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Abstract. In the problem of estimating the covariance matrix of a

multivariate normal population James and Stein (1961) obtained a

minimax estimator by considering the best invariant estimator with

respect to the triangular group. In thispaper we propose an orthog-

onally invariant estimator obtained by averaging the minimax esti-

mator with respect to the invariant measure on the orthogonal group.

Explicit forms of the proposed estimator are given for dimensions 2

and 3. Risk is evaluated for various population covariance matrices

and it shows a substantialimprovement over the minimax estimator

for a wide range of population covariance matrices.

§1. Introduction.

In the problem of estimating the covariance matrix of a multivariate normal

population the usual estimator is the sample covariance matrix S=A/n where A

is distributed according to the Wishart distribution WiS, n). Although S is un-

biased it is known that the (sample) characteristic roots of S tend to be more

spread out than the corresponding (population) roots of I. This can be seen as

follows. Let h be the largest characteristic root of I and £be an associated unit

characteristic vector, then ?'S£ is unbiased for lx. Let U be the largest sample

root, then

≪5(/1)=<?(max xfSx)^e(^S^)=>i1.

X'X =l

See Van der Vaart (1961), Anderson (1963). Similarly for the smallest root Xp,

lp of I, S, respectively, we have £(lp)f^Ap. It is these implicit maximization

and minimization processes for each observed S that makes the sample roots

more spread out than the population roots. Actually in terms of majorization

the following holds: (<?(/:),･･■,S{lp)) majorizes (?n, ･･･. 2P). See Chapter 12, Sec-

tion E of Marshall and Olkin (1979).
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The above consideration suggests that we shrink the sample roots toward a

middle value. This is analogous to the Stein-type estimation of a multivariate

normal mean vector. Earlier works along this direction can be found in Stein

(1975), Efron and Morris (1976), Haff (1977, 1979a, b, 1980), Eaton (1970), Sugiura

and Fujimoto (1982) and others.

Another approach was taken in Stein (1956), James and Stein (1961), Selliah

(1964), and Olkin and Selliah(1977). They are concerned with minimax estima-

tion of the covariance matrix. Minimax estimators can be obtained by considering

the best invariant estimator with respect to the triangular group GJ (the group

consisting of lower triangular matrices with positive diagonal elements). An

unappealing property of these estimators is that they depend on the coordinate

system.

In this paper we propose an orthogonally invariant minimax estimator which

is derived from the minimax estimators above by averaging them. The idea of

averaging already appears in Stein (1956) and the specific estimator proposed

below is briefly mentioned in Eaton (1970) (his formula 3.6). But it seems to

have never been studied carefully.

In Section 2 we derive the estimator and study its properties. Details of

computation are given in Section 4. For dimensions 2 and 3 the estimator is

given explicitly. For larger dimensionalities the explicit integration involved

seems formidable. The Monte Carlo method is always available, but some good

approximation is desirable. In Section 3 we study the risk behavior of the esti-

mator. If the number of degrees of freedom is not too large compared to the

dimensionality, it shows a substantialimprovement over the minimax estimator

mentioned above for a wide range of population covariance matrices.

(2.1)

§2. Derivation of the estimator.

Consider the problem of estimating I with the following loss functions:

Lx(2, l)=tv{II-l)-＼og detill-1) -p ,

L2(I, l)=tr(i'2'-1-/)2.

The best scalar multiples of A for these loss functions have constant risk, but

they are not minimax. Minimax estimators were obtained by considering the

best invariant estimator with respect to Gt- They are of the form

(2.2) Z(A) = TDT',

where D=diag(d1, ■･･,dp) and 7eG£ with TT' = A.

For L,



(2.3)
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di=

1

n+/> + l-2i'
i=l,-,p

369

See Stein (1956), James and Stein (1961). For L2 see Selliafa(1964), Olkin and

Selliah(1977).

Note that for Ll we have dr<---<dv. The same ordering seems to hold

for L% as well. This causes a rather unpleasant asymmetry of the estimator:

the firstfew rows and columns become smaller compared to others. This asym-

metry leads to the idea of symmetrizing the estimator by averaging over different

coordinates. Let F be an orthogonal matrix corresponding to a change of ortho-

normal basis. Applying (2.2) in the new coordinate system we obtain Sp ―

FTrDT'rF' where TrT'r=rfAr. Ir has the same constant risk as I. Now

let fi be a probabilitydistributionon O(p), the group of p X p orthogonal matrices.

