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THE JACOBSON RADICAL OF MONOID-GRADED ALGEBRAS

By

G. Karpilovsky

It is always a pleasant surprise to find that certain well-known results se-

emingly of a different nature can be obtained as a consequence of a general

approach which absorbs and unifies all the existing methods. This "right"

viewpoint is often the main difficultyin any subject. It certainly applies to

the topic under consideration here, which is the study of the Jacobson radical

of monoid-graded algebras. These algebras include such classicalobjects as

group-graded algebras, crossed products, twisted monoid rings, skew monoid

rings, polynomial rings, skew polynomial rings, etc. The "correct" approach

which we shall adopt is to consider the graded radical of a module and its im-

portant special case, namely, the graded Jacobson radical of a graded algebra.

A detailedaccount of all relevant background for group-graded algebras can be

found in NSsta'sescu and Van Oystaeyen (1982a). As examples of successful

applications of graded radicals we mention the works of NastSsescu (1984),

NSst&sescu and Van Oystaeyen (1982b) and Jespers and Puczylowski (1990).

The purdose of this paper is to prove a number of general results concern-

ing the Jacobson radical of monoid-graded and group-graded algebras. One of

the main theorems provides a large class of groups G for which any G-graded

algebra has the property that its Jacobson radical is a graded ideal. We also

demonstrate that most of what is known concerning the Jacobson radical of

polynomial rings and skew polynomial rings is an easy consequence of our

results.

1. Notation and terminology.

Throughout, A denotes an algebra over a commutative ring i?, J(A) the

Jacobson radical of A and J(V) the radical of an yl-module V. Given R-

submoduies X and Y of A, we write XY for the 7?-submodule of A consisting

of all finitesums

Ilxiy-i with XjGl, ^gF

Let M be a multiplicative monoid, i.e. M is a multiplicative semigroup with

Received March 25, 1991.



20
G. Karpilovsky

identity element 1. We say that A is an M-graded algebra if there is a family

{Ax＼xgM＼

of i?-submodules of A indexed by the elements of M such that the following

conditions hold:

A = Rx^mAx (direct sum of i?-modules)

AxAy^AXy for all x, y^M

(1)

(2)

We shall refer to (1) as an M-grading of A and to Ax as the x-component of A.

An element aeA is said to be homogeneous of degree x, if a^Ax for some

xeM.

Any algebra A may be considered M-graded, for any monoid M, by putting

Ai = A, v4x=0 for I^xgM

Such an algebra A is said to be triviallyM-graded.

Again assume that M is a monoid and A an M-graded algebra. Owing to

(1), each element a in A can be written uniquely in the form

a= S ax (ax^Ax)
xe.M

with finitelymany ax^0. The support of a, written Suppa, is defined by

Supp a={x(BM＼axj-0＼

Thus Suppa is a finiteset which is empty if and only if a=0. The number

of elements in Supp a is called the length of a. In case M is a group, the

supporting subgroup of a is defined to be the subgroup generated by Supp a (by

convention, the subgroup generated by an empty set is the identity subgroup).

When (2) is replaced by the stronger condition

AxAy=Axy for all x, y^M

we say that A is a strongly M-graded algebra. Of course, if R=Z, then we

say that A is an M-graded ring (respectively, strongly M-graded ring) instead

of A being an M-graded algebra (respectively, strongly M-graded algebra).

Let A be an M-graded algebra. An .A-module V is said to be M-graded

(or simply graded) if there exists a family

{Vx＼xezM＼

of i?-submodules of V indexed by M such that the following two conditions

hold:

V=RxeuVx (direct sum of i?-modules)
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AxVv^Vxy for all x, y<=M

The above definition certainly implies that the regular module AA is graded

(with VX=AX for all xgM). A submodule W of a graded module V is said to

be a graded submodule if

w=RxeM(wr＼vx)

A graded left yl-submodule of A is called a graded leftideal of A. The notions

of a graded-simple and a graded-semisimple module are defined in an obvious

manner. A graded submodule W of a graded ^-module V is said to be graded-

maximal if Wi^V and W is not strictly contained in any proper graded sub-

module of V.

Let V be a graded y4-modu!e. Then the graded radical J8(V) on V is

defined to be the intersection of all graded-maximal submodules of V. By con-

vention, Je(V)=V if V has no graded-maximal submodules. The reader may

easily verifythat if V^O is finitelygenerated, then JB(V)j=V.

The graded Jacobson radical Jg(A) of A is defined by

J*{A)=p(AA)

where AA is the regular left yl-module. It is immediate that Jg(A) is a graded

ideal of A which contains all graded nil left ideals of A.

2. Monoid crossed products.

The most important example of a monoid-graded algebra is a monoid crossed

product. It includes such well known constructions as ordinary crossed pro-

ducts, skew monoid rings, polynomial rings, skew polynomial rings, etc. The

notion of a monoid crossed product is due to Bovdi (1963) and seems not to be

well known to many people. In this short section we shall include all the

relevant background required for our purposes.

Let A be an algebra over a commutative ring R, let M be a monoid and

let AutR(A) be the group of all i?-algebra automorphisms of A. Denote by

U(A) the unit group of A. Given maps

a: M―> AutR(A)

and

a:MxM―>U(A)

we say that (M, A, a, a) is a crossed system for M over A if, for all x, y, z<=M

and a^A, the following properties hold:

x{ya)=a(x, y)xyaa(x} y)-1
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a{x, y)a(xy, z)~xa(y, z)a(x, yz)

a(x, l)=a(l, x)=l

where by definition

xa=a(x)(a) for all a^A, xeM

Let (M, A, a, a) be a crossed system for M over A and let A*M be the free

left
^4-module

freely generated by the elements x, igM, with multiplication

defined distributivelyby using

(aix)(a2y)=aixa%a(x, y)x~y

for all ai, a2(=A and x, y<=M. Then A*M becomes an i?-algebra and is called

a crossed product of M over A. It is clear that A*M is a strongly M-graded

i?-a!gebra with identity element 1-1, (A*M)l-=A-l and with

(A*M)x=Ax = ZA

It is clear that A may be embedded in A*M via a>->a-I and we identify ^1

with its image A-l in A*M, From now on, we write I instead of 1-T. With

this convention, I is the identity element of both A and A*M.

If a(x, y)=l for all x, y^M, and a is a homomorphism then A*M is called

a skew monoid ring of M over A and is denoted by A"M. On the other hand,

if o(x)=l for all xeM and a(x, j)Gf/(Z(^l)) for all x, y&M, then ^l*M is

called the twisted monoid ring of M over ^4 and is denoted by AaM. It is clear

that A"M is a strongly M-graded Z(i4)-algebra.

Let M be a free commutative monoid freely generated by the indeterminates

{xi＼i^l} and, for each *<=/, let at be an i?-automorphism of A. Then there is

a unique homomorphism <r:M-^AutR(A) for which <7(jCi)=<rt,/el. The cor-

responding skew monoid ring A"M is called the s&ew polynomial ring in the

commuting indeterminates x* with coefficientsin A. Of course, if each at=l,

then yl^M is the ordinary polynomial ring in the commuting indeterminates xt

with coefficientsin A.

3. Some auxiliary results.

In this section, we shall record some useful observations required for sub-

sequent investigations. Throughout, M denotes a multiplicative monoid. All

rings are associative with l=£0 and subrings of a ring R are assumed to have

the same identity element as R.

Lemma 3.1. Let A be an M-graded algebra where M is a right (or left)
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cancellativemonoid. Then Ax is a suhalgebra of A.

Proof. It obviously sufficesto verify that Ax contains the identity element

of A. Assume that M is a right cancellative monoid. There is an expansion

l=2Lei>fa.r with ax<=Ax for all xeMand all but a finitenumber of ax are

zero. Fix some zeM and a'z^Az. Then the product axa'zliesin Axz for all

xgM. Since M is a right cancellative monoid, we also have ^x&uAxz=

R^uAxz. Thus

ai=l-a't= S axa't&(@xexAxt)nAl
x&M

Hence all the axa'z for x^l must be zero and axa'zmust be a'z.It follows that

ax acts as a left identity on Az for all zgM. This forces ax to be a left

identity for the algebra A. Consequently, ax^Ax is the identity element of A,

as required. A similarargument proves the case where Mis a left cancellative

mnnniH KM

Given monoids M and M', by a monoid homomorphism, we understand any

map /: M-*M' such that /(1)=1 and f(xy)=f(x)f(y) for all x, y^M. Any

multiplicativelyclosed subset of M which contains the identity element of M is

pjiIIpHn ciihryi/vyini/inf A/f

Lemma 3.2. Let M be a monoid and let A be an M-graded algebra.

