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ON THE DIFFERENCE F(x)—g'(x)

By

Saburd UcHIYAMA and Masataka YORINAGA

In 1965 H. Davenport [2] proved that if f(x), g(x) are polynomials in x
with arbitrary real or complex coefficients, then we have either

f3x)—g¥x)=0  identically,
or

0 deg (/*(x)— g2 - deg [(x)+1.

It is known that for some pairs of polynomials f(x), g(x) the equality holds in
(1). Clearly, we have for such pairs of polynomials

deg f(x)=2F, deg g(x)=3k
with some integral £=1. Indeed, if

f(x)=x2+2, g(x)=x*43x,

then
Fix)—g*(x)=3x*+8,
and if
f=xt+2x,  gl=x3xt,
then

f3(x)—g2(x):—x3—%.
Some other examples of pairs of polynomials f(x), g(x) of higher degrees
satisfying the condition

@ deg (£4(x)—g*(x)= 5 deg f(x)+1

are given by B.J. Birch, S. Chowla, Marshall Hall, Jr. and A. Schinzel [1].
They have shown in fact that

f(x)=x+4x*+10x2+6,

g(x):x9+6x7+21x5+35x3+6—2§x ,
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and
f(x)=x"+12x"4+60x*+96x ,

g(x)=x"4-18x"4-144x°+576x°+ 1080 x> +432

are such pairs. It is interesting to note that, in all of these examples, f(x) and
g(x) are polynomials of @[ x7], where @ denotes as usual the field of rational
numbers. It can be shown that there is also a pair of such polynomials f(x)
and g(x) of degrees 8 and 12, respectively, with coefficients in Q. Davenport
[2] has found that there exist polynomials f(x) and g(x) satisfying the condi-
tion (2), being of degrees 16 and 24, respectively, and having coefficients in the
field C of complex numbers. Actually, the polynomials f(x), g(x) in Daven-
port’s example have coefficients in @(+/—3). However, the question of whether
there exist pairs of polynomials f(x), g(x) with coefficients in € and with
deg f(x), and so deg g(x) also, arbitrarily large which satisfy (2) remains still
open (cf. [17 and [2]).

Our principal aim in this note is to indicate that for %.2=7 and 11 thére
exist pairs of polynomials f(x), g(x) with real algebraic coefficients such that

deg f(x)=2k,  degg(x)=3k,

and the condition (2) is therewith fulfilled. It may be of some interest to note
that, in order to produce pairs of polynomials f(x), g(x) of that kind, we have
taken full advantage 6f making machine computations whatever possible, with
the aid of programmes in REDUCE-2, a language designed and used for al-
gebraic manipulation of formulas.

1. General considerations.

We begin with describing some general methods, or algorithms, of finding
particular pairs of polynomials f(x), g(x) that satisfy the condition (2). The
first one is a slight modification of the method proposed in [1].

(I) Let 2 be a given integer =1 and take v=1, 2, or 3. Define

h(x):x5k-u+t1x5k—y_l'+ i +t5k—u ’

where the t;s are parameters whose values are to be determined later. We
write
10k-2y
A (x)= 3 a;x0F--i=xBk-2f(x) L A(x)

i=0

with
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13
f)=3 aix®t,  deg A(x)=8k—2v—1,

and
15k~3p .
hS(x): Z(J) bjx15k—3v-]:x12k~3ug(x)+B(x)
P
with
k
g(x)= is_%bjx”'j, deg B(x)=12k—3y—1.
pa

We have then

Fx)—g¥x)y=x"%FH(x),
where

H(x)=(h*(x)— A(x))*~ (h*(x)— B(x))*,

so that deg (f*(x)—g*(x))=k+1 if and only if deg H(x)=25k—6y--1. Therefore,
a sufficient condition for f(x), g(x) to satisfy (2) is that

3) Aope17= Qg™ " =d55-2=0,
(4) b3k+1:b3k+2: ::b512—2:0)
and

®) 3asp-1—2b5, 170

There are 52—4 equations in (3) and (4) with 52—y unknowns ti, o, o0, tspey
(v=1,2, or 3), and we may find in general the values of the t; satisfying (3),
(4) and (5). With y=1, for instance, the conditions (3), (4) and (5) can be replaced
by

Qops1=0Asp+2™= ** =qgp-;=0
and
bsii1=b3p40= -+ :bsk—2:0; bsk—liO,
or by
Qop+1=Aopt2= " = Asp-3=0, Q55170
and
bspr1=bypie= - =bsz-1=0.

