ai} b3) of f and

the map fc=/>,uca8>.afcn*<a8>?≫8./t.uca2j:^/>3~^^a satisfy (ISO1)-(ISO3) for (a, ft).

Hence we have (ISO).

Next we assume (ISO) and show that f induces an isomorphism in Appro-

C. We use the same notations as in the proof of (2.15). Since f satisfies (ISO),

g in (2.15) satisfies the following Claim 1:

Claim 1. g satisfies the following condition:

(ISO)' For each ceC there exist m(c)>c and a map kmCc-),c:Y'm<.c)-*Xc

satisfying

(ISO1)' (p'mM,c, fe≫(c).efif≪(fl)<^≪(c),

(ISO2)' Ww.c^^^w.

(ISO3)' (q'm^.c, gckm≪Xc)<StCV'c.

Let w:C->C be a 3-refinement function of (DC, CU)/ and put kc―

/4co,c&mioco, wee) :^mw<c>―*^c for ceC. By straightforward computations and

(ISOiy-CISOSy we have Claim 2:

Claim 2. k―{mw, kc: c^C) :(<y, cv)'-*(DC, 17)' forms an approximative

system map in C.

Claim 3. [At][flr]= [lc3c.<u)']and [gr]M = [lc<y,cyy]-

Take any 1-refinement function i:C^C of (3?, 1/)' and any ceC. Since

(Pmwii<ic＼c>PwiUc),ckmwiUc).wiUc)gmwii<itf)<CUc by (ISO)', p'(i)l(.X,vy = ･ P'd)(p'(i)

(kg)) and hence [lca>.i/)']= [A:][flr]. In the same way as above we have

[lcy,'^)'] = [l?]M- Thus we have Claim 3.

By Claims 2 and 3 [fir] is an isomorphism in Appro-C. Hence [f ] is an

isomorphism in Appro-C by (2.15). &

(2.17) Corollary. Let g={lA, ga"-a^A} :(ar, 1/)->(<y,<=V) be an approxi-

mative special system map in C. Then g induces an isomorphism in Appro-C iff

it satisfiesthe following condition:

(ISO)' For each a^A there exist a'~>a and a map k:Ya>―>Xa in C such

that

(ISO1)' (pa-.a,kga.)<1Ja,

(ISO2)' k-lcUa>cva,, and

(ISO3)' (qa',a,gak)<stc[;a. m
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(2.18) Corollary. Let f:(3C, cU)->(3/,cv) be an approximative system map

in C. Then f induces an isomorphism in Appro-C iff it satisfiesthe following

two condition:

(MO) For each a<s.A there existan admissible pair (ax, bx) of f with ax>a

and a map k: Ybl―>Xa in C such that

(MO1) (pa1.a,kfblpai.f(.bly)<cUaand

(MO2) k-lcUa>cvbl.

(EP) For each admissible pair (a, b) of f there exist bx>b and a map

m : Ybl-*Xa in C such that

(EP1) (c.^fubnfc^mXstcV,,.

Proof. Trivially (ISO) implies (MO) and (EP). We assume (MO) and (EP),

and show (ISO). Take any admissible pair {a, b) of f. Then there exists

ax>a such that pala^'a>st3cUai. By (MO) there exist an admissible pair

(az, bi) of f with a2>ax and a map k: Ybl-*Xai in C such that

(1) (Pa2,ai,kfblpa2,fch))<cUai and

(2) k-leUai>cvbl.

There exist bz>bu b such that qbl,bc^b>^c^bv and fl3>a2? f(bz) such that

(3) (fb1pa3,f<.b1),^2,61/62^a3,/(62)Xc^61 and

(4) (fbPag.ftb),Qb2,bfb2.Pas,f<.bi->XCVb-

By (EP) there exist b3>b2 and a map m:Yb3-^Xas in C such that

(5) (qbs,h> fb2Pas,f<bi>m)<st <VH.

There exist bA>bz such that qblbzm~lcUa3>cF64, and a4>as, f(b4) such that

(6) (fbzPcn,f(.bz-),Qbi,b2fbiPai,fib^)<iC^b2-

From (l)-(6)it is not difficultto show that the admissible pair (a4, bA) and the

map r=paa.amg^.ba:Ybi-*Xa satisfy (ISO1)-(ISO3) for (a, b). Thus (MO) and

(EP) imply (ISO) and hence by (2.15) we have (2.18). m

We say that an approximative system map f―{f, fb:beB} :(3f,lO-K^/, <=V)

is commutative provided that it satisfiesthe following condition:

(CAM) For each b,b'(=B with bf>b there exists a>f{b), f(b') such that

fht>nf(ht―-(]h'hth'Vn..f(h"f

(2.19) Corollary. Let f:(3C, CU)-^{C^,CV) be an approximative commutative

system map in C. Then f induces an isomorphism in Appro-C iff it satisfiesthe
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following:

(MO)' For each a^A there exist an admissible pair (alf bi) of f with a^c

and a map k: Ybl-*Xa satisfying (MO1).

(EP)' For each admissible pair (a, b) of f there exists bx>b and a maj.

m : Ybl-^Xa such that

(EP1)' {qH,b,fbpa,fmm)<<Vb.

PROOF. We will show that (MO) and (MO)' are equivalent. Trivially (MO;

implies (MO)'. We assume (MO)' and show (MO). Take any a^A and ther

by (MO)' there exist an admissible pair (alt bx) of f and a map k: Ybl-+Xa

such that a{>a and

(1) (Pai,a, kf^pa^f^XVa.

By (AI3) there exists bz>bx such that q^.blk-lcUa>cwb2. By (CAM) there exists

a2>a!, f(b2) such that

(2) fb1Pa2,fCb^ = Qb2,b1fb2Pa2,fCb2>

From (1) and (2) the admissible pair (a2, b2) and the map r=kqb2,bl satisfy (MO1)

and (MO2) for a. Hence (MO) and (MO)' are equivalent. In a similar way we

can show that (EP) and (EP)' are equivalent. Hence by (2.18) we have (2.19). 1

(2.20) Corollary. Let f＼(X, cU)-^i^, cv) be an approximative commutative

system map in C. Then f induces an isomorphism in Appro-C iff it satisfies the

following condition:

(ISO)" For each admissible pair {a, b) of f there exist an admissible pair

(a',b')>{a,b) and a map k:Yb<-*Xa such that (pa＼a> kfb'Pa',fa">XcU a and

(Ob'.b,fbPa.fl≫k)<<=Vb. M

(2.21) Remark. If f satisfies (MO), then [f] is a monomorphism in Appro-C.

If f satisfies (EP), then [f~＼is an epimorphism in Appro-C 1

(2.22) Remark. Grothendieck introduced the notion of pro-categories (see

MS [18, pp. 1-17]) and used it in algebraic geometry. Artin and Mazur used

it to study etale homotopy. It plays a fundamental role in shape theory (see

MS [18]). Artin and Mazur showed the re-indexing theorem (see MS [18,

p. 12]) in pro-categories which corresponds to (2.15). In pro-categories Morita

showed the diagonal theorem (see MS [18, p. 112]) which corresponds to

(2.16).
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§3. Approximative resolutions of spaces.

In this section we introduce the notion of an approximative resolution of a

space. Mardesic [15] introduced the notion of a resolution of a space. Our

notion improves his notion.

We say that a space X is an approximative polyhedron, in notation AP,

provided that for each IJ^CoviX) there exist a polyhedron P and maps

f:X->P, g:P-≫X such that (gf, ixXHJ. AP denotes the full subcategory of

TOP consisting of all APs. Mardesic [15] introduced this notion and showed

(3.1) Lemma. (i) Any ANR and any polyhedron are APs.

(ii) Let X be a paracompact space with dimX―n<oo. If X is LCn~l (see

[11]) then X is an AP. m

Let 2C={Xa, p^, a, A) bean inverse system in TOP. Let p={pa : a^A}

be a collection of maps pa: X->Xa, a e A We say that p: X-+3C is a system

map provided that pa―pa',apa' for a'>a. We say that a system map p:X-+3C

is a resolution of X (see [15]) provided that it satisfies the following two

conditions:

(Rl) Let P be an AP, <V^CoV(P) and f:X-+P a map. Then there exist

a^A and a map fa: Xa-^P such that (/, /^a)<^.

(R2) Let P be an ,4P and cv&CoV(P). Then there exists q^etf^CP) with

the following property: If a<^A and /, /': Xa-*P are maps such that

(fpa, f'PaXW, then there exists a'>a such that (fpa',a,f'Pa'.aXW.

(3.2) Lemma (Mardesic [15]). p:X->3£ is a resolution of X iff (Rl) and

(R2) are fulfilledfor all polyhedra P, or equivalentlyfor all ANRs P. M

Let (3C, cU)―{(Xa, Va), Par,a, A] be an approximative inverse system in

TOP. We say that p―{pa:a^A} :X-+(2£, <U) is an approximative resolution

of X provided that p: X-^3C―{Xa> pa',a, A} is a system map and it satisfies

the following two conditions:

(AR1) For each HJ<=Cov(X) there exists a^A such that palcUa<cU.

(AR2) For each a^A there exists a'>a such that pa.,a(Xa.)Cst(pa(X), HJa).

(3.3) THEOREM. p:X-+(3C, RJ) is an approximative resolutioniff p: X->2C ii

(3.4) Theorem, p: X-^3C is a resolution iff it satisfiesthe following two

rnnflitrnn<i･
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(Bl) For each cUgCoV{X) there exist a&A and HJ'^CoviXa) such that

(B4) For each a^A and for each 17<^Cov(Xa) there exists a'>a such that

pa'.aiXa-^StipaW.HJ).

We can easily show (3.3) by (3.4). The author [26] has proved (3.4). Our

proof was a slight modification of Mardesic [15]. After that Mardesic [16]

gave another simple proof of (3.4). His proof is already published and therefore

we omit our proof. Recently Morita [23] showed that resolutions and proper

inverse systems (see [21]) are equivalent.

Bacon [4] introduced the notion of complements. We say that a system

map p: X-+2C is a complement of X provided that it satisfies(Bl) and the

following condition:

(B2) For each ae.A and for each open set V in Xa with pa(X)CV, there

exists a'>a such that pa',a(Xa')CLV.

Mardesic [15] considered the following condition:

(B3) For each a^A and for each open set V in Xa with pa(X)C.V, there

exists a'>a such that pa>,a(Xa>)C.V.