(i) If f' M―>M' is a surjectivemonoid homomorphism, then A can be viewed

as an M'-eraded algebra via

A ― V
Ay for all xeM'

(ii) // S is a submonoid of M and Ax is a subalgebra of A, then the sub

algebra AiS^ of A defined by ^4(S)―Q)x<=sAx is an S-graded algebra.

Proof, (i) It is clear that A=Q)x(aM,Ax. Since, for any x,z(bM'

AXA,= ( S A

£ S 23

d V A

f(u-)= xz

the required assertion follows.

^MeS 2 2 4yt

― Axzt

(ii) It clearly suffices to verify that .A(S:icontains the identity element of

A. Since /1<S)=2A, the result foollows. m
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Lemma 3.3. Let H be a suhmonoid of a monoid M such thatfor any h^H

and g^M―H, hg<£H (or for any h(=H, g^M―H, gh£H). If A is an Ag-

graded algebrasuch that At is a subalgebraof A, then

(i) U{A)r＼A^ = U(A<H＼

(ii) A^nKA)QJ(A^).

that

Proof. Our assumptions guarantee that A(fn is a subalgebra of A such

A=A<B>R(G).lf:WA.)

(direct sum of left or right Ac7/)-modules).

is a consequence of (i), the result follows.

This clearly implies (i). Since (ii)

1

Corollary 3.4. Let {Ht＼i&l＼ be the family of all finitely generated sub-

groups of a group G and let A be a G-graded algebra. Then

J(A)QVJieIJ(A^)

In particular,

(i) // each /(^cKi))=0, then J(A)=0.

(ii) // each J(A&*) is nil, then ]{A) is nil.

Proof. If a&A and H is the supporting subgroup of a, then a^AcH:> and

so

A=Ui£IA^

Hence any given a^J(A) lies in some AiI10 and so, by Lemma 3.3

a&KA)r＼AW>QJ{A<-a*),

as desired. ■

Lemma 3.5. Let A be a G-graded algebra, where G is an arbitrary group,

let H be a subgroup of G and let {Hi＼i<=I} be a family of subgroups of G con-

taining H and such that each finitesubset of G is contained in some Hi. Then

Proof. It is clear that every finitelygenerated subgroup of G is contained

in some //*. Hence A=＼Ji&IA'iHo which obviously implies that if a^J(A<H^)

n/lc/o for all je/, then a^J(A)r＼A<H＼ Conversely, if a(Ej{A)r＼A(-H＼ then

a =/(4)n4<**>£./G4<ff*>) for all i<=I

by virtue of Lemma 3.3. Hence aG]{A<-H°)r＼A<-H'>for all z'e/, as we wished

to show, m
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Lemma 3.6. Let G be a group and let A be a G-graded algebra. Assume

that for any finitely generated subgroup H of G, /(yl(//))is a graded ideal of

A^H＼ Then HA) is a graded ideal of A.

Proof. Given a^J(A), we may write a = *£h(=HCikwhere each ah(EAh and

H is the supporting subgroup of a. Let {//J*e/} be the family of all finitely

generated subgroups of G containing H. Then, by Lemma 3.5,

ae/^^') for all is=l

Hence, by hypothesis, each ah^J(Ac"i:>) for all z'e/. But then, by Lemma 3.5

each ah^F(A), as required. M

Lemma 3.7. Let H be a submonoid of a monoid M and let A be an H-graded

algebra. Then A can be regarded as an M-graded algebra via Ag ―Ag if g^H

and As―Q *"/g<£H. Furthermore, any left ideal 1 of A is H-graded if and

only if I is M-graded.

PROOF. It is clear that A ―^)g^MAK. Furthermore, given x, y<=M, if x(£H

or y£H, then

On the other hand, if x, y^H, then

AXAy―- /＼XAy^ /＼Xy'=ZAXy

proving that A is an M-grded algebra. The remaining assertion being a con-

sequence of the definition of Ag, the result follows. H

Lemma 3.8. Let M be a monoid and let A he an M-graded algebra. Then

( i ) Jg(A) is the largest proper graded ideal 1 of A such that 1+ab is a

unit of A for all a^lr＼Au b^Ax.

(ii) J'(A) is the largest proper graded ideal I of A such thatlr＼A1QJ(A1).

(iii) // J{A) is graded, then J(A)Qjg(A).

PROOF, (i) If a^J8(A)r＼A1 and b<=Au then u^l+ab^A, and u+J'(A)

―lJrJs{A). The latter easily,implies that u is a unit of A. Conversely, let/

be any proper graded ideal of A such that l+ab is a unit of A for all a^Ir＼Ax

b^Ai. If l£Jg(A), then A=l+L for some graded-maximal left ideal L of A.

Hence l=a+b for some a^lr＼Ax, b^Lf^Ax. Therefore b=l+(―a) is a unit

of A, a contradiction.

(ii) If a^J'CA)nAu then by (i), l+ab^U(A) for all 6eA. Hence l+ab
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&U(A1) for all fee4,. Therefore a^J{At) and so Js(A)nAlQJ(Al). Con-

versely, let I be a proper graded ideal of A with 7n^4i£/(i4i). Then ＼-＼-abis

a unit of A for all aein^, b^Au Hence, by (i), lQJe(A) as required.

(iii) By Lemma 3.3 (ii),A1r＼J(A)Qj(A1). Hence, by (ii),J(A)QJ8(A) and

the result follows. M

Lemma 3.9. Let M be a free monoid (or a free commutative monoid) freely

generated by a set S, let H be the submonoid generated by a subset T of S and

let a<^R*H.

(i) U(R*M)r＼R*H=U(R*H).

(ii) R*Hr＼RR*M)QKR*H).

(iii) // T is finite and {Sf|z'e/} is the set of all finite subsets of S containing

T, then ae/(i?*M) if and only if a^J(R*Mt) for all i(=l, where Mt is the

submonoid of M generated by St.

Proof. ( i) and (ii). Our choice of H and M guarantees that for any

/ie// and gG:M―H, hg<£H. Hence the requiredassertionsfollow by virtueof

Lemma 3.3.

(iii)It is clearthat R*M=＼Ji&IR*Mi. Hence, if a&J(R*Mt) for all j'g/,

then ae/(i?*M). Conversely,if a<^J(R*M) then

a^J(R*M)r＼R*MiQJ(R*Mi) for all * =/

by virtueof (ii). M

Lemma 3.10. Let M be a free monoid {or a free commutative monoid) freely

generated by a set X with ＼X＼!z2. Let Xu Xz be nonempty subsets of X with

X=Xx＼jXz (disjoint union) and let Mt be generated by Xit i=l, 2. Denote by

RM the monoid ring of M over an arbitrary ring R and put S―RMt. Then

there exists a surjective homomorphism f: RM-*SM2 such that the restrictionof

f to S is an isomorphism from S onto S.

Proof. The map <p(x)=x for allxeZ determines a map X: M-^SMZ such

that yt(l)=land X(g1ga)=X(g1)X(gi)for all^1} g^M. It follows that the map

/: RM-^-SMz given by f(^,geMrgg)='EgBMrgX(g)> rg^R, is a surjectivering

homomorphism such that

as required, m

/( 2 rsg)= S rgg
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4. Assumed results.

Our aim here is to quote a number of results of a miscellaneous nature

which will be required for the rest of the paper.

Let G be a group and let A be a strongly G-graded algebra. An ideal X

of Ax is said to be G-invariant if

AtXAt.i=X for all geG

The following important result provides a complete description of graded ideals

of strongly graded algebras.

Theorem 4.1.(Dade (1970)). Let G be a group and let A be a strongly G-

graded algebra.

( i ) If 1 is a graded ideal of A and X―lr＼Au then X is a G-invariant

ideal of Ax such that

1=AX=XA and Ir＼Ag=AgX=XAg for all geG

(ii) For any G-invariant ideal X of Au 1―XA=AX is a graded ideal of

A such that

lC＼Ag = AgX=XAg for all g^G

(iii) /(^4i)is a G-invariant ideal of At and hence A- J{At)=J{A{)-A is a

graded ideal of A.

Proof. See Dade (1970). ■

Next we quote a number of useful properties of a graded radical of a

module.

Theorem 4.2.(Nastasescu 1984)). Let G be a finitegroup of order n, let

A be a G-graded algebra and let V be a graded A-module. Then

(i) 7'(V)=cieo(/(V)nv,).