Note that we always have

An=_ 23 (2—0:ptt;, bnzﬂqu aitj,

i+j=m
isj

where a,=b,=t,=1, and J;;=1 if /=, and =0 if =]

The number of parameters #;, which is the same as the degree of the basic
polynomial h(x), can be reduced as low as to 32—1, at the cost of imposing on
the coefficients of A%(x) and of h*(x) somewhat more complicated conditions to
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satisfy than (3), (4) and (5).
A variant of the above method is the following. First, take k=2/41, /=0,
and put
h(x)=x" x50 4 - g
We write as before

100+2 )
h2(x)= .20 atx"”*z":x5’+1f0(x)+A(x)

with
2l+1 X
Jolx)= P ax**t, deg A(x)=8/,
and
151+3 .
hs(x): z}) bjx151+3«1_:x121+2g0(x)+B(x)
i=
with

go(x)zs,lijbjx”“‘j , deg B(x)=12{+1.
£

Then, with f(x)=f(x?), glx)=xg.x? we have deg f(x)=2k, deg g(x)=3k, and

fix)— g x)=x"*""""H(x),
where
H(x)=(h¥x®)—A(x®))—(h*(x®)—B(x*)*.
We have, therefore, deg (f3(x)—g%x))=+k+1 if and only if deg H(x)=50/4-8,
and sufficient condition for f(x), g(x) to satisfy (2) is that

Qar42=0a113= *** =054, =0
and
bsi41#0, bsree=bs4y= - =b54,=0.

Next, taking £=3(+2, /=0, we define, with
h(x):xuﬂ‘l'tlxsl”‘i' R o PTFON

10l+4

hz(x): aix10l+4—i:x8!+5f“(x)+A(x) ,

1=90

f@=xfat),  fil0=5 a1, deg A)=8I+2,
and

15l+6 .
hS(x): ]_;0 bjx15l+6~]_—_x12l+4g0(x)+B(x) s

g()=gs(x?, go<x>:3§b,»x“+2*f, deg B(x)<12/+3,
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so that deg f(x)=2k, deg g(x)=3k, and

F3x)—g¥x)=x"""*H(x),
where
H(x)=(h*x*— A(x*)*—(h*(x*)— B(x*)*.
It follows from this that deg (f*(x)—g*x))=~k+1 if and only if deg H(x)=
751427, and a sufficient condition for f(x), g(x) to satisfy (2) is that

a24+170, Qo142=Aal+3=— **° =a542=0
and

bars=bgi4s= -+ =b5;+2=0 -

(I) Let k2 be again a given positive integer and consider the polynomials
with coefficients in C

2k . 3k X
f(x)=3 awx®*%,  glx)= 2 b;x**7,
=0 j=0

where it is assumed that a,=b,=1. We wish to show that the pair of poly-
nomials f(x), g(x) satisfies the condition (2), if and only if
(6) 3f"(x)g(x)—2f(x)g'(x)=c,
where ¢ is a non-zero constant.

For any monic polynomial P=P(x) of degree n=1 and with coefficients in
C we have

P(x)= I (x—£)
and therewith define
so(P)=n and sAP)zé&‘; w=1,2,3, ).

Now, in order to have
deg (f¥(x)—g¥x)=k-+1
it is necessary and sufficient that the coefficients of x™ (k+2=<m=<6k—1) in
f3(x)—g%x) do vanish and that of ¥+ does not, which is obviously equivalent
to
=0 (1£vs5k—-2),

7 () —5(g")
( Smsle {qu (v=5k—1).

Since we have s,(f*)—s.(g%)=3s,(f)—2s,(g) for ail values of v, it follows from
the formal power series expansion
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3'(x) _ 2¢'(x) _ 5 $u(f)—s.(g%
F(x) glx) = xH
that (7) implies (6), and vice versa.
It is easily seen that if we write

Bf'(x)g(x)——Zf(x)g/(x):5§:cmx5k-1—m )

then
tn=3 @m—5)abn; (O=m=5k—1),
where
u=max (0, m—3k), v=min(m, 2k).
We have
¢o=0 automatically,
and

Cs2-1=302p-1D3r—202,b55 -, .
Thus, the condition (6) is equivant to
€17 Cy= o+ =55-5=0, Csr-1=¢ (#0).