(3.5) Lemma, (i) (B2) is stronger than (B3), and (B3) is stronger than (B4).

(ii) (B3) and (B4) are equivalent,when all Xa are normal (Hausdorff) spaces.

Proof. Since the firstassertion in (i) is trivial,we show the second one

in (i). Take any a^A and any <UeCoV(Xa). Since 17 is an open covering,

pa{X)(Zst(pa(X), HJ). By (B3) there exists a'>a such that pa.,a(Xa')(Zst(pa(X),CU).

Then (B4) holds and hence we have (i).

(3.7) Proposition.

Then there exist an

We show (ii).Take any a^A and open set V in Xa such that pa(X)dV.

Since Xa is normal, by Theorem 1 of MS [18, p.324] <W={V, Xa-pa{X)) is a

normal open covering of Xa. Since st(pa(X),eW)=V, by (B4) there exists

af>a such that pa,,a(Xa>)(Zst(pa(X),<W)=V. Then (B3) holds and hence we

have (ii). M

(3.6) Corollary (Mardesic [15]). (i) Any complement is a resolution.

(ii) When all Xa are normal spaces, p : X―>3C is a resolution iff it satisfies

(Bl) and (B3). m

Now we construct approximative resolutions from resolutions.

Let q={qb:b^B] : X-≫3/= {Yb, qv ,b,B} be a resolution,

approximative resolution p ―{pa'-a^A}:X^>{X,cU)~
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{(Xa, HJa),pa',a, A} and an increasing function s:A-+B satisfying the following

conditions:

(i) A is cofinite,directed and antisymmetric.

(ii) Xa=YsUl), Pa=q*(.a-ifor atEA and Pa',a=q*ia'->.na)for a'>a.

(iii) For any beB and any cVGCoviYt,) there existsa^A such that s(a)=b

and cUa=cv.

Proof. Let F(B)={(b, cv):b<=B and cv<eCoV(Y6)} and M(B)={KdF(B):K

is finiteand K^0}. The set A―M{B) is ordered by inclusion and trivially

satisfies(i). Take a function t: A―>B such that

(1) t(a)=b for a={(b, q/))eA

Since yl is cofinite,by (1) and (1.1) there exists an increasing function s : A-+B

snrh fh^t"

(2) s>t and s(a)=b for a={(b, <=V)}(=A.

We put Xa=Ysia)f pa―qS(.a-)for a^A and pa',a=qs<ia">,s<.a*>for a'>a. Since

5 is an increasing function, Z£={Xa, pa>,a, A] forms an inverse system. From

the definitions(ii)is trivialand p={pa'- a^A] : X->3C forms a system map.

Claim 1. p:X->3C is a resolution of X.

We show (Rl). Take any AP P, any cVelCov(P) and any map f:X-*P.

By (Rl) for q there exist fre£ and a map /6: F6-^P such that (/, f≫qb)<cv.

Put a― {{jb,{Yb})}(=A and then Za=F6 and pa―qb by (2). When we put

h=fi>'.Xa=Yv-*P, {f, hpa)<cv. This means (Rl) for p.

We show (R2). Take any AP P and any <V&CoV(P). There exists

c[?f^Cov(P) satisfying property (R2) for q and cv. Take any o.<bA and maps

f,ff;Xa->P such that (fpa, f'PaXW. Then (fq≪a>,f'q^XW. By the

choice of ^V' there exists b'>s{a) such that (fqb＼saa^,f'qb'.sca^X0^- Put a'=

aUW, {Fy})}e^ and then s(fl/)>s({(6/,{Yb.})})=bf by (2). Thus (fqtia>>.,ia>,

f'q^a-i.KrtXcV, that is, {fpa＼a,f'Pa-.aX^- This means (R2) for p. Hence

i? is a resolution.

We define coverings as follows: Take any a={(blt c^), ･･･,(&B, c^n)}eA

Since s(a)>s({(bu a>;i)})=bi by (2), we may put Va=qil^,blc[/1A---AqiU^b^n

GCov(Xa).

Claim 2. (2£,cU)―{(Xa,cUa),pa>ia,A} forms an approximative inverse

system.

We show (AI1)-(AI3). (All) is trivial. We show (AI2). Take any a'>a

and put fl'=flW|(i,+i, ^n+i), - ,(bm, <=Vm)＼. Then
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Pa'.aCUa= qila'XsCa^gllahb1C^lA---Aq7laXbnC^n)

=qlU'),b1cViA---Aqita^.bncVn>qi(a').b1cViA---

Aqila'),bncVnA~-Aqi}a'xbmcVm=cUa..

This means (AI2). We show (AI3). Take any a^A and any HJ^Cov(Xa).

Put fl'=flU{(s(a), <U)}eA Then

cUa'=q7(a^,b1c^iA---Aqila^,bnc^nAqiU'xs^cU<qilal^sC^cU=pa',acU.

This means (AI3). Hence we have Claim 2.

By (3.3), Claims 1 and 2 p:X-+(3£, <U) is an approximative resolution. For

each b^B and cye^o^Fj) we put a={(b, cV)}eA By definition s(a)―b and

cUa=c^7- Then p satisfies(iii). m

(3.8) Proposition. Let DC={Xa, pa.,a, A} be an inverse system. If all Xa

are compact metric spaces,and A is infiniteand cofinite,then there existcoverings

1)a of Xa such that(X, 11)= {(Xa, <Ua),pa>>a, A} forms an approximative inverse

system.

i

Proof. Since Xa is compact metric, there exist coverings ^a,t of Xa,

= 1, 2, ･･･, such that

(1) cVa.i>c^≪.i+i for i=l, 2, ■･･,and

(2) for each <V'<BCoV(Xa) there exists / such that cV'ycVa.i-

Since A is cofinite,P{a)={a'<^A: a'<a} is a finite set for oeA Put

P(a)={fli, a2, ･･･,aB} and define tUa=/>a!a1c^a1,nA"-Aj!>aJanc:Van,n for ogA

We show that "Us have all the required properties. We show (AI2). Take any

a'>a and put P(a')=P(a)＼J{an+1, ･･･, am}. By (1)

ApaKanCVan,m>PaKa1CVa1,mA-~Apa＼amCVam,m

This means (AI2).

We show (AI3). Take any a^A and any i/e^o^ZJ. By (2) there exists

n' such that cU>c^ain-. Since ^4 is infinite,there exists a'>a such that the

cardinality of P(a')=m^n＼ Put P{a')―{a, a1} ･･■, am-i}. Then we have that

< ^a-1,a^a, m</≫a'X.a^a, n'<Pa＼ oV.

This means (AI3). Hence (30, <U) forms an approximative inverse system. M
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(3.9) Lemma. Let p:X-+3C={Xa, pa>.a, A) be a resolution of X. If all Xa

are compact metric, and A is infiniteand cofinite,then there exist coverings 1/a

of Xa such that p: X―≫(3f,cU)={(Xa, 'UJ, pa',a, A} forms an approximative

resolution of X.

(3.10) Lemma. Let p―{pa ',a^A} :X->(3C, HJ) be an approximative resolu

tion. If A' is a cofinal subset of A, then pA' = {pa' aeA'} : X->(3C, £L/)A.forms

an approximative resolution of X.

(3.9) follows from (3.3) and (3.8). (3.10) follows from (2.12) and (3.3). R

Let C be a subcategory of TOP. Let JC be a collection of spaces. We say

that a resolution p : X->!£ and an approximative resolution p : X-^(3C, HJ) are

a C-resolution and an approximative C-resolution provided that X is an inverse

system in C, respectively. We say that p : X->3C and p : X-+(2£,<U) are rigid

for J{ provided that they satisfy the following condition:

(Rl)* For any map f:X-^P, where PeJC, there exist a^A and a map

A : Xa->P with /=/iPa.

When Jf=ObC7, we say that they are rigid for C. When we take ANR, AP

and POL as C, we have POL-resolutions, approximative AP-resolutions, rigid-

ness for ANR and so on.

We auote some results on resolutions and inverse limits.

(3.11)Lemma (Bacon [4] and Mardesic [15]). (i) Any space X admits a

polyhedralcomplement p : X-+DC.

(ii) Any spaceadmits an ANH-resolution which is rigidfor ANR. S

Let I be a subset of a space M. Let IJiX, M) be the inverse system

consistingof all neighborhoods of X in M and inclusion maps as bonding

maps. Let p: X^HJiX, M) be the system map consistingof allinclusionmaps.

We say thatp: X-^-IJiX,M) is the complete neighborhoods system of X in M.

Bv (3.4)we easilyshow that

(3.12) Lemma. // either X is P-embedded in M or M is hereditarily para-

compact, then the complete neighborhoods system p : X-^HJiX, M) is a resolution, m

(3.13) Lemma (Mardesic [15]). Let 3C be an inverse system of compact spaces.

Than n.nvirwarsa limit n : X―>-2f!is a resolution. M

(3.14) Lemma (Freudenthal [9], Eilenberg-Steenrod [7] and Mardesic [14]).
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(i) Any compact metric space X is an inverse limit of a finite polyhedral

inverse sequence 3£.

(ii) Any compact space X is an inverse limit of a finitepolyhedral inverse

system 2C.

In (i) and (ii)we can achieve that dimensions of all spaces in 3C^<X＼mX. S

The following theorem gives existences of various approximative resolutions

of spaces.

(3.15) Theorem, (i) Any space X admits an approximative POL-resolution

p.: X->{X, <V).

(ii) Any space admits an approximative ANR-resolution, which is rigid for

ANR.

(iii) Any compact space X admits, an approximative POL/-resolution p: X―>

(iv) Any compact metric space X admits an approximative H*Ohrresolution

p: X-+(X, 17) such that 3C is an inverse sequence.

In (i), (iii) and (iv) we can achieve that dimensions of all spaces in

JT<dimX

Proof. We show (i). Let CoVl(X)={HJ^CoV(X) : order of ^^dimZ+l}.