(ii) nJ{V)^Jg(V) and, in particular,if n is a unit of A, then JS(V)=J(V).

(lii) // v=^gSGvg(Ej(V), vg^Vg, then nvg<=J(V) for all g^G.

(iv) KATVQJHV).

Proof. See Nastasescu(1984). m

Lemma 4.3. Let G be a finitegroup and let A be a strongly G-graded

algebra. Then J(A1)=J(A)nA1=Js(A)nA1.
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Proof. The second equalityfollows from Theorem 4.2(i). By Lemma 3.3,

J(A)r^A1Qj(A1). To prove the oppositecontainment,it sufficesto show that

any simple A-module V is semisimple as an /li-module. For the proof of this

fact we refer to Karpilovsky (1987, p. 188). ■

Corollary 4.4. Let G be a finitegroup of order n and let Abe a strongly

G-graded algebra. If n is a unit of A, then

J(A)=A-J(A1)

Proof. Apply Theorem 4.2(ii),Theorem 4.1(i) and Lemma 4.3. m

Let C be a classof groups. A group G is said to be a residuallyC-group

if G is a subdirectproduct of groups belonging to C. Thus G is a residually

C-group if and only if given l=£geG, there existsa normal subgroup Ng of

G such that g£Ng and G/A^eC. A group G is called a locally C-group if

each finitelygenerated subgroup of G is a member of C.

Theorem 4.5.(Iwasawa (1943)). // p is any prime and G any free group,

then G is a residuallyp-group.

Proof. See Iwasawa (1943). m

Thoreem 4.6. (Gruenberg (1957)). Any finitely generated torsion-free

nilpotent group G is a residually finite p-group for every prime p.

Proof. See Gruenberg (1957). ii

Given a group G, we write Gcn) for the n-th derived subgroup of G. A

group G is said to be free solvableif G is of the form F/F(n) for some free

group F and some n^l.

Theorem 4.7. Any free solvable group is a residually finite p-group for

every prime p.

Proof. See Robinson (1972). m

A monoid M is said to be a u.p.-monoid (unique product monoid) if, given

any two nonempty finitesubsets A and B of M, there exists at least one ele-

ment j£gM that has a unique representation in the form x―ab with ci<bA and

6e5.

A monoid M is said to be a t.u.p.-monoid (two unique product monoid) if,
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given any two nonempty finitesubsets A and B of Mwith ＼A＼+ ＼B＼>2, there

exist at least two distinct elements x and y of M that have unique representa-

tions in the form x―ab, y―cd with a, c^A and b, d^B.

A monoid M is said to be a right-ordered monoid if the elements of M can

be linearly ordered with respect to the relation < and if, for all x, y, z^M,

x<y implies xz<yz.

Theorem 4.8. ( i ) Any right-ordered monoid is a t.u.p.-monoid.

(ii) A group G is a t.u.p-group if and only if G is a u.p.-group.

(ili) Every submonoid of a u.p.-group is a t.u.p.-monoid.

Proof. (i) The proof is straightforward and therefore will be omitted.

(ii) This was proved by Strojnowski (1980).

(iii) This is a direct consequence of (ii). m

Theorem 4.9.(Jespers, Krempa and Puczylowski (1982)). Let M be at.u.p.-

monoid, let A be an M-graded algebra and let IQJ(A) be a nonzero ideal of A.

If a = ai+ ･■･+ are?a^Ai, a^Agi, gi^l, is an element of 1 of minimal positive

length, then

(i) There exists m^l such that Xi---xm―0 for all Xi^{a2, ■■･,an}-

(ii) ai^JCAi) and aax=axa.

Proof. See Jespers, Krempa and Puczylowski (1982). m

Theorem 4.10. Let G be an arbitrary group and let A be a strongly G-

graded algebra. Suppose that Ax is semiprime and that the additive group of A

has no n-torsion where n is the order of any finitesubgroup of G. Then A

is semiprime.

Proof. This is a special case of a result of Passman (1984). A detailed

proof can also be found in Karpilovsky (1987. p. 309). m

5. Graded radicals.

In this section, we shall provide a number of results concerning the Ja-

cobson radical of graded algebras. We shall also exhibit numerous interre-

lationships among J(A), Jg(A) and J{Ai), where A is a G-graded algebra, thereby

obtaining deeper understanding of each of them.

Let tz be an arbitrary set of prime numbers. A natural number n is called

a n-number if each prime divisor of n belongs to jr. A finitegroup G is said
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to be a 7T-group if ＼G＼is a ^-number.

Let G be a group, let A be a G-graded algebra and let V be a graded
^4-

module. Assume that /: G-+H is a surjective homomorphism of groups. Then

both A and V can be regarded as //-graded via

Ax=RJlg->=xAt (g^G, x<=H)

Of course, a submoduie of F can be //-graded without being G-graded.

Theorem 5.1. Let {G≪|ie/} be a collectionof arbitrary groups, let G be

a subdirect product of the Gt and let A be a G-graded algebra. Denote by V

any graded A-module.

( i) // for each fe/, J(V) is a Gt-graded submoduie of V (via the projec-

tion fi: G->Gi), then J(V) is a graded submoduie of V.

(ii) // each Gt is finite,then for any v―^g^Gvg^J(V), vg<BVg, there exists

a positiveinteger nvsuch that nvv8^J(V) for all geG. Furthermore, nv divides

＼Hi＼＼H2＼･■･＼Hk＼for some k = k(v) and some Ht^{Gi), l^t^k.

(Ill) If there exist two disjointsets Xi and 7r2of prime numbers such that G

is a residually %-group, i=＼, 2, then J(V) is a graded submoduie of V.

Proof, (i) and (ii). Given v=^g(EGvg(Ej(V), vgE^Vg, write Suppv―

{g(EG＼vg^0} and l(v)=＼Suppv＼. We argue by induction on l(v). If l(v)^l,

then v―vg for some geG and there is nothing to prove. Assume that l(v)―

n^2 and that the result is true for all b^J(V) with l(b)<n.

Since l(v)^2, we may choose two distinct elements x, y&Suppv. By hy-

pothesis, fk(x)^fx(y) for some X^I. Define m―＼ if the hypothesis of (i)

holds and m= ＼Gx＼if the hypothesis of (ii) holds. Then, by Theorem 4.2 (iii),

we may write v―b-＼-cwith b, c<eY such that mb, mc<=J(V), l(b)<n and l(c)<n.

Since v=b+c, we have

vg=bg+Cg for all geG (1)

If the hypothesis of (i) holds, then by induction hypothesis, bg, cg^J(V) and

hence each vg<=J(V), proving that J(V) is a graded submoduie. If the hypothesis

of (ii) holds, then by induction hypothesis, applied to mb and me, there exist

positive integers I and s such that

lmbgGj(V) and smcg^J(V) for all g^G (2)

where nv―lsm divides I//J ＼H2＼■■･＼Hr＼for some r^l and some HjEi{Gi}i

l£j£r. It follows from (2) and (3) that
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nvvg=nvbg + nvcg<^J(V) for all geG

proving ( i) and (ii).

(iii) Let v=2*ec^e/(V) where all vg<=Vg. Owing to (ii), there exists

7rrnumber nt such that riiVs^J(V) for all g^G, i=l, 2. Since the sets Ki and

%z are disjoint,(nu nz)=l. Thus each ve(= f(V) and the result follows, m

Corollary 5.2. Let G be a group such that there exist two disjointsetsnt

and tt2of prime numbers for which G is a residually Ki-group, i―1, 2. Then,

for any G-graded algebra A, ]{A) is a graded ideal of A.

Proof. This is a special case of Theorem 5.1 (iii)in which V=AA. m

Corollary 5.3.(Jespers and Puczylowski (1990)). Assume that G is a re-

sidually finitep-group for two distinctprimes p. Then, for any G-graded algebra

A, J(A)) is a graded ideal of A.

Proof. This is a special case of Corollary 5.2. m

The next corollary for the case where G is infiitecyclicis due to Nastasescu

and Van Oystayen (1982b).

Corollary 5.4. Assume thata group G is of one of the following types:

(a) G is a free group.

(b) G is a finitelygenerated torsion-freenilpotentgroup.

(c) G is a free solvablegroup.

Then for any G-graded algebra A and for any A-module V, J{V) is a graded

submodule of V.

Proof. By Theorem 5.1 (iii),it suffices to show that G is a residually

finite p-group for two distinct primes p. Since the latter is a consequence of

Theorems 4.5, 4.6 and 4.7, the result follows, m

As a main applicationof Theorem 5.1 we now record the followinggeneral

result.