An improved estimator can be obtained by averaging:

(2.4)

Note that I^ is minimax being an improvement over a minimax estimator. In-

teresting cases are (i)
tu:
the uniform distributionof permutation matrices, (ii)

H: the uniform distribution (Haar measure) on O(p). These cases are briefly

mentioned in Stein (1956, formula 4.13), Eaton (1970, formula 3.6),respectively.

See Sharma (1980) too.

For this paper we consider the uniform distributionon O(p) and study the

resulting estimator:

(2.5) zo(A)=[ rTrDT'rrrdr.
J(Hp)

Note that S0(A) is orthogonally invariant. Hence So modifies only the character

isticroots of .4. Define <px,･■･,<fipby

(2.6) diag(0i(a),･･･,^>p(a))= S0(diag(a1,･･･,ap)),

where a=(au -･･,ap). We are interested in the behavior of <pu ･･･,<pp.

will see the shrinking of the roots mentioned in the introduction. Let us

at the simplest case p―2.

Theorem 2.1. For p=2

(2.7)

0l(≪i, ≪a) = axc ―- yy

0a(ai, a2)=a2c2 ―

VV≪i+V≪2 1 V≪i+V≪2 /

We

look
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Note that as a1/a2 approaches oo, ^>1r^a1di,<l>%^a^dt. Now for Lx we have

d1=l/(n + l)<l/n<dz=l/(n ―1). This shows that if ≪j>≪2 then the larger root

is shrunk and the smaller root is expanded relativeto the unbiased case S=A/n.

When a1=ai=a then (j>1~(j)z=a{d1Jrdi)/2.The shrinking factors cu c2 change

smoothly between these two cases.

For p=Z the integration over 0(3) is already tedious. We give an infinite

series expression for <filt<f>2,<fi3.Convergence is reasonably fast but the form of

the series is not very revealing. Let (a)k = a(a +1) ･■･(a + k ―1) and let

(a)m+n(b)m(b')n
i(a;
b, b' ',C; X, y)― 2 2

: rr-r
m=0 tz=o m! 71 ＼(c)m + n

x y

be Appell's hypergeometric function of two variables. Furthermore for conveni

ence let H(b, b';c;x, y)=F1(l; b/2, b'/2; c/2; x, y).

(2.8)

Theorem 2.2. Let p=3 and 0^≪^/3<l. Then

Ul, 1-a, 1-/3)

&%―d%

105(l-a)

where ?'=(/3―a)/{I―a),

(2.9) 02(1, 1-a, 1

(2.10)

3

H{＼, 1; 5; a, B)

{(a-pyH(3;Z;9;B, r)+3a2(l--/3)tf(5; 3; 9; B, j)

+3B＼l-a)H(5, 1)9; B, j)),

{3a

105(1―≪)

j8)

a

"15 (7d1+5d2+3di)--^(ds-d1)

2#(3, 1; 9; a, p)+2a(a-p)H(3, 3; 9 ; a, /3)

+3(a-/3)2#(3, 5; 9; a, 0)}

{SCa-^^l, 5; 9; /3,r)+3a2(l-/3)H(3, 5; 9; ft r)

+i32(l-a)//(3, 3;9;ftr)},

0,(1,1-a, 1-5) = (1-/3){di+ dt+ds-fa-fa/a-a)}

Note that these formulas suffice for all cases because the estimator is in-

variant with respect to scale change and permutation of roots.

Although it is difficultto see from these expressions, the shrinking of the

roots becomes apparent when values of {<j>u$2, 03) are computed for various

choices of a and B.
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For general dimension p, p(p ―l)/2-fold integration is involved. Although

infinite series expression as in Theorem 2.2 is always possible in principle, it

will be complicated and convergence might be slow. Then a Monte Carlo method

can be used. We will discuss this in Section 3 and Section 4. Here we give a

qualitative description of the estimator. Note that D can be written as D=

di£u+ ･･･ +dpEpp where En has 1 in (z,z)-th position and 0 everywhere else.