Since CoVl(X) is cofinalin CoV(X), by the same way as in Bacon [4] we can

show (i) in (3.11) with the property: Dimensions of all spaces in 3?fSdimX

Thus by (3.6) and (3.7) we have the required polyhedral resolution. Hence we

have (i). (ii)follows from (3.7) and (ii)in (3.11). (iii)and (iv) follows from

(3..7)and (3.14). ■

(3.16) Remark. MS [18] introduced resolutions for pairs and showed (i)

in (3.11) for pairs. Mardesic [16] characterized resolutions for pairs in a way

similar to (3.4) and showed (ii)in (3.11) for pairs. Since (3.7) is true for

resolutions for pairs, (3.15) holds for pairs (see Watanabe [28]).

(3.17)Example. Let PM be the fullsubcategory of TOP consistingof all

paracompact M-space (see Arhangelski [2,3] and Morita [20]). Nagata [24]

gave a characterizationof these spaces as follows: A space X is a paracom-

pact M-space iffX embeds as a closedsubset in MxC, where M is metric and

C is compact. Metric spaces and compact spaces are paracompact M-spaces.

AR(PM) and ANR(PM) denote the full subcategoriesof TOP consistingof all
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absolute retracts and all absolute neighborhood retracts for PM, respectively;

Mardesic and Sostak [17] showed that

(i) any paracompact M-space X embeds as a closed set in an MeAR(PM),

(ii) if X is a closed subset of an MeAR(PM), then any neighborhood U

of X in M contains an open neighborhood FeANR(PM) of X in M, and

(iii) any ZeANR(PM) has the homotopy type of a polyhedron.

Modifying their proof of (iii)(see the proof of (5.7)in §5) we easily show

that

fiv) anv XeANRfPM^ is an AP.

Let I be a paracompact M-space. By (i) X is a closed subset of an

Me AR(PM). Since X is P-embedded in M, by (3.12) the complete neighborhoods

system p: X-^-IJiX, M) is a resolution. Let J.1J(X, M) be the inverse system

consisting of all neighborhoods FeANR(PM) of X in M. By (ii) JLHJiX; M)

is a cofinal inverse sub-system of 1/(A",M). Then p induces an ANR(PM)"

resolution p: X-+ J.HJ(X, M). By (3.7) p induces an approximative ANR(PM)-

resolution p: X->(JZ1/(Z, M), 17) consisting of ANR(PM)-neighborhoods of X in

M and inclusion maps. Obviously p: X-^J.HJ{X, M) and p: X~^{J.CU{X, M), V)

are rigid for ANR(PM).

Let X be a metric space. By the Kuratowski-Wojdislawski Theorem (see

Hu [11]) we may assume that X is a closed subset of an ARM By (3.6) arid

(3.12) the complete neighborhoods system p: X―^{X, M) is a resolution. Let

OViX, M) be the inverse system of all open neighborhoods of X in M. Then

p induces an ANR-resolution p: X-^OHJ^X, M) and an approximative ANR-

resolution p: X-^iOViX, M), V). Obviously these are rigid for ANR.

Let I be a compact space with weight m. Then X is embedded in Im.

Here Im is the product space of m-copies of the unit interval /=[0, 1], By

(3.6) and (3.12) the complete neighborhoods system p:X―>CU(X, Im) is a resolu-

tion. We say that a subset K of Im is a prism provided that K is homeomorphic

to Pxlm, where P is a finitepolyhedron. We easily show that

(v) anv Drism is an ANRCCOMD and an AP.

Let cpHJiX,Im) be the inverse system consisting of all prism neighborhoods of

X in Im. Then p induces an ANR(COM)-resolution p: X-*SHJ{X, lm) and an

approximative ANR(COM)-resolution p: X-^SFUiX, Im), <V). These are rigid

for ANR(COM)).

When X is compact metric, X is embedded in the Hilbert cube Q=I°°. In

this case p : X-^OViX, Q), p: X-^(OV(X, Q), CU), p: X^&HJiX, Q) and p : X-+
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(2*U(X, Q), 17) are ANR-resolutions and approximative ANR-resolutions, which

are rigid for ANR. M

These special resolutions and approximative resolutions for special spaces

are usefull in the sequel.

･§4. Approximative resolutions of maps.

In this section we introduce the notion of an approximative resolution of i

map and study its fundamental properties. Mardesic [15] introduced the notior

of resolutions of maps. Our notion improves his notion.

Let Xs Y be spaces and f:X-*Y a map. Let p―{pa: a^A} : X-*(30, CU)=

i(Xa,cUa),Pa>.a,A} and q= {qb: feeB＼ : Y-*W, ci>)={(Yb, q^), qv.b, B＼ be ap

proximative resolutions. Let f={f, fb:b^B], f'―{/', f'b:h^B} :(3C, ≪U)-i

{QJ,cv) be approximative system maps. We say that f: (X, cU)-+(cy,CV) is ar

approximative resolution of / with respect to p and q provided that for eact

&eB {qbftfbPfwXWb.

(4.1) Lemma. Let q: Y-^-Cy, CV) be an approximative AF^-resolution. I)

f, f':(3£,I/)-*^, CV) are approximative resolutionsof f with respect to p ana

qt then f=:f.

To prove (4.1) we need (4.2), which follows from (AI2), (AI3) and (1.1).

(4.2) Lemma. Let {DC, cU)={(Xa> HJa),Pa-,a,A) be an approximative inverse,

system. Let 1Ja^Cov(Xa) for asA Then there exists an increasing function

s:A-+A such that s>lA and pTU->.acUa>cUsia->for oeA M

Proof of (4.1). Since q is an approximative AP-resolution, all Yb are

APs. By (3.3) p:X->3C is a resolution. For each fee B there exists cv"b^CoV(Yb)

satisfying the property of (R2) for p and cvb. By (4.2) there exists an

increasing function t:B-^B such that t>lB and

(1) qTln.tWfccVKn for b^B.

Take any 1-refinement function u :B->B of (<y,CV) and any fee B. Since f and

f are approximative resolutions of/, we have that {qutwf> futinPfutinX^utw

and (quu.b)f,fut<.b)Pfut<.b'>)<:CcVut<.b-)>Then (futwPfutcb), futcnPf'utwXst^utcn-

Since u is a 1-refinement function,

W ＼Qut(.n.t(.b~>fut(.b')Pfut(b'>>Qut(.V).t(.b')futmPf ut(.b))<Z.CVt<.b')'
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Take any a>fut(b), f'ut(h). (1) and (2) imply that

W/
(Qut(b),bfut(b)Pa,fut(b-)Pa> QutCbl.bf

utCHpa, f utCblPaJ^^b'

By (3) and the choice of <-Vrb there exists a'>a such that

(4) (QutCbi.bfutC.blPa'.futW,
Qut(.b~),bJut(.b~)Pa',f ≪t(6))<CC^6-

(4) means that a(ut)f=:a(ut)f. Hence by (2.7) f=:f. I
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(4.3) Theorem. Let p:X-*(X, <U) and q'.Y-+W, <V) be approximative re-

solutions. If q is an approximative AF'-resolution, then for any map f: X-+Y

there existsan approximative resolution f:(3C, cU)-^{<y,£[?)of f with respect to

To prove (4.3) we need (4.4).

(4.4) Lemma. Let (2£,cU)―{{Xa, HJa),Pa',a, A} be an approximative inverse

system. Let cU/a^Cov(Xa) for each a^A. Then there exist HJ'i&CoviXa) for

aeA such that (3C, ^^^{{Xa, "V'a),pa',a, A] forms an approximative inverse

<tv<;t£>mnnd qi'l^qj _A <77' fnr a f=A

Proof. ||T|| denotes the cardinality of a set T. Let P(a)={afGA: a'<a}

for each ceA For each positive integer n we put An={a^A: ＼＼P(a)＼＼=n}.

Since A is cofinite, A=U{Ai:z=l, 2, ･･･} and Air＼Aj=0 for /=£/.

Inductively we construct tV'^CoV{Xa) for a^A(n)=＼J{Ai:t=l, 2,
■-, n}

satisfying the following condition:

(Pn) cUa<cUaAcU'a and pZhaW^Wi. for a', a^A{n) with a'>a.

First for any a^Ax we put cU'l=cUaAcUa- Then clearly (/＼) holds. Next,

we assume that for ae^(n-l) 172 are already defined satisfying (Pn-i). Take

any as^. Put B(a)=P(a)nA(n-l) and C(a)=P(a)-.4(n-l). We define

17a as follows:

(1) <UZ=(A {^17^ : 6e5(a)})A(A {/≫^6(17BA^): 6eC(fl)}).

Since aeC(fl), by (1) cU'a<cUaAcU'a. We need to show the second property

in (Pn). Take any a', asyl(n) with a'>a. Then there are four cases: (i]

a', a^A(n―l), (ii) a'^An and aG^n-l), (iii) a'^A{n ―l) and aeyln and

(iv) a', a^An. In the case (i) (Pn-i) implies the required condition. In the

case (ii) a^B{af). Then by (1) 1J'£.<p*l,a<iJ'I. We consider the case (iii).

Since a'>a, P(a')Z)P(a). Since aeAn, ＼＼P(a')＼＼^＼＼P(a)＼＼= n. Since a'^A{n-l),.

＼＼P(a')＼＼^n―l. This is a contradiction. Hence (iii) does not happen. We con-
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sider the case (iv). Since a'>a, P(a')Z)P(a). Since a', a^An, ＼＼P(a')＼＼= ＼＼P(a)

= n. Thus P(a') = P(a). Since B(a')=B(a) and C(a')=C(a), from (1) we havi

that paKaeUa='Va'- This is the required condition. Hence we have (Pn).

By the inductive construction we obtain the coverings HJ'ifor all a^A

Since (30, <U) satisfies(AI1)-(AI3), by (Pn) we easily show that (3C, HJ") satisfiei

(AU)-(AI3). ■

Note. In the proof of (4.4) when A is antisymmetric, B(a)=P(a)― {a} an<

C(a)={a}. Then our proof is reduced to a simple one. However we do no

assume the antisymmetric condition for A.

Proof of (4.3). By (3.3) p: X-^X is a resolution. Then it satisfies(Rl

and (R2). Since each Yb is an AP, there exists cV'bGCov(Yb) satisfying the

property in (R2) for p and <yb. By (4.4) there exist (=V'b'^Cov(Yb) such tha

(<y,cy") is an approximative inverse system and

(1) stcWKcVbAW,, for b^B.

By (Rl) for p there exist a function t:B-*A and maps gb:Xtm-*Yb for beE

such that

(2) (qtf.gtptwX^t for &G5.