Theorem 5.5. Let A be a G-graded algebra, where G is a group of one of

the following types:

(a) G is abelian and the orders of finite subgroups of G are units in A.

(b) G is locally finiteand the orders of finitesubgroups of G are unitsin A.

(c) G is locally free, or residually-free, or free solvable, or torsion-free

nilpotent.
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(d) G is a subdirect product of the groups Gt, z'e/, where each Gi is of one

of the types (a),(b) or (c).

Then the following properties hold:

( i ) J(A) is a graded ideal.

(ii) J(A)£J'(A).

(iii) j(A)^(J{A)r＼Ai)A^AU{A)r＼Al), provided A is strongly G-graded.

Proof. (i ) If G is of type (c), then (i) holds by virtue of Theorem 5.1

(i), Lemma 3.6 and Corollary 5.4. The case (d) follows from (a), (b) and (c)

by applying Theorem 5.1 (i). To treat the cases (a) and (b), we may assume

that G is finitelygenerated (Lemma 3.6). The case (b) now follows by applying

Theorem 4.2 (ii). Finally, the case (a) follows from Theorems 5.1 (i) and 4.2

(ii) and case (c).

(ii) This follows from (i) and Lemma 3.8 (iii).

(iii) Apply (i) and Theorem 4.1 (i). M

Corollary 5.6. Let N be a normal subgroup of a group G and let A be a

strongly G-graded algebra. Assume that the factor group G/N is of one of the

types(a),(b),(c) or (d)in Theorem 5.5. Then

J(A)=U(A)r＼A^)AQj(A'N))A

Proof. Owing to Lemma 3.2 (i), we may view A as a strongly G/N-

graded algebra with /l(iV)as the identity component. The desired conclusion is

therefore a consequence of Theorem 5.5 and Lemma 3.3 (ii). m

Our next application of Theorem 5.5 deals with the Jacobson radical of

monoid-graded algebras.

Corollary 5.7. Let M be a submonoid of a group G, where G is of one of

the types (a),(b),(c) or (d) in Theorem 5.5 {e.g. M is a free monoid or M is a

free commutative monoid). If A is any M-graded algebra, then

{ i ) J{A) is a graded ideal of A.

(ii) J(A)£MA).

Proof. (i) Owing to Lemma 3.7, we may harmlessly assume that M―G.

Now apply Theorem 5.5.

(ii) This follows from (i) and Lemma 3.8 (iii). u

Theorem 5.8. Let G be a group, lei A be a strongly G-graded algebra and

let G have a finitechain of subgroups:
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l=Go£Gi£G8g ･■･SGB=G (3)

such that Gi-1<＼Gi and each d/Gi-i is of one of the types (a),(b),(c) or (d) in

Theorem 5.5. Then

J(A)£j(Ai)A

Proof. We argue by induction on z=0, 1, ･･･,n that

J(A^)QJ(A1)A^

Since Gn=G, this will obviously complete the proof. Because G0=l, the case

2=0 is clear. Suppose now that if^n and that

J(AiGi-^)Qj(Al)A'Gi-^ (4)

Since GJGi-i. is of one of the types (a),(b),(c) or (d) in Theorem 5.5,it follows

from Corollary 5.6 (applied to N=Gt.i and G=Gt) that

J(AW)Qj(A<°t-W°i> (5)

Hence, by (4) and (5),

J(A^^)Qj(A1)A^-^Ai°^

and the result follows, m

Corollary 5.9. Let N be a normal subgroup of a group G such that G/N

is solvable and let A be a strongly G-graded algebra over a field F of character-

istic0. Then J(A)QJ(A<N>)A and, in particular, J(A<N>)=0 implies f(A)=0.

Proof. We may view A as a strongly G/N-graded algebra with AcN:> as

the identity component. Since G/N is solvable,it has a series(3)in which

each GJGi-i is abelian. Furthermore, since char F=0, the orders of finite

subgroups of Gi/Gi-x are unitsin A. This shows that each GJGi-x is of type

(a)in Theorem 5.5. Hence, by Theorem 5.8, J(A)QJ(A<N>)A and the result

follows, m

The special case of the above result in which N=l (hence G is solvable)

and A=FG is the group algebra of G over F (hence A(-N:>= Ai―F) is due to

Villamayor (1959).

Our next result is also a generalization of a theorem established by Vil-

lamayor (1958) in the context of group algebras.

Theorem 5.10. Let N be a normal subgroup of a group G such that G/N
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is locally finiteand let A be a G-graded algebra. Then

(i) J(A^)=J(A)nA^N＼

(ii) J(A)=J{A<N^)A=AJ(A^N^), provided A is strongly G-graded and tht

orders of finitesubgroups of G/N are units in A.

(iii) // (G: N)=n<oo and A is strongly G-graded, then

I(AT^HA^)AQKA)

Proof. We may view A as a G/iV-graded algebra with AiN) as the identity

component. Furthermore, if A is strongly G-graded, then A is also strongly

G/N-graded. Hence we may assume that N=l, in which case A(-N''=A1 and G

is locally finite. Thus, if (i) holds, then (ii) holds by Theorem 5.5 (iii).

To prove (i) it suffices, by Lemma 3.3 (ii), to show that J(Ax)Qj{A).

Since G is locally finite,there is a family {//f|ze/} of finite subgroups of G

with A=＼JiBIA<Ht＼ Hence n<e/RACH^)QJ(A). But, by Lemma 4.3,

J(A1)Qj(A^Hi') for all ig/

Hence /(Ai)g/(4), proving (i).

Finally, assume that G is of finiteorder n. Then, by Theorems 4.2 (iv)

and 4.1 together with Lemma 4.3, we have

/(X)≫£/'(i4)=(/*(i4)ni4i)i4

=J(At)A£J(A)

where the last containment follows from (i). This proves (iii)and hence the

result, m

The special case of the following result where A is a group algebra (or a

twisted group algebra) over a fieldis due to Villamayor (1959) in characteristic

0 and to Passman (1970), Wallace (1970) and Zalesskii (1970) in characteristic

/>>0.

Theorem 5.11. Let A be a strongly G-graded algebra where G is a locally

solvable group such that the orders of finitesubgroups of G are units in A, If

J(A1)=0, then J(A)=Q.

Proof. Owing to Corollary 3.4 (ii), we may harmlessly assume that G is

solvable. Hence there is a finite chain of subgroups

l=G0QGlQG2Q ･･･QGn=G

such that Gj-i<＼Gj and Gj/Gj-i is abelian, j―1, ■･･,n. We argue by induction
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on /=0, 1, ■･･,n that J(A<Gv)=0. Since G0―l, the case *=0 follows from the

assumption that JiA^O. Suppose now thati<^n and that J(AiGi-i:>)=0. Given

ae/(i4cCi)), let i/ be the subgroup of Gt generated by G^ and the support of

a. Let {Ht＼i<=l} be the family of all groups L with G^L^H and L/Gt-i

finitelygenerated. Then, by Lemma 3.5,it sufficesto show that J(Aa'))=Q for

each such L.

Now, by hypothesis, L/Gi-x is a finitelygenerated abelian group. Therefore

there exists an intermediate group K with L^K^Gf-x, L/K torsion-free abelian

and K/G{ finiteof order, say m. Then, by Theorem 5.10 (iii),

J(AiK:>)mQj(AiOi-^)A^=0

and hence J(A(-K'>)is nilpotent. Since, by Theorem 4.10, AcK:>is semiprime, we

have J(AiK:i)=0. Furthermore, because L/K is torsion-free abelian, Corollary

5.6 yields

J(Aai)^J(A^)A-0

Therefore /(j4ci))=0, and the induction step is proved. Since G―Gn, the result

follows. S

6. The Jacobson radical of monoid crossed products.

Throughout this section, R denotes an arbitrary ring and M a multiplicative

monoid. We write i?*M for the crossed product of M over R corresponding to

a crossed system (M, R, a, a).

Recall that each element of R*M can be uniquely written in the form

a= S axx (fltei?)

with finitelymany ax^0. By definition,Supp a={x^M＼ax^0} and thelength

l(a) of a is defined by l(a)=＼Suppa＼. The multiplicationin R*M is deter-

mined by

where xr

xr=xrx (xeM, r<=R)

xy=a(x, y)~xy (x, j>eM)

= a(x)(r) for all r<=R, xgM.