Putting this into (2.5) we see that (f>u･･･, <j)pare linear in dh ■■■,dp. Therefore

we can write

(2.11) 6i{a)=aici=ai{wildlJr ■■■Jrivivdv), i=l, ■･■,p.

Let W(a)=(Wij{a))

Theorem 2.3. W(a) is doubly stochastic, namely u^-^O, S Wij=l, S wtj=l

j i

Proof. It is easy to show that

(2.12) aiWu = ＼{rTr)hdr

Hence u^^O. Considering the specialcase D=I proves Wn + ･･･+wip=l, i=

1, ･■■,p. S Wij―l is a consequence of the following lemma.

Lemma 2.1.

(2.13) trCSoWA-^trD.

Proof is straightforward and omitted.

§3. Risk.

For Li the risk can be evaluated in the following fairly simple form and

gives a nice qualitativeunderstanding of its behavior.

(3.1)

Theorem 3.1.

2 e log d(a)-p log 2- 2^(-^

where Ci(a)'sare the shrinking factors and (p(a)=r/(a)/r(a)

Proof. We look at trI~l2 term first.

(3.2) eS!{trl-1l0} = es(tvi-ArTrDT'rrfdr)

-t＼
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=
f<?2-*(trX*-1TZ)T/)rfr

(trTTD)df

V

i = l

=p.

where JS*=F'2r. The rest of the proof is straightforward.

Corollary 3.1.

(3.3)

hence

(3.4)

(3.5)

2 log dt^S log d^p log(2 <*,//>)

-p ＼og(^-)-p log 2-S <[>{^~)^R1{S, 20)

^-S log dt-p log 2-2 #(1±±=L) .

Proof. We use the concavity of log and Jensen's inequality.

-2 log c^log(£ c<//0=log(E di/p)

This proves the second inequality of (3.3). Now

(3.6) log Ci~＼og{wnd^ 1-wipdp)^T,Wij log di.

Adding over differenti we obtain

S log c^S Wijlog dJ='E log rfi

This proves the firstinequality.

It can be easily shown that the right hand side of (3.4) is the minimax risk:

R^I, TDT'). The left hand side of (3.4) gives an absolute bound for the im-

provement by using 20. This bound is attained if (3.5) holds with equality,i.e.

if Ci= ･･･=cp. This happens when ax= ･･･=ap. Therefore we expect that the

largest improvement occurs when 2=1. Now since 20 is minimax, its risk has

to approach the minimax risk for some 2. This corresponds to having the

equality in (3.6) for all /. This implies that W(a) in Theorem 2.3 is a permuta-

tion matrix. In the 2-dimensional case this happens when ajaz-+oo. In general

dimensions it is not easy to say when W(a) approaches a permutation matrix but

we expect that it corresponds to the case of extreme singularity of A. Here we
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present some Monte Carlo results to illustratethese points.

First consider the case I―I. For p―2 and p=5 and for selected values of

n we listrisk of 5, minimax risk, risk of 2*0, and the lower bound given in

(3.4). The number in parentheses after the minimax risk is its percentage to

the risk of S. The other numbers in parentheses are percentages to the mini-

max risk.

p=2

n R＼(S) minimax Ri(2o) lower bd.

2 2.54 2.25(88.7) 2.07(91.8) 1.97(87.2)

3 1.35 1.23(91.3) 1.14(92.5) 1.12(90.5)

4 .927 .862(93.0) .808(93.7) .798(92.5)

6 .571 .543(95.1) .518(95.3) .515(94.8)

10 .324 .314(96.9) .304(97.0) .304(96.8)

15 .210 .206(97.9) .202(97.9) .201(97.8)

n

5

6

8

10

15

*i(S)

5.96

3.99

2.52

1.87

1.14

j>=5

minimax

4.76(79.9)

3.28(82.3)

2.17(86.0)

1.65(88.5)

1.05(92.0)

3.9 (82)

2.73(83.2)

1.88(86.4)

1.47(88.7)

. 970(92.1)

lower bd.

3.06(64.2)

2.41(73.5)

1.78(82.0)

1.43(86.2)

. 959(91.1)

The following serves as a concise summary: (when 2=1) the ratio of the

risk of 2*o to the minimax risk is roughly equal to the ratio of the minimax risk

to the risk of S. Also note that the absolute lower bound is realisticfor n not

too close to p. These observations hold in our other Monte Carlo results as well.