By (AI3) for (DC, HJ) there exists a function f:B-*A such that f>t and

(3) P7＼≫.u≫(gi;lcVb)>cUnnfor b&B.

Claim. f={f, fb:b^B} :(DC, CU)-^(C^,CV) is an approximative system map.

Here fb=gbp/w.u≫- X/<≫-+Yb for b^B.

We need to show (AMI) and (AM2). (AMI) follows from (3). We sho^w

(AM2). Take any b'>k (2) implies that

(4) (qofJtPnvXcV't and (qb.f,fvpJW<>)<m.

By (AI2) for (≪/,<V") and (4)

(5) (qbf, qv.tfvpfwlXCV'i.

Take any a>f(b), f(b'). By (1),(4) and (5)

(6) (fbPa.finPa, qv.*fvPa,f<.V$aXst<V'b'<CVlb.

By the choice of ^j and (6) there exists a'>a such that

(7) (fbPa'.fW, qb',bfb'Pal.fWr)<C^b'

(7) means (AM2) for f. Hence we have our Claim.
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(1) and (4) imply that (qbf,fbPjmX^b forbei3. This means that f is an

approximative resolution of / with respect to p and q. U

The next assertion follows from (3.3),(3.8),(3.13) and (4.3).

(4.5) Corollary. Let 2 ={Xa, pa-ia, A} and <y―{Yb,gb'>b)B} be inverse

systems of compact metric spaces. Let p: X-^3£ and q :F―>^/ be inverse limits.

If A, B are infinite,cofinitesets and all Yb are APs, then there exist coverings

1JaGCov(Xa) and cvb(ECoV(Yb) such that p:X-*(3£, cU)={(Xa, <UB),pa.,a, A) and

q: Y-^(*y, q/)={(F6, c^b),Qv.b, B) are approximative resolutions with the prop-

erty: For any map f: X-^-Y there exists an approximative resolution of f with

respect to p and q. M

Let g: Y-^Z be a map. Let r: Z-^{Z, CW) be an approximative resolution.

Let g: (<V,cv)->(Z, <W) be an approximative system map. In a straightforward

manner we can show the following:

(4.6) Lemma. // f: (DC, CU)-^{V, <V) and g:(QJ, CU)^(Z,W) are approxi-

mative resolutions of f and g with respect to p, q, and with respect to q, r,

respectively,then r{u){gf): (DC, cU)-^-(Z,W) is an approximative resoluton of gf

with respect to p and r for each 1-refinement function u of (Z, W). M

Mardesic [15] introduced the notion of resolution for maps. Let /: X-+Y

be a map. Let p={pa : a^A) : X->3£={Xa, pa,,a, A) and q={qb: b^B) : Y-+4J

―{Y＼,Qf ,b,B] be resolutions. Let f―{f, fb '■b^B] be a collection consisting

of a function fiB-^-A and of maps fb: Z/(W-≫F6 for JeB. We say that

(f> P, q) is a resolution of / provided that it satisfies the following two con-

ditions:

(RM1) For each b'>b there exists a>f{b'), f(b) such that fbpa>JW ―

Qb',bfb'Pa,fW>

(RM2) gbf=fbpfW for b^B.

Sometimes we say that f: 3C-^-iyis a resolution of / with respect to p and a.

(4.7) Lemma (Mardesic [15] and Haxhibeqiri [10]). (i) Any map f: X-+Y

admits an ANR-resolution.

(ii) Any map f admits a polyphedral resolution. M

(4.8) Lemma. Let (f, p, q) be a resolution of f. Then there exist approxi-

mative resolutionsp': X->{2£,HJ)',q': F-^(<V, CF)/ and an approximative resolution

f: (DC, cU)/->(3',CVY of f with respect to pf and q' satisfying the following:
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(i ) p' and q' are constructed from p and q in the same way as in (3.7),

respectively.

(ii) (f, p', q') is a resolution of f＼

(iii) Each map in f is a map in f

Proof. Let F{A), F{B), M{A) and M(B) be the same as in the proof

of (3.7). By (3.7) there exist approximative resolutions p'={p'a, : a'<^M{A)}:

X-+(X, <V)'= {(X'a.,<U'a.),p'a-.a',M(A)}, q' = {q'v: b'^M(B)} :r-W, <V)> =

{(Y'v,cV'b'),q'b,,b',M(B)} and increasing functions s:M(A)-*A, t:M(B)->B

satisfying (i)―(111)in (3.7),respectively.

We define /"={/', f'v: b'^M(B)}: (30, <U)/->(<V,<=V)'as follows: Take any

b'^M{B). Since ftw,'.Xftw^Ytw^Yrv, fjlv,cvrb.^CoV(Xftw,). By (iii) of

(3.7) there exists /'(&')eM(,4) such that

(1) s(fW))=ft(b') and ≪U>.M')=/r&-)cVS'.

Then we have a function f :M(B)->M(A). By (ii)of (3.7) and (1) X'ra>,)=

XtrW)=XftW) and Y'b'-Ytw> Thus we may define a map /£･=/≪&'>:^/'c&'>

=Xftw>-*YtiV>=Yi, for b'eM(B).

Claim, f satisfies(AMI), (RM1) and (RM2).

(1) implies that ff-lcV'v=f7tb'ycVb'=cV'rw> This means (AMI) for f. We

show (RM2). Take any b", b'^M(B) with b">b'. Since t is increasing,

t{b")>t{b'). By (RM2) for f there exists an a>ft(b"), ft(b')such that

(2) Qt(.b'),t(.b')ft<.bOpa,ft(b")=ft(b")Pa,ft(.b")'

Put a'=f＼bf)＼Jf'{b")＼j{{a,＼Xa})}&M{A). Since s is increasing, (2) in the

proof of (3.7) and (1) imply that s{a')>sf'(b")=ft{b"), s{a')>sf'{bf)=ft{b') and

s(a')>a. By (2)

(3) QtCb'l.t(6')/u6")^s(a'),/£(&')―fub'iPsta'),/£(&')･

(1), (3) and (ii)in (3.7) imply that q'bwf'b-P'a',s1w^>=f'vP'a1,f w> This means

(RM2) for/". We show (RM1). By (RM1) for f and (1) f'vp'rW)=ftw,p.rW>

=ftw)Pft(.b">=Qtw>f=Qb'f' This means (RM1) for f. Hence we have the Claim.

Since (AM2) follows from (RM2), Claim means that f has the required

properties. W

We say that an approximative resolution is commutative provided that it

satisfiescondition (RM1). By (4.7) and (4.8) we have the following:

(4.9)Thforem. For any map f: X-+Y there exist approximative ANR- or

FOh-resolutions p: X->(3£,17), a :F-^C'V, cv) and a commutative approximative
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resolution f: (3G, CU)―>Cy,CV) of f with respect to p and q such that (f, p, q) is

a resolution of f. M

(4.10) Example. Let X and Y be paracompact M-spaces. By (3.17) we

have approximative ANR(PM)-resolutions p={pa 'a^A} : X-*(J.CU(X, MX), HJ)=

{{Ua, <Va),pa..a,A) and g= {qb :b^B}: Y-+( JHJiY, MY), q/)= {(Vb, q/6),Qb.tb,B}.

Here MZ and MY are AR(PM)s containing X and F as closed subsets, respec-

tively. All Ua and all Vb are ANR(PM)-neighborhoods of X and F in MX and

MF, respectively, and all pa, pa',a,qb, Qv,& are inclusion maps.

Let /: X-+Y be a map. We have an extension F: MX-+MY of /, Take

any b^B. By (ii)of (3.17) there exists g(b)^A such that F-＼Vb)Z)UgW. By

(AI2) there exists f(b)^A such that f(b)>g{b) and (F^/(Wig(6))-1c^6>cU/c6).

Thus we have a function f: B->A and maps fb=FpfaOiga≫:UfW-:>Vb for

6ef?. We have a commutative approximative resolution f―{f,fb:b^B}:

(JtHJiX, MX), CU)-^(^£U(F, MF), <V) of / with respect to p and g. Obviously

this is also a resolution of /. We consider a special case of this method in

80 m

(4.11) Example. Let C be the Cantor set and J=[0, 1] be the unit interval.

Let /: C―>I be an onto map. Then in §0 we noticed that we have no expan-

sion of / with respect to some inverse limits p:C-^C and q:l-*3. By (3.13)

p and q are resolutions of C and /. Hence / has no resolution with respect

to p and q.

In the same way as in §0 we can show that if if'',p'',q') is an POL-

resolution of /, then almost all spaces, appearing in p', have dimensions ^1.

This is curious, because dimC=0. In fact when we embed C in /, by (4.10)

we have a resolution f of f with respect to some p' and q such that almost

all spaces, appearing in p', are 1-dimensional polyhedra.

On the other hand by (4.5) we can choose coverings HJ^CoviXi) and

cVi^CovQfi), which make approximative resolutions p: C-+(3C, cU)―{(Xi) HJi),

pij,N} and q:I-*W,cV)={(Yi,<=Vi), qiiifN). Hence by (4.3) for any map

f:X->Y we have an approximative resolution f: (3C, cU)^-{ci},<=V) of / with

resoect to d and a. M

The above observations ((4.10) and (4.11)) explain the difference between

(4.3) and (4.9), that is, the difference between approximative resolutions and

resolutions. Approximative resolutions for maps have many advantages over

resolutions for mans.
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(4.12) Remark. Mioduszewski [19] studied approximative expansions of

maps into inverse sequences of polyhedra. His discriptionis neither simple nor

categorical. However he essentially proved (4.5) for compact metric spaces. In

the latter section we shall show that our treatment is natural and categorical.

§5. The approximative shape category.

In this section we introduce the approximative shape category and some

natural functors.

Let X, Y and Z be spaces. Let p : X->(3?, HJ), q : Y-+{<*},<=V) and r : Z->

{Z, W) be approximative AP-resolutions. Let / : X-+Y and g : Y-^Z be maps.