Our equation (6), which in some cases is slightly more convenient to deal
with than the original condition (2), may be regarded as an indefinite differential
equation in polynomials f(x) and g(x). The equation (6) admits a polynomial
solution g(x) when the polynomial f(x) is given in such a way that the integral

[renoeaz

is a so-called pseudo-hyperelliptic integral ; however, though this way of approach-
ing the problem seems to be effective, the situation is in reality not so simple
as expected.

Now, suppose that k=2/-+1, /=0, and put

21+1 Li1md 31+1 .y
folx)= 2 axtT, go(x)ZJZ})bjx3 T

Then, the polynomials f(x), g{(x), defined by

F)=flx®, glx)=xgux?,
so that deg f(x)=2k, deg g(x)=3k, satisfy the equation (6), if and only if

1
C1=Cp™= + =C514:=0, C51+2:'§'C (#0),

where
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® Cm=—

K

2m—5))abm-; 0=m=bi+42)

e

with
u=max (0, m—3[—1), v=min(m, 2[+1).

If p=3[+2, [=0, and if
21+1 3l+2 X
Folx)= 2 ax® 7t gy(x)= 2 byxtted,
i=0 i=
then the polynomials f(x), g(x) defined by

F=xfox?,  glx)=gx®,
so that deg f(x)=2k, deg g(x)=3k, satisfy the condition (6), if and only if

C1=Cy== *» =C(5142=0, csmz%c (#0),
where
©) tn= 3 @m—5)aibps  (O=m=5+3)
with

u=max (0, m—3[—2), v=min(m, 2{4+1).

2. Some specific examples.

First we shall give examples of pairs of polynomials f(x), g(x), satisfying
the condition (2) with deg f(x)=2k, deg g(x)=3Fk, for some small values of k.
Our method of determining such pairs of polynomials f(x), g(x) will chiefly be
the method (II) which we have just described above.

(i) k=1. Here, we have k=2/+1, (=0, and put
flx)=aox+a,,  gox)=box+bs,
where a,=b,=1. The coefficients ¢, given by (8) with /=0 are:
¢o=0 automatically,

¢:=2a,b;—3a,b,=2b,—3a,,

C;=—ab;.
Accordingly, if we take

a,=2z, b,=3z with zeZ, z+0,

where Z denotes the set of rationnal integers, then we have
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1/‘1:0, (:2=—~622$0.
Thus we have
folx)=x+2z, glx)=x+3z,

f(x)=fo(x)=x2+2z, glx)=xgox*)=x"+3zx,
and
Fx)— g% x)=32"x*+82°,

3f(x)g(x)—2f(x)g' (x)=2c,=—122%.

We note that the method (I) will furnish as a general solution of (6), i.e.
of (2),
f(x)=x2+2t1x +134-2t,,

g(x)=x° 43t x*+ 3(B-H ) x +1,(t3+38),

where t,, t, are free parameters with £,#0.

(i) k=3. In this case we have k=2/[+1, /=1, and take
folx)=aox*+ax*+ax+as,
Go(x)=box*+b1x*+bex®+bsx by,

where a,=b,=1. We have, by (8),

tn=2 @m—5)abn-;  (O=m=T)

with u=max (0, m—4), v=min(m, 3), where ¢,=0 and the ¢, (1Zm<7) should

satisfy
Cl=2b1“301=0 )

c:=4b,—a;b,—60,=0,
cs=6by+aib,—4asb,—%a,=0,
c,=8b,+3a1b;—2azb,—7ash;=0,
¢s=5a,b,—5a3b.=0,
ce=2asb,—3asb;=0,
Cr=—azh,#0.
We introduce a new set of parameters ¢; (1=<;7=3) and write
a,=2,
a,=t5-+2t,,

03:2t112+2t3 .
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Then, the equations ¢,=0 (1=m=4) will give
b,=3t,,
by=3t1+3t,,
by=13+4-6¢,t,+3t,,

b4:3t%t2+3t1t3+_§‘t§ »

and the equation ¢;=0 becomes, when reduced
tz(t1tz+2t3):0 .

Now, if ¢,=0 then ¢,=0 implies ¢;=0, giving b,=0. So, we must have £,#0,
and
tltrl-Zi;,:O.

On the other hand, it follows from c;=c¢,=0 that
33ty 3t —265=0.
Substituting in here t;=(—1/2)t,¢,, we get t,(3t5—4t,)=0, or
3t2—41,=0;
a general integer solution of this last equation is

=2z, t,=3z% with ze Z, z+#0,

and so
t3:—323 .
Hence
a,=4z, a,=10z%, a®=6z%:
b,=6z, b,=212%, b,=35z%, b4=%z4.