(1)

(2)

Lemma 6.1. Given an ideal L of R*M, an arbitrary subset S of M and

s<eS, put

iL(S, s)={fl8Gi?| S axx^L for some ag<BR, g(ES―{s}＼

Then iL(S, s) is an ideal of R.



36 G. Karpilovsky

Proof. It is clear that iL(S, s) is an additive subgroap of R. Assume that

di^iAS, s) and choose ae(ER, g<^S―{s＼ such that

2 axx<=L

Then, for any given r^R, we have

K 2 CLxx)―S (rax)x<E.L

which shows that ras(^tL(S, s). On the other hand, by (1), we have

and so assr<=iL(S, s).

also a right ideal of R

But r>->V is an automorphism of R, hence iL(S, s) is

as required, m

The following terminology is extracted from C. Jordan (1975) and Bedi and

Ram (1980). Let X be an automorphism of R. An element rei? is said to be

X-nilpotentif, for any positive integer n, there exists a positiveinteger m=m(n)

such that

rXn(r)Xin(r)- kin~lin(r)=0 (3)

An ideal / of R is called a X-nilideal if every element of / is ^-nilpotent. An

automorphism X of R is said to be of locally finiteorder if for every r^R there

existsan integer w = n(r)^l such that Xn(r)=r. For example, every automorphism

of finite order is also of locally finiteorder. It is clear that if X is of locally

finiteorder and r^R is ^-nilpotent, then r is nilpotent.

Lemma 6.2. Let geM, rei? and let X=<j{g), Then

( i ) gnr=Xn(r)gn for all n>l.

(ii) (rgn)m=rJln(r)X2n(r) ■■■Vm-≫n(r)gnm for all w^l, m^l.

(ili) r is X-nilpotent if and only if rgn is nilpotent for all mS>1

Proof. ( i ) The case n = l being a consequence of (1), we argue by in

duction on n. Assume that gnr=ln(r)gn. Then, by (1), we have

gn+1r=g(gnr)=(gXn(r))gn=Xn+＼r)gn+1

as required.

(ii) Again, the case m=l is obvious. Assume that (ii)is true for m

Then, by (i),

(rg n)m+1=(rgn)(rXn(r) ･･･;("l-1)*(r)f")
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as desired.

(iii) Given k^l. we have ek ―uek for some ugU(R) (see (2)). Hence, if

agk =0 for some aei?, then a-0. Now apply (3) and (ii). m

Lemma 6.3. Let M^l be a t.u.p.-monoid. If I is a nonzero ideal of R*M,

then there existsan element x in I of minimal positivelength and with l<£Supp x.

Proof. Let y=r1g1-＼ ＼-rtgt,0=£r*ei?, ^eM be any element of / of

minimal positivelength. Choose any nonidentity g in M. Since M is a t.u.p.-

monoid. there exists m>0 such that

gigm^l for all i<={l,■■■,t)

Now put x=ygm. Then xel, Supp xg{^,f, ･■･,̂£^m}and l^Suppx. Hence

it sufficesto verify that x^O. By (2),we may write gigm=^uigigm for some

Ui^U(R), in which case

x = r1u1g1gm-＼ hrtutgtgm

Since M is cancellative, we deduce that x^O, as desired, m

We have now accumulated all the information necessary to prove the follow-

ing1 result.

Theorem 6.4. Let M=£l be a t.u.p.-monoid such that J(R*M)=tO.

( i ) There exists an element x in J(R*M) of minimal positive length and

with l^Supp x.

(ii) Let xe/(i?*M) be of minimal positive length, let S=Supp x and let

L-=J{R*M). Then, for any seS― {I}, iL(S, s) is a nonzero a{s)-nilideal of R.

(iii) // at least one o(g), l^geM, is of locally finiteorder and Mis a u.p.-

srout. then R has a nonzero nil ideal.

Proof. ( i) This is a special case of Lemma 6.3.

(ii) Write x―r^gA ＼-rtgtwith Q^r^R, gi<sM and s=g1=£l. Since

ri^O and %eL, we see that ri^iL(S, s)^0.

Now fix a^iiiS, s). Then there exist au ･･･,at in R such that

y = aigl + a2g2Ji ＼-atgt^L

If y=Q, then ai=0 and at is obviously <r(s)-nilpotent.If yi^Q, then y is an

element of L of minimal positive length (in particular, a^O). Hence, for any

positiveinteger n,

ygnr1 = aign1+ a2(g2gn1-1)+ -■+at(Mtgnr1)
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is also an element of L of minimal positive length. Since gt&l, it follows

from Theorem 4.9 (i) that dig is nilpotent. Thus, by Lemma 6.2 (iii),cii is

<r(s)-nilpotentand so iL(S, s) is a <?(s)-nilideal of R.

(iii) Let x be as in (ii). Multiplying x on the right by ^I1^, we may as-

sume that g1=s=g. Hence, by (ii),R has a nonzero o(g)-n＼＼ideal. But a(g)

is of locally finite order, hence R has a nonzero nil ideal, u

Corollary 6.5. Let M=£l be a t.u.p.-monoidand let R*M be a crossed

product of M over R. If at leastone a(g),I^gM, is of locallyfiniteorder,

then Rr＼J(R*M) is a nilidealof R.

Proof. Assume that 0^rei?n/(i?*M) and that I^^eM is such that a(g)

is of locallyfiniteorder. Put S={^} and L = J(R*M). Then, by the definition

of iL(S, g), we have iL(S, g)={a<=R＼ag(Ej(R*M)}. By hypothesis, x―rg is an

element in J(R*M) of minimal positive length with Supp x = S and with 1<£

Supp x. Hence, by Theorem 6.4 (ii),iL(S, g) is a <r(g)-nilideal of R. Since o(g)

is of locally finite order, we deduce that iL(S, g) is a nil ideal of R. Since

r^iL{S, g), the result follows, m

Note that in general Rr＼J(R*M) need not be nil even in the simplest case

where Mis a free monoid on one generator. For a corresponding example we

refer to Bedi and Ram (1980).

Corollary 6.6. Let M be a free monoid {or a free commutative monoid)

freely generated by an infiniteset X. Then, for an arbitrary ring R, J{RM) is

a nil ideal.

Proof. Let ae/(i?M). Then there exist xu x2> ･･･,xn in X, n^l, such

that a^RM' where M' = (xu ■■■,xn}. Since X is infinite,we may choose jce!

with xi^xt, l^i^n. Put X1=X―{x] and X2={x＼ and let Mt be generated

by Xu i=l, 2. Since M'QXlt we have a^RMx. Put S=RMX and let /: RM-*

SM2 be the surjective homomorphism described in Lemma 3.10. Since ae

J(RM)C＼RMU we have f(a)e=J(SMt)r＼S. By Corollary 6.5, J(SM2)nS is nil

and so /(a) is nilpotent. Hence, by Lemma 3.10, a is also nilpotent and the

result follows, m

Let /?*Mbe a crossed product of M ever R and let S be a subset of R

In what follows,we put

S*M={ S axx＼ax^S]

XE.M
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We say that S is M-invariantif a(g)(S)=S for allg<=M. For example, if R*M

is a twisted monoid ring of M over R (i.e.if o(g)=l for allg&M), then any

subset S of i? is M-invariant.

Lemma 6.7. Let R*M be a crossed product of M over R and letI be an M-

invariant ideal of R. Then

( i ) I*M is an ideal of R*M such that R*M/1*M is a crossed product of M

over R/l. Furthermore, if R*M is a twisted monoid ring (respectively,skew

monoid ring) of M over R, then R*M/1*M is a twisted monoid ring (respectively,

skew monoid ring) of M over R/l.

(ii) (I*M)n=In*M for all n^l.

(iii) // R*M is a twisted monoid ring of M over R and if I is a locally

nilpotent ideal of R, then I*M is a nil ideal of R*M and, in particular, /*M£

J(R*M).

Proof. (i ) It is clear that I*M is an additive subgroup of R*M. Fix

ae/, xeMand geM. Then (ax)g=aa(x, y)~xg<=l*M. Also

g(ax)=gaa(g, x)g~x<^I*M

since sa^I by the assumption that / is M-invariant. This demonstrates that

I*M is an ideal of R*M.