By (4.3) there exists an approximative resolution f: (X, cU)-+(ciJ,c^) of / with

respect to p and g. By (4.1) its equivalence class [f] is unique, that is, [f]

does not depend on the choice of approximative resolutions of / with respect

to p and q. Therefore we denote it by [/],,<,. From (4.6) we have the

following:

(5.1) Lemma, (i)

(ii) [lx],. ,= dcs

lg＼rinP,Q=lgf^p.r-

Appro-AP. m

We define E(X)―{p:p is an approximative AP-resolution of X}. For

p^E(X) and q^E{Y) we define E(p, g)= (Appro-AP)((3f,<U),W, W)). We

define£(Z, Y) = ＼J{E{p,q):peiE(X) and ge£(F)} (disjointsum). We define

a relationon E(X, Y) as follows: Let m, m'^E{X, Y). There are p, p'^E(X)

and g, q'e.E(Y) such that m^E(p, q) and m'<=E(pf, q'). We say that m is

equivalent to m', in notation m=m', provided that [ly]9,9'm=m/[lx]i,,p'in

Appro-AP. By (5.1)we can show the following:

(5.2) Lemma. The above relation = is an equivalencerelation on E(X, Y). U

On} denotes the equivalence class of meE(X, Y) by the relation =. Put

(E(X, F))=Km>:m££(Z, Y)}. We define the composition <n><m> for

m^E(X, Y) and ne£(F, Z) as follows: <n><m>=<n[lr]9,g.m> where peE(X),

q,q'ELE(Y), r'^E(Z), m^E(p, q) and n^E{qf,r'). By (2.10) and (5.1) we

can show the following:

(5.3) Lemma, (i) The above composition is well defined.

(ii) <mX[lI],,l)=<m)=<[lr],,,Xm> for m^E(X, Y).
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(iii) <u>>(<n><m≫=≪w;><n≫<m> for m^E{X,Y), n^E{Y,Z) and u/e

E(Z, K).

(iv) <[/],.≪>=<[/],'.,.>.

(v) <[^]9.r><[/],.B>=<[g/],.r>, where r<=E(Z). m

We define a function R(p, q): E(p, q)^><E(p, g)> for p^E(X) and ge£(F)

as follows: <£>(/?,g)(m)=<m> for m^E(p, q).

(5.4)Lemma. For p<=E(X) and q^E(Y) ${p, q): E(p, q)^E(X, Y)> is

bijective.

Proof. Take any m'^E{p', q') for p'^E{X) and q'e=E(Y). We put

w=[lr]fl'.≪wx/[lx]ji,,'.Then m^E(p, q) and [lF]≪,≪'W=[lr]B.,'[lr]fl'am/[lx],.J,'

―[lr]≪'>8'^/[lx]p,ip'= ^/Clx]j>,ip'by (5.1). This means that <jn}―<jnfy and

hence $(jj, g) is onto. Trivially it follows from (ii) of (5.1) that 0{p, q) is

injective. M

Now, we define the approximative shape category, in notation ASh, as

follows: Objects of ASh are all spaces. For spaces X and Y ASh(X, Y)=

(,E(X, F)>. The composition of morphisms is defined in the above. Since

E{p, q) is a set, ASh(X, Y) forms a set by (5.4) and the axiom of substitution

in set theory. Note that <E(X, Y)> forms a set, but E(X) and E(X, Y) do not

form sets. By (5.3) ASh forms a category. We call morphisms in ASh approxi-

mative shape morphisms, or approximative shapings.

We define an approximative shape functor AS: TOP―>ASh as follows: For

each space X we put AS(X)=X For a map f:X-*Y we put AS(/)=<[/],,e>

for some p<bE(X) and q<BE(Y). By (5.3) AS is well defined and forms a

functor.

(5.5)Lemma. Let X be an ANR(PM) or a polyhedron. For each V&CoviX)

thereexistsHJ'^Qov^X) satisfying

(*) any two HJ'-near maps f, g: Y-+X are HJ-homotopic,where Y is an

arbitraryspace.

Proof. We show also (iv)in (3.17). Let X be an ANR(PM). By Nagata

[24] and by the Kuratowski-Wojdislawski Theorem (see [11]) we may assume

that I is a closed subset of CxIT, where C is a convex set in a normed vector

space M and r is an arbitrary cardinal. Take any HJ, cU1^CoV(X) with sfcU1<cU.

Since X is an ANR(PM), there exist a neighborhood U of X in Cx/r and a

retraction r: £/―>X By Theorem 4 of Mardesic and Sostak [17] there exists
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an open paracompact neighborhood V of X in U with the property; each point

x of V has a neighborhood K(x)dV such that K(x) is convex in MxRT. Here

R is the real line. By a theorem of Palais [25, p. 5] there exist a simplicial

complex K, maps h:V->＼K＼, k:＼K＼-*V and a r^iA-homotopy Hl:UxI->U

such that Hl―lu and H＼=kh. Since (r£/m/,1^X17, X is an AP. Here u>: X

->V is the inclusion map. By Theorem 4 of MS [18, p. 292] there exists a

subdivision L of K such that ^t{L)<.k~xr-lcU1.Here s£(v,L) denotes the open

star at a vertex v in L, si(L)= {st(v,L): v is a vertex of L) and st(L)=

{st(v,L):v is a vertex of L}. By Theorem 9 and Remark 1 of MS [18, pp.

302-303] there exist maps i:＼K＼-＼L＼^＼L＼m, j: |L|m-≫|L| = |.K] and a

sf(L)-homotopy H*: ＼K＼Xl-^＼K＼such that Hl-1{K[ and E＼―ji. ＼L＼mdenotes

the realization of L with the metric topology. By Theorem 11 of MS [18, p.

304] ＼L＼nis an ANR and then by Theorem 11 of Hu [11, p.Ill] there exists

<W^CoV{＼L＼m) satisfying (*) for ＼L＼mand /-^(L). From the above facts it is

easy to show that cV―{jhw)"l(W&Cov{X) satisfies the required condition (*).

Obviously the above argument also contains a proof for polyhedra. M

(5.6) Lemma. Any space X admits an approximative ANK-resolution p: X->

(3C, 17) and an approximative POL-resolution p:X->(D£, IJ) with the property:

(**) any two HJa-near maps f, g :Y-^Xa are homotopic for a^A, where Y

is an arbitrary space.

Proof. By (3.15) there exists an approximative ANR-resolution p:X-+

(3C, HJ')={(Xa, Wo), pa-,a',A] of a space X. Since all Xa are ANRs, by (5.5)

there exist W^CoviXa) with property (*) for HJ'a. By (4.4) we make coverings

HJa^Cov(Xa) such that (DC, cU)={(Xa, HJa),Pa',a, A} forms an approximative

inverse system and <Ua<cU/aA<Ua for ogA By (3.3) p: Z->(x, <U) is an

approximative resolution. Since cUa<cUa, it has the required property. In the

same way we construct a required approximative POL-resolution. R

We recallthat H :T0P->HTOP and S:HTOP-*Sh are the homotopy functor

and the shape functor,respectively.Then H(f) denotes the homotopy classof

the map /, and H(3C)={Xa> H(pa>,a),A} is an inverse system in HTOP. H(p)

= {H(pa):aeA} :X->H(3C) is a morphism of inverse systems from X to H(3C)

(see MS [18, p.4]). We say that H(p): X-+H(3C) is an HTOP-expansion (see

MS [18]) provided thatit satisfiesthe followingtwo conditions:

(El) For each ANR P and a map h:X->P there exist a&A and a map

ha:Xa->P such that h^hapa.
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(E2) For each aeA and for maps h, h':Xa->Pe ANR such that hpa^h'pa

there exists a'>a such that ht>a>n.―h'1)n.>.a.

(5.7)Lemma (Mardesic [15]). // p={pa : a^A] : X->T={Xa, pa

a resolutionof X, then H(p)={H(pa): a^A} : X->H(3C)={Xa, H(pa>,a)

ETOP-exfianxitm. M

a, A} is

A} is a

Let r:Z->(3＼ W)^E(Z). Let f={f, fb:b^B}, f''={/', f'b:b^B} :(2C, HJ)

~^(<y,CV) and g'.Cy, £U)-^(ET','W) be approximative system maps.

(5.8) Lemma. // (V and W satisfy property (**) in (5.6), we have the

following:

(i) H(f)={f, H{fb):b^B) :i/(3?)-≫H(<y)is a morphism of inverse systems

in HPOL.

(ii) // f=:f, then H(f) and H{f) are equivalent,i.e., H(f)~H(ff) (see

[18, p.6]).

(iii) // f is an approximative resolution of f with respect to p and q, then

H(q)H(f)=H(f)H(p).

(iv) For each 1-refinement function u of (£T,'W) H(r(u)(gf))~H(g)H(f).

Proof. We show (ii). It is sufficientto show that f= ＼f implies H(f)~

H(f). We assume that f=:f. Take any b^B. Then there exists a>f(b),

f'{b) such that(fbpa,fW, /^,/'(≫)<%. By property (**) of (5.6)H(Jb)H(pa,fm)

=H(f'b)H(pa,rm). This means that H(f)~H(f). Hence we have (ii). In a

similar wav we can show the other claims. M

Since we have (5.6), hereafter we consider only approximative POL-resolu-

tions of spaces with property (**) of (5.6). By (5.7) H(p):X->H(3£), H(q):Y

―>//(<y) are HPOL-expansions. By (i) of (5.8) H{f) is a morphism of inverse

systems. Then H(f) determines an equivalence class aH(f) given by the

equivalence relation ~, that is, aH{f): HC2£)-*H{m) is a morphism of pro-HPOL

(see MS [18]). aH(f) determines a shape morphism saH(f): X-+Y (see MS [18]).

Let [f] = [/"']･ Since f=:f, by (ii) of (5.8) H(f)~H(f), that is, aH(f)=

aH(f). Thus we may define &([f~])=aH{f). From (iv) of (5.8) we have that

5([flr])a([r])=a([flr][f ]). Since H{liX.m): H(2C)-^H(3C) is the identity, a([lc*.i/>])

=ot-Q-H<.x->)' Let f: (DC, cU)->(£y,cv) be an approximative resolution of / with

respect to p and q. By (iii) of (5.7) aH{f): H(3C)-^H(y) is a morphism in

pro-HPOL with aH(f)aH(p)=aH(q)aH(f). Thus saH(f) is the shape morphism

induced by /. Hence s≪([/], g)=SH(f).
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Let <[f]>-<[f"]>e<£:(Z, F)>. Let [/]££(/>, q) and U"^E{p", q").