We thus have
Fx)=fo(xD)=x"+4zx'4+1022x2+-62° ,
g(x)ZXgo(x2)=x9+62x7+21z2x5+35z3x3+§2§z4x ,

where
3f(x)gx)—2f(x)g’(x)=—3782".

This with z=1 is one of the examples given in [1].

(iii) k=2. For this value of 2 we have k=3(42, /=0, and we easily find,
referring to (9), a pair
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f(x)=x"+2zx,
g(x)=x°43zx*+ %zg

with ze 2, z#0. Here
3f(x)g(x)—2f(x)g’(x)=9z".

(iv) k=>5. In this case k=3[+2, /=1, and one may proceed in a manner
similar to that for the case of k=3, with (9) in place of (8), to obtain a pair
fl)=x"+6zx"+1522x*+122%x |

g(x)=x"%49zx2+362°x°+722°x°+ l;)iz%c?‘ -+ %)ZZ

5

with ze Z, z+0, where

3f(x)g(x)—2f(x)g'(x)=486z"°.

For z=2 this reduces to another example found in [1].
So far everything is quite simple and no machine computations are needed.

3. Further examples.

We are now going to describe the examples newly found of pairs of poly-
nomials f(x), g(x) satisfying the condition (2), or equivalently the equation (6),
such that

deg f(x)=2k, deg g(x)=3k,

where k=4, 7, 8 and 11. Our computations were done on an electronic computer
HITAC M-200H (VOS 3) in the Information Processing Center, Hiroshima Uni-
versity, Hiroshima.

(v) k=4. We have
f=Fawtt,  go= b,

where a,=b,=1 and, with free parameters s, t, 0,
a;=8s-+2¢,
a,=28s%+14st+71%,
a3;=568%--42s%-+42st*4-61°,
a,=70s"+70st-+1055°*4-30st° +11¢*,
a;=56s5°+70s*t+140s°2+60s%°+44s1* —415,
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as=285°+425°t +1055"t*-+ 605+ 66524 — 1257,
@, =857+ 145t +425°* - 30s**+ 44 5% — 12525 — 124",
Ag=8°+25"t+Ts°*+6s°t* -+ 1154t — 4535 — 12517 +1%;
1=12s43¢,
b,=66s524-33st 41247,
bs=220s°-+-1655%+120st24+19¢3,
bs=4955*+4955% +540s%2+ 17151343924,
bs=T925°+9905*¢ -+ 1440s°1>+684 5%+ 312514+ 24¢° ,
bs=9245°+13865°t + 2520512+ 1596 5°t3 -+ 109252+ 16855+ 30,
by =T925"+ 13865t +30245°12+ 2394 54>+ 2184 %14 +-504 525+ 180515 —36¢7 ,
bs=4955°+9905"t + 252052+ 2394 553+ 2730 5444 + 840535
+4505%°—180st"— 158,
by=2205°+4955° 1440512+ 1596 5°1° -+ 2184 55 + 84054/
~+6005%°—3605%"—60st*—60¢°
b1o=665'"+1655-+-5405°2+684 s>+ 10925544 504 °¢°
+45054t6——36033t’~9052t8—1805t9+gzzt“’ ,
11=12811 4335+ 12052+ 171533+ 312514 - 168 5%
+180551‘6—-1803“t7——6033t8—18032t9+27st“’—-%t“ ,
b1y =543t 412512+ 195°¢*+ 39584 -+ 24 5715 4-3055¢6
—365%"—155%*—60s%° - %Zszt“’— % st ?;t“‘ .
The polynomials f(x), g(x) satisfy

3f'(x)g(x)—2f(x)g’(x)=—513t°,
(vi) k=7. For this value of # we have k=2/+1, /=3, and put
o 14-21 mb 21-27
f(x)—i:anix , g(x)—g0 X

with ay=b,=1. The coefficients a; (1=</=7) and b; (1=j7=10) are given in the
following way.
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Let » be any one of the roots of the irreducible quintic equation

xa—%x3+%x2—%9x+%:0,

which admits a unige real root in the interval (—3, -—2), and set

_(}éi—%r )’“
ST\ r2r—4
Then, with a free parameter t+0,
—1447*—108r*+-288r2—348r+ 243 .