For each g^G, put g=g+I*M. Then R*M/I*M is a free lefti?/i-module

freely generated by g, g^ G. Define

a: MxM―>U(R/I)

by a(x, y)=a(x, y)+I. Then, for allx, yEM,

xy=(x+I*M)(y+l*M)=a(x, y)xy+l*M

=(a(x, y)+I)(xy+I*M)

= &{x, y)xry

Since 1 is M-invariant, the map

~a＼M―> Aut(R/l)

given by

Hg)(r+I)=a(g)(r)+I for all r^R, g<=M

is well-defined. Furthermore, given xeM and r<=R, we have

jc(r+/)=(Jc+ /*M)(r+/*M)

= G(x)(r)x+ l*M=(o(x)(r)+I)x

= 5(x)(r+I)x
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Using associativity of the multiplication,it is now immediate to verify that

(M, R/I, a, a) is a crossed system. Hence R*M/1*M is a crossed product of

M over R/L Furthermore, if <?(g)=l for all g<=M (respectively,if a{x, y)=＼

for all x, y<^M), then a(g)=l for all geM (respectively, &(x, y)=l for all

x, jigM), proving the second assertion.

(ii) It sufficesto show that for all a^l, x*eM, l<.i<Ln,

(aiXiXazXz) ■■■(anxn)<^ln*M

Since the latter is a consequence of the assumption that / is M-invariant, the

required assertion follows.

(iii) Let x=rigl-＼ ＼-rngn,O^r^I, gi^M, be a nonzero element of /*M

and let S={ri, ･･･,rn). Since / is locally nilpotent, Sm―0 for some m^l. We

claim that xm~0. It sufficesto show that

for all L eS, x^igu ―,gn). But

＼A＼X＼){AiXi)""■y^rnXm) ―(ai ･･･ Xm)X＼Xz '" Xm

and /Li---Am=O, since Sm=0, hence the result follows, m

The following assertion is contained implicitly in the work of Ram (1984).

Lemma 6.8. Let X be an automorphism of a ring R and let R satisfy the

ascending chain condition on left annihilators. If R has a nonzero X-nilideal,

then R has a nonzero nilpotent ideal.

Proof. Let / be a nonzero ^-nil ideal of R. We claim that R has a

nonzero right nil ideal. Since R satisfiesthe ascending chain condition on left

annihilators, a standard argument will show that R has a nonzero nilpotentideal.

If 1 is nil,then there is nothing to prove. Hence we may assume that re/ is not

nilpotent. We assert that rAn(r)^0 for some n^l. Assume by way of con-

tradiction that rXn(r)=0 for all ≪2>1. For any m^l, put

Im=Xm(r)R+Xm+l(r)R+ ･･･+ ･･･

It is clear that

h 2/2^ ･･･ 2 ･･■

Hence

l(h)Ql(h)Q ･･･Q -･

where /(/*)is the left annihilator of U in i?. By hypothesis, we have /(/*)=

1(1k+i) for some &^1. Since for any n^l,
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Xk(r)Ak+n(r)=:Zk(rkn(r))=O

41

it follows that

J*(r)e/(74+l)=/(/≫)

Thus Ak(r)Xk(r)=O, so r2―Q a contradiction.

By the foregoing, we may choose n^l such that rXn(r)^0. Since re/ is a

Ji-nilideal of i?, there exists a positive integer t such that

rln(r)lin(r)---l≪-≫n(r)=0 (4)

Since r^n(r)^0, t>2. Now choose f minimal such that (4) holds and put

s=rXn{r)--X^-^n(r) (5)

If the right ideal sR is not nil,sa is not nilpotent for some a&R. Put rx―r

and r2=sa. We claim that l(ri)d(r2). Indeed, by (4) and (5), ^""(r)s=0and so

A-w(r)e/(r2). But ^"B(r)^/(ri) since r^n(r)^0. Hence /(r0C/(r2). If r2i? is not

nil,then arguing as before we get r3ei? such that /(ri)c/(r2)C/(r3). Continuing

in this fashion, we will obtain a desired nonzero right nil ideal, m

To take advantage of the above lemma, we need thefollowingobservation.

Lemma 6.9. Let X be an automorphism of a ring R, let 1 be a 1-nilideal

of R and let K be any ideal of R with X{K)―K. If p.is the automorphism of

R/K induced by k, then(I+K)/K is a /u-nilideal of R/K.

Proof. By definition of pt, we have pk(r-＼-K)=Xk(r)+K for all r^R and

all &2>1. Now fixr re/ and a positive integer n. Sincer r is ^-nilpotent,there

exists n^l such that (3) holds. But then

(r+K)fin(r+K)/n2n(r+K) ■■■^m~^n(r+K)=-0

as reauired. M

Corollary 6.10. (C. Jordan (1975)). Let R be a noetherian ring and let X

be an automorphism of R. Then every 1-nilideal of R is nilpotent.

Proof. Let / be a ^-nilideal of R. If R is semiprime, then by Lemma

6.8, 7=0. Suppose that R is not semiprime. Let rad(R) be the prime radical

of R. Since R is noetherian, rad(R) is nilpotent. Since X{rad{R))―rad{R), 1

induces an automorphism ft of R/rad{R). Hence, by Lemma 6.9,(I+rad(R))/

rad(R) is a ^-nilideal of the noetherian semiprime ring R/rad(R). By the forego-

ing, iQrad(R) and so / is nilpotent. M
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In wheat follows, rad(R) and N(R) denote the prime and upper nil radicals

of R, respectively.

Theorem 6.11. Let M^l be a t.u.p.-monoid and let R*M be a crossed pro-

duct of M over a ring R.

( i ) // R/rad(R) satisfiesthe ascending chain condition on left annihilators,

then J(R*M)Qrad(R)*M.

(ii) // each automorphism d(g), g^M, of R/N(R) induced by a(g) is of

locally finite order, then J(R*M)QN(R)*M.

(iil) // R is noetherian, then J(R*M) is a nilpotentideal such that J(R*M)

=rad(R)*M

Proof. ( i) It Is clear that rad(R) is an M-invariant idea! of R. Hence,

by Lemma 6.7 (i), rad(R)*M is an ideal of R*M such that R*M/rad(R)*M is

a crossed product of M over R/rad(R). Owing to Lemma 6.8, R/rad(R) con-

tains no nonzero >l-nilideals where X is any automorphism of R/rad(R). Hence,

by Theorem 6.4 (ii),

J(R*M/rad(R)*M)=O

as required.

(ii) As in (i), R*M/N(R)*M is a crossed product of M over R/N{R).

The assumption on a{g), g^M, guarantees that every d(g)-n＼lideal of R/N(R)

is a nil ideal. Since R/N(R) contains no nonzero nil ideals, it follows that

R/N(R) contains no nonzero d(g)-nllideals for all geM. Hence, by Theorem

6.4 (ii),

J(R*M/N(R)*M)=0

as desired.

(iii) Since R is noetherian, rad(R) is a nilpotent M-invariant ideal of R*M.

Hence, by Lemma 6.7 (ii),rad(R)*Mis a nilpotentideal of R*M. Since R/rad{R)

is noetherian, the result follows bv virtue of (i). m

Corollary 6.12. Let M4~-＼be a t.u.p.-monoid and let R*M be a twisted

monoid ring of M over R. Denote by L{R) and N(R) the Levitzki and upper nil

radicals of R, respectively. Then

L(R)*MQJ(R*M)QN(R)*M

In particular, if every nil ideal of R is locally nilpotent, then J(R*M) is a nil

ideal of R*M such that J(R*M)=L{R)*M.

Proof. By Theorem 6.11 (ii),I(R*M)QN(R)*M. Since L(R) is a locally
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nilpotent ideal of R, it follows from Lemma 6.7 (iii)that L(R)*M is a nilideal

of R*M (in particular, L(R)*Mg:J(R*M)). Finally, if every nil ideal of R is

locally nilpotent, then L(R)=N(R) and the required assertion follows. M

A specialcase of Corollary6.12in which R*M is a monoid ring of Mover

R and N(R)=0 is due to Schneider and Weissglass(1967). As a further ap-

plicationof Theorem 6.4, we alsorecord the followingresult.

Corollary 6.13.

product of M over R.

Let M=£l be a t.u.p.-monoid and let i?*M be a crossed

If R has no zero divisors,then J(R*M)=Q.

Proof. Let X be an automorphism of R. If r^R is i-nilpotent,then r=0

sinceR has no zero divisors.Hence R containsno nonzero ^-nilideals. The

desiredassertionis thereforea consequence of Theorem 6.4(ii). M

Our next theorem requiresthe followingtwo preliminaryresults.

Lemma 6.14. Let I be a left or right ideal of a ring R. If lnQj(R) for

some n^l, then IQJ(R).