Since [f] = [f"], Clr3f.t.[/p]= C/f*]Clx],.^ Thus fi([lr],.f.)a(C/P3)=fi(^*])

≪([!*■]*,*･)･ Since ≪([lx]j>,j>")and a([lr]≪,≪')are morphisms in pro-HPOL

induced by identities,then &({_f})and ≪([/"])induce the same shape morphism,

i.e., s≪([f])-sa([/"]).

Now we define a functor ASS: ASh->Sh as follows: For each space X

ASS(Z)=Z and for <[f]>e<E(X, 7)>=ASh(X, Y) ASS≪[f]≫=s≪([f]). From

the above facts we easily show that it is well defined and forms a functor

with S°H=ASS°AS. We summarize results in this section as follows:

(5.9)Theorem. ASh forms a categoryand AS:TOP->ASh, ASS: ASti-^Sh

are functors with the followingcommutative diagram:

TOP -
,.
HTOP

I
AS

Is
1
ASS

*

ASh >Sh. m

We say that X and Y have the same approximative shape type, in

notation ASh(Z)=ASh(F), provided that X and Y are isomorphic in ASh.

ASh(Z)<ASh(7) denotes that X is dominated by Y in ASh.

(5.10) Corollary. (

ASh(F).

i) // X is dominated by Y in TOP, then ASh(Z)<

(ii) // X is homeomorphic to Y, then ASh(*)=ASh(7). R

§6. The Tychonoff functor and the completion functor.

In this section we investigate the influence of the Tychonoff functor and

the completion functor on ASh.

Let C and D be full subcategories of TOP. Let F: C-+D be a covariant

functor. Let / : C->TOP and /': D-+TOP be the inclusion functors. Let *: /->

j'F be a natural transformation. We say that t is dense provided that for

each ZeObC the image of tx:jXX)=X^>j'F(X)=F(X) is a dense subset of

F(X). Let K be a subcategory of TOP. We say that t is rigid for K provided

that it satisfiesthe following condition:

(i?)* For each ZeObC, each K(^ObK and each map f: X-+K there exists

a map /': F(X)-*K such that f'tx=f.
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(6.1) Lemma. Let t;j-+jfF be dense and rigid for POL. Let XeObC and

3C={Xa, pa'a, A} be an inverse system in C. Then p={pa' a&A} : X-+3C is a

resolution of X iff F(p)={F(pa): a^A} : F(X)^F(X)={F(Xa), F(pa..a), A} is a

resolution of F{X).

To prove (6.1) we need the following which is easy to show.

(6.2) Lemma. Let k: X-+Y and f, g : Y-+Z be maps. Let k(X) be dense in

Y. For each <W(ECoV(Z) if (fk, gk)<W, then (/, g)<st<W. W

Proof of (6.1). First we assume that p:X-^-2C is a resolution. Then it

satisfies(Rl) and (R2) for polyhedra. We show that F(p) satisfies(Rl) and

(R2) for polyhedra.

We show (Rl). Let PeObPOL and HJ(=CoV(P). Let fr:F{X)->P be a

map. Take WeCoviP) such that stcUf<cU. By (Rl) for p there exist a^A

and a map g:Xa-+P such that (gpa, f'txXV. Since t is rigid for POL,

there exists a map g': F{Xa)^>P such that g'tXa―g- Since gpa―gfF(pa)tx,

{g'F(pa)tx> fftx)<1Jf. Thus by (6.2) (g'F(pa), f'XsWKHJ. Hence we have

(Rl).

We show (R2). Let PeObPOL and HJ^CoV{P). Take V^CoV(P) such

that stHJr<cU. By (R2) for p there exists cV<=CoV(P) satisfying the property

in (R2) for p, P and HJ'. Take any a^A and maps f, g';F{Xa)-*P such

that (f'F(pa), gfF{pa))<cv. Since F(pa)tx=tXapa, {f'tXapa, g'txja)<cv. By

the choice of ^V there exists a'>a such that (f'tXapa-,a, g'tXapa-ia)<cU'.

Since tXapa.,a = F(pa,,a)tXa,, {ffF(pa-,a)txa,, g'F(pa,.a)tXa,)<<U'. By (6.2)

(ffF{pa>,a), g'F(pa'.a))<st'V'<tU. Hence we have (R2).

Since F(p) satisfies(Rl) and (R2) for polyhedra, by (3.1)it is a resolution.

Next, we assume that F(p) is a resolution. Thus it satisfies(Rl) and (R2)

for polyhedra. We show that p satisfies(Rl) and (R2) for polyhedra.

We show (Rl). Let PeObPOL and <U*=Cov(P). Let f:X-*P be a map.

Since t is rigid for POL, there exists a map /': F(X)-*P such that f=f'tx.

By (Rl) for F(p) there exists a^A and a map g' :F(Xa)-+P such that

(g'F(pa), /'XV. Thus {g'F{pa)tx, f'txXHJ, and hence {g'txja, f)<V. This

means that g'tXa: Xa-+P has the required one. Hence we have (Rl).

We show (R2). Let PeObPOL and HJ^CoviP). There exists cv^CoV(P)

satisfying the condition (R2) for F(p), P and HJ. Take <W<^CoV(P) such that

st<W<<=V. Take any a^A and maps f,g:Xa->P such that (fpa, gpaXW.

Since t is rigid for POL, there exist maps /', g': F(Xa)^-P satisfying f―f'tXa

and g=g'tZn. Since fpa=f'F{pa)tx and gpa=g'F{pa)tx, (f'F(pa)tx, g'F(pa)tx)
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<<W. By (6.2) (f'F(pa), g'FipalXstHVKcv. By the choice of ^ there exists

af>a such that (f'F(pa>.a),g'FiPa-.alXV. Since F{pa,,a)tXa,^tXapa,,a,

(fpa-,a,gPa'.aXV. Hence we have (R2).

Since p satisfies(Rl) and (R2) for polyhedra, by (3.1)it is a resolution. W

(6.3) Lemma. Let t:j-±j'F he dense and rigid for POL. // XeObC is an

AP, then F(X) is also an A?.

Proof. Take any CU, 1}＼^CoV{F{X)) such that st'U^HJ. Since X is an

AP, there exist a polyhedron P and maps /: X-+P, g: P-^X such that (gf, lx)

<fx(Vi). Since t is rigid for POL, there exists a map f':F{X)->P such that

f=f'tx. Since {txgf'tx> W^xK^i, by (6.2)(fzg/', l^Kst^K^. Hence

F(X) is an AP. m

Hereafter we assume that t is dense and rigid for POL with the following

two conditions:

(*) POL is a subcategory of C.

(**) For each polyhedron P F(P)=P and tP:P-*F(P) is the identity map.

Let ZeObC. By (3.15) there exists an approximative POL-resolution p=

{pa: aeA} : X->(3f, cU)={(Xa, <UO),pa-,a,A}. By (3.3) p:X-^3C is a resolution.

By (6.1) F(p)={F(pa): aeA} : F(X)-+F(3C)={F(Xa), F(pa>.a), A] is a resolution.

Since i is a natural transformation, t={lA, tXa: a&A) :3£->F(2C) is a resolu-

tion of tx : X-*F(X) with respect to p and F(p). Since F{Xa)―Xa and ^a=lXa

by (*) and (**), F(pa'.a)=Pa-.a for a'>a. Thus F(3f)=3f and ^=1^. Since

F(p):F(X)-*F(3£)=3C is a resolution, by (3.3) F(p):F(X)-^(x,V) is an

approximative resolution. Thus t=lcx,v)'.(3£,cU)-:>(3£,HJ) is an approximative

resolution of tx with respect to p and F(p). Hence AS(^x)=<[l(^,ci/)]>> which

is an isomorphism in ASh. We have the following:

(6.4)Lemma. For ZeObC tx:X->F(X) induces an isomorphism AS(tx):X

->F(X) in ASh. m

Let FeObC and let q={qb:b<=B＼ :Y-+W, cv)=z{(Yb, cvb),gb.tb,B) be an

approximative POL-resolution. Since F(p): F(X)-+&, ^) and F(q): F(Y)-^

(!y,<=V)are approximative PQL-resolutions, E(p, q)=Appro-AP((Sf, HJ),{<$,<=V))

= E(F(p), F(q)). Then we may define a bijective function ＼(p, q):E(p, q)―>

E{F{p), F{q)) as follows: W{p, g)([m]) = [m] for [m]e£:(i?, q).

(6.5) Lemma. ?T(p, g)([/]D.o)=[F(/)]FClO ,(0,for a map f:X->Y in C.
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PROOF. Let f―{f,fb:b^B＼ '.(DC,≪L/)->(≪/,<=V)be an approximative resolu-

tion of / with respect to p and q. Thus [/] = [/],,,. Let u:B-*B be a

1-refinement function of W, <V). For each b^B (guwfffuwP/uinX^uw-

Since F(.quW)F(f)tx=quWf, F(fum)=fum and F(fum)F(pfuM)tx=fuWpfum by

(**),(F{qum)F{f)tx, fu<≫F(pfuW)tx)<cvulb> By (6.2)(F(quW)F(f), fuWF(pfuin))

<stcVu(.b> Since m is a 1-refinement function, (F(qb)F(f), quW,bfu(b>F(pfum))

<cVb. This means that q{u)f: (2£,V)―K*V, °V) is an approximative resolu-

tion of F(/) with respect to F(/>) and F(q). Thus [g(w)f ]= [F(/)]F(i>)ii;-(<l).

Since [<r(u)f]= [f] by (2.6), ^(p, g)([/],.f)=8r(iif̂ )([f])=[f] = [g(≪)f] =

[F(/)]F(D) ,(0> ^

(6.6)Corollary. W(p, q)([Xx^P,pi)=[.lFcx^']FCp-),F<ip'-)for approximative POL-

resolutionsp, p' of XeObC. M

We define a function F{p, q): ASh(Z, Y)^ASh(F(X), F(Y)) as follows:

F{P, q) = 0(F(p), F{q))W{p, q)R{p, qY＼ where R(p, q): E(X, Y)^<E(X, y)> =

ASh(Z, Y) is defined in (5.4). By (6.6) and the definition = we easily show

that F(p, q)=F(p/, q') for approximative POL-resolutions p, pf and q, q' of

X and Y, respectively. Thus we may put F=F(p, q): ASh(Z, Y)->ASh(F(X),

F(Y)). Since @(p, q) and ＼(p, q) are bijection, so is F. By (6.6) and the

definitionof composition we have that F(n)F(m)=F(nm) for raeASh(X, Y) and

neASh(F, Z). Hence we have a functor F: ASh(C)->ASh(D), when F(Z)=

F(Z) for ZeObC. Here ASh(C) denotes the full subcategory of ASh consist-

ing of ObC. (6.5) means that AS°F=F°AS. By definitionsASS=ASS°F. We

summarize onr results as follows :

(6.7) Theorem. Let C and D be full subcategories of TOP. Let j : C-^TOP

and j'lD-^-TOP be the inclusion functors. Let FiC-^-D and t＼j->j'F be a

functor and a natural transformation, respectively. If t is dense and rigid for

POL with (*) and (**), then F induces a functor F: ASh(C)^ASh(D) with the

following properties:

( i ) The following diagram is commutative:

c
F

AS

ASh(C)

D

Sh
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(ii)

(iii)
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AS(tx):X-+F(X) is an isomorphism in ASh for X&OhC.