a;=

16 ’
46212r* -+ 368521° —88576r2-+108647r—78957 . ,
a,= s°t*,
1248
— 240727 — 2017214 44764r*—54790r 40731 , .
aAz= s,
312
1030687 +88872r* —187572r24-230573r — 170597,
A= st 5
1248
— 2352074 —20244r3 4121672 —54880r4-37653
as=- i r,
624
4257674351007 — 7849612+ 98508 — 77623 |, ,
ag= E A
9216
—60rt—48r*+112r*—145r+100 .
a,= s°t';
96
—432rt—324r°+864»*—1044r+729
b1 - st 5
32
040874475361 —17984r2 422069 — 16083 , ,
b2 = s°t*,
104
by — —469512r*—397068r°+862412r*—1051214r4-788907 o
s 1352 St
22105087* 4196239072 — 398725812 -+4789471r — 3641527
bs= stt,
2704
— 2506447 — 2291167 +-443516r*—5300807r +401607
bs= t°,
208
15800474+ 1627567% — 27139212+ 2332447 — 314765 , ,
be= - - — §1°,
2304
b = —974047*—9102072-+17428072— 187081~ -+ 168035 5
T T — ’

768
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_ 294840r*-271572r°—522144724-601874r — 483901 s

248

bs 3072 £,
— 257748 —236268r° +437440r*— 557307y + 420451
by = 9216 St

60r*+-48r°—40r*+-193r—100
10= 64 .

Here we have

4 3__ 2 —_—
3(R)gt)—2f (0)g (r)= - AR IOHISITADS e,

(vil) k=8. Here, we have k=3[+2, [=2, and
f(x): iﬂ aixls—si , g(x)“—‘ jzsobjxu—sj s
where a,=b,=1 and, with =0,
_ —26+6+/—3

a,— 37"41‘,

_ 241-105v=3
- 9

2 B

—1404+-724/—3

a= =S

P O E VoV I
6

_ —64424/—3 5

57 3 y

b, =(—13+3+v-3)t,

by HI—183V3
6
 —4600+3384v/=3 ,
by = r,
27
b 1835—1725v=3
gm N S
6
_ —1177+1221v/=3
bS* 3 ¢ ’
b — 1043—1008+/—3 ¢
6 — — Z

3 »
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b, =(—178+138/ =317,
by =(20—12+/—3)1%.
With these polynomials we find
3 (x)g(x)—2f(x) g’ (x)=(—416+1248/ —3)1** .

For =1 our polynomials f(x), g(x) will reduce to the ones found by Daven-
port [2].

(viii) k=11. In this case we have k=3[+2, [=3, and
7 . 11 .
f(x): .E_o aixm«az , g(x)= jz—jo bjxas—aJ ,

where a,=b,=1 as before and the coefficients a; (1=</=7) and b; (1=7=11) are
given as follows.
Let » be any one of the roots of the irreducible cubic equation

x3+3x2+7x+3§1:0,
which has a unique real root in the interval (—3, —2), and set

24r2+36r+156_)1/5
= 7 .

Then, with a free parameter ¢+0,

_ 15¢2+18r—49

=g s't,
_ —267r*-+1878r+6661
@2 896 S
_ —369r*—2566r 5097 , ,
4= 224 S
o AT9Tr* - 18798r1-31093
= 896 St
. —3063r*—9162r 15391
8 4:48 s
__ 693r°4-5502r 411501 "
e 4096 ’
_ —3*—18r—43

a,;= T s°;
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457%4-54r—147

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4

bi="""128 s,

p 153 +1188r+3003
2= 224 ,

b, — 1214179248~ 143775, ,
s = 1568

. 1467997 5364907 +720999 ,
+= 3136 ’
o 7641 —19404r 21249

5 — 64 »

b, — 20163+ 71202 10699 o
o= 1024

. —2340r* 364237571
= 1024 s
. . TBL1r*-+101070r+199485 ,
s = 4096 St
. 384677850747 —106315 _,
= 4096 ’

b 2493r°-H4926r 48217

10 — 896 2

by = —3r —127’7772}7 sttt

256

Here, we could replace, of course, ¢ by st (or by s™%), thus eliminating s in
the above expressions for the a; and the b;; this replacement, however, would
not seem to bring any particular improvement on these expressions.®

We have

2 2
3 (x)g(x)—2f(x)g'(x)= E—ﬁil—ggil S8,
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