Proof. Since J(R/J(R))=0, R/J(R) contains no nonzero (left or right) nil

ideals. But, by hypothesis, (1+J(R))/J(R) is nil,hence 1+J(R)=J(R) as re-

quired. M

Lemma 6.15. Let M be a monoid such thatgM=Mg for all ge±M and let

i?*M be a crossedproduct of M over R. Then

( i ) (R*M)g=g(R*M) for allg&M.

(ii) For any r^R, g^G and n^l,

[rg(R*M)Y^rgn (R*M)

Proof. (i) We willdemonstrate that(R*M)gQg(R*M). A similarargu-

ment willestablishthe oppositecontainment. Since R*M=Q)xeMRx. it suffices

to show that for any given x(eM, RxgQg(R*M). Now gr=erg for allre/?,

hence gR=Rg. Also xg=gy for some jeM, by the hypothesison M. Ac-

cordingly,

Rxg=Ra(x, y)xJ=Rg~y=Ra(g, yY'gy

= Rgy=gRy^g(R*M)

as required.

(ii) The case n = l being trivial,we argue by inductionon n. So assume

that
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[rff(i?*M)]n£rF(i?*M)
Then

irg(R*M)~]n+l£rg*(R*M)rg(R*M)

Qr^g(RtM) (by(i))

Qrg^ifaM)

as desired, m

Turning our attention to a special class of t.u.p.-monoids, we now prove the

following theorem.

Theorem 6.16. Let M=£l be a free monoid or a free commutative monoid,

and let R*M be a crossed product of M over an arbitrary ring R. For each

I^gM, put

lg={a(ER＼ag(Ej(R*M)}

Then

(i ) J(R*M)=(RnJ(R*M))+^1^eJfl8g.

(ii) Rr＼J(R*M) is a a{t)-nilideal of R for all l^(eM, while each lg is a

a{g)-nilideal of R.

(iii) // M is a free commutative monoid, then for each l^gGM and each

n^l, Ig = Ign.

Proof. (i ) Owing to Corollary5.7,J(R*M) is a graded ideal of R*M.

Hence, if a<=J(R*M), then thereexistr<Bj(R*M)r＼R, r^R, l^i^n, and some

nonidentitygu ･･･,gn in M such that

a^r+n^jH Vrngn and rigiGj(R*M) (l^i£n)

This demonstrates that

J(R*M)Q(Rnj(R*M))+ S Igg

The opposite inclusion being obvious, the required assertion follows.

(ii) Fix l^eM and put S={g}, L=J(R*M). Then iL(S, g)=Ig by the

definition of the ideal iL(S, g) of R (see Lemma 6.1). We may, of course, as-

sume that /g^O. Choose any 0^ae/g and observe that x=ag is an element

of J(R*M) of minimal positive length and with l<£Supp x. Hence, by Theorem

6.4 (ii),Ie is a a(g)-nilideal of of R.

Finally, let 0^rei?n/(i?*M) and let l^feM. Then ri<=J(R*M) and so

re/j. Hence, by the above, r is <r(0-nilpotentand therefore Rr＼J(R*M) is

<r(t)-m＼as required.

(iii) Assume that M is a free commutative monoid, and let r<^lgn for some
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l^geG and some n^l. Owing to Lemma 6.15(ii),we have

[r£(i?*M)]regriP(i?*M)g/(i?*M)

Hence, by Lemma 6.14,rg^J(R*M). Thus r<Blg and so IgnQlg. The opposite

containment being obvious,the resultfollows, m

Oar final aim is to improve the main result of Zalesskii (1965) concerning

the Jacobson radical of i?*G where G is a right-ordered group. As a preliminary

to the next lemma, let us make the following useful observations in which G

denotes a right-ordered group.

(a) If gi<gz<gs< ･･･<gn is a chain of elements in G with n^3, then

glgt<l<glg1l< ･■■<gngt

Thus if x is an element of J(R*G) of minimal positive length n^3, then there

is another such element y (replace x by xg~x for suitable g^G) for which

ltESuppy={gx, gs, ■■■,gn}

and (6)

g1<l = ^2<g3< ･･･<gn

(b) If 5 is any finitenonempty subset of G and g1} ･･･,gn, ≪^3, are as in

(6), then there exist two elements s, t^S such that gts and gnt are uniquely

representable elements of {gu ■■･,gn}-S.

The following lemma is due to Zalesskii(1965).

Lemma 6.17. Let R*G be a crossed product of a right-ordered group G

over a ring R and let x<^J(R*G) be of length n2>3 and of the form

x=r1g1+r2g2 + rsg3+ ･･･+rngn (rts=R) (7)

where gu ■■■,gn satisfy(6). Assume that for all X, pt^R either Xxfi―O or Xxp.

is of length n. Then r2 is a nilpotent element.

Proof. Let y='Bykh, yh<^R, ZieG be such that (l-x)y-l and let S―

Supp y. By property (b), we may choose s, ?e Supp y such that gis and gnt

are uniquely representable elements of (Supp x) (Supp y). Observe also that

gugn<=Supp(l―x)QSuppx. Hence rtgiysS―0 or rngnytt―0, which implies

^1^1^5=0 or rngnyt―0. If r^ijy^O, then l-x-ys is an element of length<n;

hence by hypothesis xys=0 which in turn implies that r2j>s=0. Similarly, if

rngnyti=0 then xyt=Q and r2yt=0. Let S'={h^Supp y＼xyh=0} and let S"=

S-S' Then S"aS and



46

1

G. Karpilovsky

=(1-*X2 ynh+ 2 3>*fc)

fteS" heS'

=(l-*)(2 y*h)+ S yJi

heS" h&S'

Multiplying both sides on the left by rg> we obtain

r≪(l―*)(2 yM=r2
h(=S≫

(8)

If rt^Q, then by hypothesis rzx is of length n, i.e. Supprzx={gi, ･･･,gn}. Ap-

plying the above argument to r2(l―x) instead of 1―x, we see that there exists

h^S" such that rzxyh=Q, riyh―0. Multiplying both sides of (8) on the leftby

r2, we again obtain a relation of type (8) with respect to a proper subset of

S". Hence, after finitely many steps, we obtain rf=0 for some m^l, as

desired, m

Corollary 6.18. (Zalesskii (1965)). Let /?*G be a crossed product of a

right-ordered group G over a ring R which has no nonzero nil ideals. Then

( i ) Every element of J(R*G) is of length^.2.

(ii) If for any g^G, J(R*(g))=Q then J(R*G)=0.

Proof. (i ) Assume by way of contradiction that xe/(i?*G) is of length

n^>3. By observation (a), we may assume that x satisfies(6) and (7). Now fix

It, ftt^R, l<4^m. Then *2,ili%iXUi―0or is of length n^3. In the latter case

(m ＼
$}%iXfli} = Supp X

and ^iliXtxfii satisfiesthe hypothesis of Lemma 6.17. Hence IBiLiXfofii, the

coefficientof 1 in JZfLiXiXfii,must be nilpotent. This shows that Rr2R is a

nonzero nil ideal of R, a contradiction.

(ii) Given x&J(R*G), it follows from (i) that x is of lengths^, say x―

Aigi+Azgz for some ^i, X2^R, gi, gz^-G. Multiplying on the right by gi＼ we

we may assume that xei?*<^> for some g^G. Hence, by Lemma 3.3 (ii),

xei?*<£>n/(i?*G)£/(#*<£>)=0

as desired, m

The following result was established by Zalesskii(1965) under either of the

following hypotheses:

(i) For any re/?, 2r=0 implies r=0.

(ii) R is commutative.

We close by demonstrating that these assumptions are redundant.
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Theorem 6.19. Let R be an arbitrary ring such that J(R) containsno zero

divisors and let G=£l be a right-ordered group. Then, for any crossed product

R*G of G over R, J(R*G)=0

Proof. Let %e/(i?*G) be either zero or an element of minimal positive

length n. By assumption, R contains no nonzero nilideals. Hence, by Corollary

6.18(i), n^2. To prove that x=0, we may assume that x = r1-l+r2^ for some

rltr2e/?, I^gG. Then

xei?*<£>n/(i?*G)g/(i?*<£>)

by Lemma 3.3 (ii). Hence, by Corollary 5.6 and Lemma 3.3 (ii),

rtf=Rr＼J(R*<g≫£j{R) (i= l,2)

Let X be the automorphism of R corresponding to g. Since rig^]{R*{gs)) and

g^l, it follows from Theorem 4.9 that rtg is nilpotent. Hence, by Lemma 6.2

(ii),

rik(ri)X＼ri)--Xm-＼ri)=0

for some m^l. Since Xk(ri)<Bj(R), O^k^m―1, and J(R) has no zero divisors,

it follows that ri=0 as required. M

7. Applications.

In this section we shall demonstrate that most of what is known concerning

the Jacobson radical of polynomial rings and skew polynomial rings is an easy

consequence of our results. Throughout, R denotes an arbitrary ring.