F:ASh(X, Y)^ASh(F(X), F(Y)) is bijectivefor X, FeObC. m

Tychonoff spaces are completely regular Hausdorff spaces. A Tychonoff

space is topologically complete provided thatitis complete with respect to some

uniformities. TOP8.5 and CTOP3.5 denote the full subcategories of TOP con-

sisting of all Tychonoff spaces and of all topologically complete Tychonoff

spaces, respectively.

Morita [22] introduced the Tychonoff functor T: TGP-*TOP3.5 and showed

the following properties: For each space X there exists an onto map tx' X-*

T(X) such that

(Tl) if X is a Tychonoff space, then T(X)=X and tx=lx,

(T2) for any map f:X-*Y trf―T(f)tx and

(T3) for any Tychonoff space Y and for any map /: X-^Y there exists a

unique map g: T(X)―>Y such that gtx=f-

Let /': TOP8.8->TOP be the inclusion functor. By (T2) t={tx} :Itop-^/'T

is a natural transformation. By the above data t and T satisfy all the

assumptions in (6.7). Thus by (6.1) and (6.7) we have the following:

(6.8) Corollary, p: X-+3C is resolution of a space X iff T(p): T(X)->T(3f)

is a resolution of T{X). Moreover p is rigid for TOP3.E iff so is Tin), m

(6.9) Corollary. The Tychonoff functor T:TGP-*TQP3.5 induces a functor

f :ASh^ASh(TOP3.5) with the following properties:

(i) The following diagram is commutative:

T

TOP >■TOP3t5

IAS

v

Us

ASh * ASh(TOP3.5)

ASS^, ^^ASS

(ii) AS(tx)'･X―>T(X) is an isomorphism in ASh for any space X.

(iii) f : ASHX, Y)^ASHT(X), T(Y)) is bijectivefor spaces X and Y. U

Let X be a Tychonoff space. Then CoV(X) forms the finest uniformity of

X. Let C(X) be the completion of X with respect to CoV(X). Thus we have

the completion functor C:TOP3.5->CTOPS.5 with the following properties: We

may consider las a dense subset of CCX). Let fy : X―>C(X) be the inclusion
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map.

(Cl) If X is topologically complete, then C(X)=X and jx ―^-x-

(C2) jyf=C(f)jx for a map f: X-+Y in TOP3.5.

(C3) Let ZeObTOP3.5 and yeObCTOP8.5. For any map f:X-+Y there

exists a unique map g:C(X)->Y such that gjx=f.

Let y7: CTOP8.6->TOP8.B be the inclusion functor. By (C2) j={;x} : 1top8.6

->y'C forms a natural functor. By the above data j satisfies all the assump-

tions in (6.7). Hence bv (6.1) and (6.7) we have the following:

(6.10) Corollary. p-.X-^-T is a resolution of a Tychonoff space X iff

C(p): C{X)^C(X) is a resolution of C(X). Moreover p is rigid for CTOP3.5 iff

(6.11)Corollary. The completionfunctor C: TQP3.5->CTOP3.5 induces a

functor C?:ASh(TOP3.6)->ASh(CTQP3.5) satisfyingthefollowing:

( i) The followingdiasram is commutative:

OP,.s *CTOPst
1AS

x

|AS

ASh(TOP3.5) ~ > ASh(CTOP3.5)

(ii) AS(jx) '･X-*C(X) is an isomorphism in ASh for a Tychonoff space X.

(iii) C: ASh(Z, Y)-+A8h(C(X), C{Y)) is hijectivefor Tychonoff spaces X and

Y. m

(6.13) Remark. Independently Morita [23] considered (6.8) and (6.10). He

showed only one directions of (6.8) and (6.10). M

§ 7. The realization functor.

In this section we introduce the realization functor and investigate its

nrnnprfipc:

(7.1)Lemma. Let q={gb:b^B} ;Y->cy={Yb) qVib,B} be a resolutionof a

space Y. If FeObCTOP3.5 and F6GObTOP3.5 for b^B, then q:Y->QJ is an

inverselimit of OJ.



54

The author

[23] proved it.

proof. H
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[26] has proved (7.1).

His paper is already

After a while, independently, Morita

published, and therefore we omit our

Let p={pa:aEiA}:X-*(3C, HJ)=:{{Xa, <Ua),pa>,a> A} and q={qb:bGB} :Y

-≫(% c^7)={(5/6>cVb),Qb'.b,B) be approximative resolutions of spaces X and Y,

respectively.

(7.2) Lemma. Let f={fb:bGB} be a collection of maps fb:X->Yb. If

Y, F6e0bCT0P3.5 for all b<=B and (fb, qb-,bfv)<(Vb for b'>b then there exish

a unique map r(f):X-+Y such that {fb, qbr(f))<stcVb for beB.

Proof. Take any xgX and any 60e5. We put Cbo(x)={qbibofb(x):b<^B

with b>bQ}.

Claim 1. Cbo(x) is a Cauchy net in YH with respect to the finest uniformity

Cov(Yb0).

Take any <=V,ajx&CoV{Yb^ with st^^K^V. By (AI3) there exists bx>b^

such that qti,＼>£VC^cv*? There exist Vxe.<=Vx and F2eq/ such that

(1) qHtHfH{x)eVx and st(Vu c^^v,.

Take any b>bx. By the property of f and the choice of b1} (qbltbofbVQb.bjb)

<cVl. There exists y3eC^i such that qb^bjb^x), qb,bofb(x)^Vs and then by (1)

(2) qb,b0fb(x)tEst(Vlrci/,)cF2 for each b>bu

(2) is the required Condition. Thus we have Claim 1.

Since Ybo is topologicallycomplete, there exists a unique limit point r(f)bQ(x)

of Cbo(x). Then we have a function r(f)bQ:X-+Ybo. It is easy to show that

(3) qb'o,bor(f)b'o=r(f)bofor any b'0>b0.

Claim 2. For each cVeCoi;(F6o) there exists b2>b0 such that {qb,bJb,r(f)bt)

<<V for each b>b2.

Take any cv<=Cov(Ybo). By (AI3) there exists bz>b0 such that ql£,bocV>

stcVbp Take any b>b2 and any xgI Since r{f)H{x)―＼imCb%{x),there exists

b2(x)>b2 such that qv,bJb'{x)^.st{r{f)H{x),cv&2) for each bf>bz{x). Then there

exists Vi^c^ftg such that qb^x＼bJb2<.xM, r{f)H{x)^V^ By the condition of f

there exist F2, F3ecy62 such thatfH{x), qb2u＼bJb2u)(x)^Vz zndfb2{x), qb,hfb{x)

eF3. Then r(f)H{x), qb,bJb(x)^st(yz, c^6jl).By the choice of bz there exists

Fecy such that qH,Hr{f)b2{x),?Mo/s(x)gF. Then (qb2,Hr(f)h, q^bJbX0^ and

hence by (3) we have Claim 2.
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Claim 3. r(f)bo:X-+Ybo is continuous.

Take any x<bX and any neighborhood G of r(f)bQ(x)in Ybo. Since Ybo is

a Tychonoff space, there exist cv, cv^CoviY^) such that sW^cp and

(4) st(r{f)bQ{x),cv)(ZG.

By Claim 2 there exists b2>bQ such that

(5) {qb,bJb,r{f)H)<<Vx for 6>62.

Since qbitbJH: X-> Ybo is continuous, there exists an open neighborhood H of x

in X such that

(6) qH,bJH{H)Cst(qH,HfH{x), <V,＼

Take any x'^H. By (5) there exist Vlf V^^VX such that qH,bJH(x'),

rif＼lx')^.y＼ and qH,bJH(x), r(f)6o(x)eF2. By (6) there exists Fs^c^ such

that qH,bJH(xf), ?62i6o/te(x)e7s. Thus r(f)H{x'), r{f)bJ,x)^Vx＼jVz'O.sKVt, c^)

CF4 for some F4ec^ because sfq/K^. By (4) r(f)bo(x')est(r(f)bo(x),<V)<zG.

This means that r(f)ba{H)CG. Hence it is continuous.

By (3.3) and (7.1) q'.Y-*^ is an inverse limit. By Claim 3 and (3) there

exists a map r{f): X-+Y such that

(7) qbr(f)=r(f＼ for b^B.

Claim 4. (fb, qbr{f))<st^;b for b^B.

Take any &oeB. By Claim 2 there exists bt>b0 satisfying {qH,bJbv r(f)bo)

<cvH. Since {qH,bJH, fb^<^H by the property of f, by (7)(/v qHr(f))<st<VH.

Hence we have Claim 4.

Claim 5. If g, h : X-*Y are maps such that (qbg, qbh)<sfcVb for b^B,

then g―h.

We assume that g^h. There exists xeX such that g{x)^h{x). Since

q:Y-*<y is an inverse limit by (7.1),there exists be 5 such that qbg(x)^qbh(x).

Since 76 is Tychonoff, there exists <VdCoV{Yb) such that st{qbg{x),cv)C＼

st(qbh(x),cv)= 0. By (AI3) there exists bf>b such that ^1,6q^>sfcF6'. This

and the assumption imply that (qbg, q^X0^. Then there exists V^O? such

that qbg{x), qbh(x)^V. This means that st(qbg(x),cv)r＼st(qbh{x),<=V)*0. This

is a contradiction. Hence g=h. We have Claim 5.

From Claims 4 and 5 we have the uniqueness of r(f). Hence we have

completed the proof, m

(7.3) Lemma. Let Y, F6e0bCT0P3.5 for b^B. For any approximative

system map f: (DC, cU)-≫((^,cv) there exists a unique map r(f): X-+Y such that
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(fbp/w, qbr{f))<stcvbfor each b^B.

When we apply (7.2) to the collection{fbP/w'.b^B} of maps, we have

(7.3). m

(7.4) Lemma. Let f:X―*Y be a map. Under the same conditionsas in (7.3),

if f is an approximative resolution of f with respect to p and q, then r(f)―f.

(7.5) Lemma. Let f': {T, <U)->(<y, c＼/)be an approximative system map.

Under the same conditions as in (7.3). if Pfl^FfH. then r(f)=r(f).

(7.4)and (7.5)follow from Claim 5 in the proof of (7.2). 1:

Let k^{k, kc:c^C) :Z-*(Z, W)={(ZC, <WC),kc.,C!C) be an approximative

resolutionof a space Z. Let g={g, gc:c^C} :{y, c^)->(3","W) be an approxi-

mative system map.

(7.6) Lemma. Let Y, Yb> Z, Zce0bCT0P3.5. For each l-refinernent func-

tion u:C-*C of (2-, W) r(g)r(f)=r(k(u)(gf)).

Proof. Take any ceC. Since (gttce)?≪*ce>,kUMr(g))<st<WuU) by (7.3);

(guicrfguwHf), kuMr(g)r(f))<stWuCc> Since (fgUMpfSuM, qgu<.e)r(f))<st<V8Uie:

by (7.3), by (AMI) and (2.2) (gu<.*fguwPjgu≪), guMqgUMr{f))<stWuCc> Ther,

(guiofgutoPfguio, ku<.c->H9)r(f))<sti<WuM. Since e is a 1-refinement function,

we have that

(1) (kuco,cguMfguMpfguw, kcr(g)r{f))<stWc.

By (7.3)

(2) (kulc).egu<.erfgutc->Pfguic),kcr(k(u)(gf)))<stWc.

By (1) and (2) (kcr(g)r(f), kcr(k(u)(gf)))<st2Wc. Hence by Claim 5 in the proof

of (7.2) r(g)r(f)=r(.k(u)(gf)). m

(7.7) Lemma. Let q : Y--≫(cij,̂V) be an approximative AP'-resolution. Under

the same conditions as in (7.3) [f] = [r(f)']p.q for each approximative system map

Proof. Take any 1-refinement function u of (QJ, cy) and any b^B. By

(7.3) (fuwPfuw, guwr(f))<st^VuW and then (qu<.n.bfuinp/ui≫, qtrifyx^b- This

means that q(u)f is an approximative resolution of r(f) with respect to p and

a. Thus rr(f)],..= Co(M)f]. Since [f] = [≪(u)f] by (2.6), [f] = [r(f)],.,. ■
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We assume that all spaces are completely Tychonoff spaces. Let p, q and

pr: X-*(3£,HJY, q': Y-+(QJ, <=V)f,k : Z-^(3*, W) be approximative POL-resolutions.

Let f: (X, cU)-*(<y,cv) be an approximative system map. By (7.3) there

exists a unique map r(f):X―>Y. By (7.5) rif) does not depend on representa-

tions of the equivalence class [f]. Thus we may define r{[f])=r{f).

Let flr:Cy,CV)―>(£T,W) be an approximative system map. (7.6) means that

(i) r([flr])r([f])=r(Iir][f]).

By (7.4) we have that

(ii) r([lx],.,0 = lx.

By (i) and (ii)we can easily show that for an approximative system maps

f: (3T, <*/)'->(≪/,cv)'

(iii) if <[f ]>=<[f ']>, then r([f])=r([f']).

(iii)means that r([f]) does not depend on representations of the equivalence

class <[f]>. Thus we may define r(([_fl})=r([f2)- By (i) and (ii) we easily

show that

(iv) r≪[^]≫r≪[f]≫ = r≪[flr']><[f]≫,where g': (<y,<=V)''-K31',W)' is an

approximative system map.

By (ii)we have that

(v) r≪[lx],.,'≫=lx.

Now we define the realizationfunctor R :ASh(CTOP3.B)^CTOP3.5 as follows :

R(X)=X for XeObCTOP3.5 and R(m)=r(0(p, qY＼m)) for meASh(CTOP3.5)

{X, Y). Here p: X-*(3£,V) and q :Y-+(QJ, CV) are approximative POL-resolu-

tions and 0{p, q): E(p, q)-^ASh(X, Y) is defined in (5.4). By (iii)R is well

defined. By (iv) and (v) R forms a functor. (7.4)and (iii)mean that /?°AS=1.

(7.7) and (iii)mean that AS°i?=l. Hence we summarize as follows:

(7.8) Theorem. There existsa realizationfunctor R : ASh(CTOPs.B)->CTOP8.6

with the following commutative diagram:

CTOP, 5 >CTOP3.5

ASh(CTOP3.5) > ASh(CTOP3.5) ■

Let P be the fullsubcategory of TOP consisting of all paracompact spaces.

Note that paracompact spaces are topologically complete Tychonoff spaces.
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(7.9) Corollary, (i) R: ASh(CTOP,.6)->CTOP8.6 is a categorical isomor-

phism.

(ii) R induces a categorical isomorphism R : AShP(.P)-*P. M

(7.10) Corollary. Let f:X-*Y be a map. Let p:X^(T, V) and q: Y^

(V, CV) be approximative AP-resolutions. Let f: (DC, 17)->(<5/,cv) be an approxi-

mative resolution of f with respect to p and q. Then the following assertions

are equivalent:

(i) f satisfies (ISO) in Appro-AP.

(ii) L/] is 0-n isomorphism in Appro-AP.

(iii) AS(/) is an isomorphism in ASh.

(iv) CT(/): CT(Z)->CT(7) is a homeomorphism.

(7.11) Corollary. Spaces X and Y have the same approximative shape type

iff CT(Z) and CT(F) are homeomorphic.

Proofs of (7.10) and (7.11). We show (7.10). (i) and (ii) are equivalent

by (2.16). From the definition of ASh it is easy to show that (ii) and (iii) are

equivalent. By (6.9), (6.11) and (7.8) (iii)and (iv) are equivalent. (7.11) follows

from (6.9), (6.11) and (7.10). m

Shape theory is a generalization of homotopy theory on POL. The principle

of shape theory is to "investigated bad spaces and bad maps by means of the

good category HPOL". (7.9) gives us a new description of CTOP3.5. Thus we

can study TOP throughout ASh. The principle of approximative shape theory

is to " Investigate bad spaces and bad maps by means of the good category POL ".

Our theory and shape theory are similar in ideas. We say that our approxi-

mative shape theory is a shape theory without homotopies. In the papers which

will follow we will show that ASh has richer structures than TOP and has

many applications in topology.

References

[ 1 ] Alo, R. A. and H. L. Shapiro, Normal topological spaces, Cambridge Univ. Press,

1974.

[2] Arhangelski, A.V., On a class of spaces containing all metric and all locally

bicompact spaces, Dokl. Akad. Nauk SSSR, 151 (1963), 751-754 =Soviet Math.

Dokl., 4(1963), 1051-1055.

[3] On a class of spaces containing all metric and all locally bicompact

spaces, Math. Sbornik, 67 (1965), 223-254.

[4] Bacon, P., Continuous functors, General Topology and Appl., 5 (1975), 321-331.



Approximative shape I 59

[5] Borsuk, K., Theory of retracts, Monografie Matematyczne 44, Polish Scientific

Publishers. Warszawa. 1967.

[6] Theory of Shape, Monografie Matematyczne 59, Polish ScientificPublishers,

Warszawa, 1975.

[ 7 ] Eilenberg, E. and N. Steenrod, Foundations of algebraic topology, Princeton Univ

Press, 1952.

[8] Engelking, R., General topology, Monografie Mathematyczne, 60, Polish Scientific

Publishers, Warszawa, 1977.

[9] Freudenthal, H., Entwicklungen von Raumen und ihren Gruppen, Compositio Math.,

4 (1937), 145-234.

[10] Haxhibeqiri, Q., Shape fibrations for topological spaces, Glasnik Math., IT (1982),

381-401.

[11] Hu, S.T., Theory of retracts, Wayne State Univ. Press, Detroit, 1965.

[12] James, I.M., General topology and homotopy theory, Springer-Verlag, New York,

1984.

[13] Lisica, Yu. T., Extension of continuous mappings and a factorization theorem,

Sibirsk. Math. Z., 14 (1973), 128-139 = Siberian Math. J., 14 (1973), 90-96.

[14] Mardesid, S., On covering dimension and inverse limits of compact spaces, Illinois

T. Math.. 4 (1960). 278-291.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[27]

[28]

Approximate polyhedra, resolutions of maps and shape fibrations, Fund.

Math., 114(1981), 53-78.

On resolutions for pairs of spaces, Tsukuba J. Math.. 8 (1984). 81-93.

Marde§ic, S. and A. P. Sostak, On the homotopy type of ANRs for p-paracompacta,

Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 27 (1979), 803-808.

Mardesic, S. and J. Segal, Shape theory, North-Holand, Amsterdam, 1982.

Mioduszewski, J., Mappings of inverse limits, Colloq. Math., 10 (1963), 39-44.

Morita, K., Products of normal spaces with metric spaces, Math. Ann., 154 (1964)

365-382.

On shapes of topologicalspaces,Fund. Math., 86 (1975),251-259.

Cech cohomology and covering dimension for topologicalspaces, Fund.

Resolutions of spaces and proper inverse systems in shape theory. Fund.

Approximative expansions of maps into inverse systems, to appear m

Cech homology, Steenrod homology and strong homology I, to appear in

Department of Mathematics

Faculty of Education

University of Yamaguchi

Yamaguchi City, 753, Japan.

Math., 87 (1975), 31-52.

Math., 124 (1984), 263-270.

[24] Nagata, J., A note on M-spaces and topologically complete spaces, Proc. Japan.

Acad., 45 (1969), 541-543.

[25] Palais, R. S., Homotopy theory ofinfinitedimensional manifolds, Topology, 5(1966),

1-16.

[26] Watanabe, T., Approximative Shape Theory, mimeographed notes, Univ. of Yama-

guchi, 1982.

Proceeding of Banach Math. Center.

Glasnink Math..