For any cardinal a, let Xa denote a set of cardinality a and let ＼_Xa~＼be

the free commutative monoid freely generated by Xa. Then the monoid ring

R＼_Xa] of ＼_Xa]over R is the polynomial ring over R in a commuting indeter-

minates x^Xa. If Xa is a finite set, say Xa―{xl, ･･■,xa), then we write

i?[xi, ■･･,Xa] instead of R[Xa~＼.

In what follows, L(R) and N(R) denote the Levitzki and upper nil radicals

of R, respectively. Given any cardinal a, we put

Ja(R)=RnJ(R[Xal)

It will also be convenient to define Joo(R) by

71=1

Theorem 7.1. (Amitsur (1956)). Let R be an arbitrary ring and let a be

any cardinal. Then
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L(R)QJa(R)^N(R).

If a is an infinite cardinal, then J(R＼_Xa~])is nil and

Ja(R)=J~(R)

(v) Ja(R/Ja(R))=Q.

Proof. ( i) By Theorem 6.15, it suffices to show that, for any given

velR, l*g<E[*a], if rg<=KR＼_X≪]), then re/(i?[*tt]). Write g=xn^x^･･･*?*,

Xi^Xa, Mii^l and let M be the monoid generated by Xa ―＼xk). Then rge

/((/?M)[>*]) and so, by induction, we may assume that k = l. Furthermore, by

Theorem 6.15, we may assume that g=x for some x^Xa. Since the map

x^>x + l determines an automorphism of R[_Xa~＼,it follows that r(x + l)<E/(i?[x≪])

and so re/(i?[Z≪]), as desired.

(ii) This is a direct consequence of (i) and Corollary 6.11.

(iii) It is an easy consequence of Lemma 3.9 (ii)and the definitionof Jn{R)

that Jn(R)^Jn+i(R) for all n^l, as required.

(iv) Assume that a is an infinitecardinal. Then, by Corollary 6.6,J(R[Xa~])

is nil. Let {SJ/e/} be the set of all finitesubsets of Xa and let Mt be the

submonoid of ＼_Xa~＼generated by Si} i^l. Given aei?, it follows from Lemma

3.9 (iii)that ce/a (/?)if and only if a(Ej(RMt) for all *e/. Since a is an

infinite cardinal, it follows that ae/≪(/?) if and only if a eJn(R) for all n^l.

(v) Owing to (i), we have

RlXayj(RiXa-])^{R/Ja{R))lXa-]

Hence (/?//≪(/?))[*≪]is semiprimitive and, by (i), Ja(R/Ja(R))=0. m

Turning to skew polynomial rings, let X be an automorphism of R. Recall

that the corresponding skew polynomial ring Rx＼_x~＼is the skew monoid ring

of the free commutative monoid [x] generated by x with respect to X. Thus

each element of Rx＼_x~＼can be written uniquely in the form

Sr,** (r,e=fl)

with finitelymany rt distinctfrom zero. Addition is defined in the usual man-

ner, while multiplicationis determined by the rule

xir=X＼r)xt for all rGi?,i^0

It will also be convenient to consider the corresponding skew group ring Rx(.x},

where <x> is an infinite cyclic group generated by x. In what follows, we put
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l={r^R＼rx^J{Rxix~])}, K=J(R*<x≫nR

Lemma 7.2. (i) Both 1 and K are ^-invariantideals of R.

(ii) /n/(i?)=i?n/(i?v[x]).

(1)

49

Proof. The map X*: Rx[_x^＼-*Rx[_x2induced by X is obviously an auto-

morphism of Rx＼_x~＼.Hence, if re/, then X*(rx)=X{r)x^J(Rx＼_x~])and so X(r)^I.

This shows that X(I)QI and a similar argument shows that X~1(I)QI. The

proof that K is ^-invariant is identical to the above proof.

(ii) By Lemma 3.3 (ii), RnJ(R*[x])QJ(R) and hence i?n/(i^[>])£

IC＼J{R). Conversely, let re/n/(i?). Then, for all *^0, rt^R, ririX1)^

J(RXW). Hence i-rf is a unit of Rllx] for all/si?;[x]. Thus r£/(^[x]),

as required. M

Theorem 7.3.(Bedi and Ram (1980)). With the notation above, the following

properties hold:

(i) J(R*W)=lnJ(R)+Ix+ ･･･+Ixn+ ....

(ii) J(Rx<x≫=Kx<x>Qj(R)x<x>.

(Hi) KQI and J(Rx<x})nRx[x]QJ(Rx[xl).

(iv) // X is of locally finite order, then I and K are nilideals and J{Rx＼_x~＼)

= /'[*].

(v) If X is of locally finiteorder and J(R) is locally nilpotent, then

(a) J{Rx[_x-])=J{RYix＼

(b) J(Rx<x≫=J(R)x<x>.

(c) /(/?*!>]) and J(Rx(x}) are locally nilpotent.

Proof. ( i) This is direct consequence of Lemma 7.2(ii)and Theorem 6.16.

(ii) Apply Corollary 5.6 to the special case where N=l.

(iii) Given r^K, we have rxGj(Rx<.x}). Let /^SiUa*** be a typical

element of /?*[>]. Since rx/e/(i? "*<*≫,there exists T―Ht^z bixi<=.Rx(x'ysuch

that

M=0 / ieZ M=0 /＼i<=Z /

It follows that ?<^Rx[x~] and so KQl. The last assertion is a consequence of

(ii)and the fact that KQl.

(iv) Assume that X is of locally finiteorder. Then, by Theorem 6.16 (ii),

/ is a nil ideal. Since KQI, K is also a nil ideal. Since / is nil, /£/(/?) and

so, by (i), KRxM)=lxlxl

(v) Assume that X is of locally finite order and J(R) is locally nilpotent.



50 G. Karpilovsky

Since X is of locally finiteorder, it follows from (iv) that J(Rx[xJ)QJ(R)x[x],

Also, by (ii),/(/?'<*≫£/(/?)*<*>. It will be shown that J(R)x[x'] is locally

nilpotent, which will prove (a) and the firstpart of (c). A similar argument

will show that J(Rx(x}) is locally nipotent, which will prove (b) and the second

part of (c).

Let S be any finitesubset of J(R)x＼_x~],let B be the set of all coefficients

of elements of S and let C=＼Ji>oX＼B). Since B is a finiteset and Xis of locally

finiteorder, C is a finitesubset of J{R). But J(R) is locally nilpotent, hence

Cm=0 for some m^l. Therefore Sm=0 and the result follows, m

In what follows, rad(R) denotes the prime radical of R.

Theorem 7.4.(Ram (1984)). Let R be a ring satisfying the ascending chain

condition on left annihilators and let X be an automorphism of R. Then the fol-

lowing conditions are equivalent:

(i) J(Rx(x))*0.

(ii) /(*'[x])*0.

(iii) R has a nonzero X-invariant X-nilideal.

(iv) R has a nonzero right nil ideal.

(v) rad(R)^0.

(vi) rad(Rl<x≫*0.

(vii) rad(Rxix~])^Q.

Proof. (i H(ii): Owing to Theorem 7.3 (ii),(iii),I&Q and so J(Rx[xJ)

=£0,by the definition of 1.

(ii)=Xiii): By Lemma 7.1 (i), / is ^-invariant, while by Theorem 6.16(ii),

/ is /l-nil.Since J(Rx[xJ)^0, Theorem 7.3 (i) also tellsus that 1^0, as re-

quired.

(iii)=Kiv): This was established in the proof of Lemma 6.8.

(vH(vi): Let A={l(Rx)＼xRx=0, x^O}. Since rad(R)^0, the set A is

nonempty. Let l(Rr) be a maximal element of A. Then a straighforward

argument shows that rRkn(r)―Q for all hgZ. Hence rR*(x)r=Q and so

rad(R＼x))^0.

(viH( i ): Apply the inclusion rad(R*<x≫GJ(Rx(xy).

(vi)=Xvii): Let / be a nonzero nilpotent ideal of R*(x). Then Jr＼Rx＼_x~＼

is a nonzero nilpotent ideal of Rl＼_x~＼.Hence rad(R*[x^)^Q.

(vii)=^(ii): This follows from the inclusion rad(/?'[>])g/(#'[>]). m
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