The remaining question is how 2 should be close to being singular for the

risk to approach the minimax risk.

For p― 2, the risk depends only on the ratio of two population roots, say,

l―lilh Ui^2). The following table gives values of the risk for n=2, 7, A1'*

=.2, A, ･･■,1.0. % means percentage of the risk to the minimax risk.

X

1.0000

0.4096

0.1296

0.0256

0.0016

n=2

risk

2.069

2.076

2.100

2.147

2.212

%

91.8

92.1

93.2

95.3

98.2

X

1.0000

0.4096

0.1296

0.0256

0.0016

n=7

risk

0.4400

0.4409

0.4439

0.4496

0.4559

%

95.9

96.1

96.7

97.9

99.3
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We see that the risk approaches the minimax risk only when 2 is very

close to singular. This is a real advantage of using Io. From our other Monte

Carlo results the above seems to hold for general p, namely, Io is a substantial

improvement over the constant risk minimax estimator for wide range of popu-

lation covariance matrices.

§4. Proofs and some computational details.

We are going to give some detailsof the derivation of Theorems 2.1 and 2.2.

First we note the following.

Lemma 4.1.

(4.1)

J|T|
rTrDTrrr'dr.

Proof of Theorem 2.1. By Lemma 4.1 we can represent the uniform dis-

tribution on 0(2) by

/cos 0 -sin d＼

l4'Zj Vsin 0 cos d) '

where 6 is uniformly distributed on [0, 2iz~＼.Since W is doubly stochastic we

only need to calculate w22{au a2)-=w2Z(a1/az, 1). Let a―a1jai and ^4=diag(≪, 1).

Then by (2.12)

(4.3) w≫=^rTlr)＼tdr=^ruThtdr＼

Let Ff be given by (4.2). Then itis easy to obtain Trzz ―^ a /Va cos2#+sin26> .

Hence

(4.4)
^22 =

1

^2tl

$ 2jt a cos26

o ≪cos2#+sin2#
dd

― v'a
~Va+l *

Proof of Theorem 2.2. We show only some essential steps in the deriva-

tion of (2.8) and (2.9). (2.10) is a consequence of Lemma 2.1. Because of the

scale invariance we can set D=diag(l―e―d, 1―e, 1) without loss of generality-

Let r/=(^ii)ist, jss. Then

(4.5) B=(btJ)=r'Ar=i~~-ag12g22-pgisg23 1-aqh-pgh

＼-<xgng32~-Bg13g3S
~ag22g32-~Bgzsgs;i

l-ag232-8g2j

and



(4.6)

where

(4.7)
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(l-e-d)bn

a~e~d)b21 -dbh/bn + a-eWn

(l ―e ―d)bsi ―dbnbsi/bn + il ―eWai ―db＼Jbll ―ev +

v = (b31b32)( ) { )

^021 t>22/ V?32'

btibiz+blihn^bzihtzbzi
011022 021

gligtsia ― +gligl*a2a-B)+gl1gli8*(l-a)

l-aa-gti-pa-gij+apgi

bzz

We used the fact

gai='d3i= (gi2gai―gzzgviY,

because {gi])~r'~r~x={Ai])/＼r＼―{AiJ). Now the denominator of v can be

written as follows and then can be expanded in an infiniteseries.

(4.8) l-aO.-glt)-pa-gl,)+a0gli

― ("I― sy)(~＼ fio-2 ―
P a

rr2＼― U "J^J- p^si -y――^32 J

Similarly l/bn = l/(l―agl2―^gls) can be expanded. To evaluate the integral we

use the fact that {g＼u g＼2,g＼z)is distributed according to the Dirichlet distribution

with parameters (1/2. 1/2, 1/2). One more thing needed is the following expec-

tation gng^gzigzzdr. This can be evaluated by noting (gug2i-rg 11812)*=glagh

f f
and hence 2＼gng12g21g22dr= ― ＼g2ngt1dr.

J J

Now we discuss Monte Carlo methods to calculate Ia for general dimen-

sionality. One objection to the estimator 2Q might be that it is expensive to

compute for large p. However as mentioned in Section 3 our Monte Carlo results

show that the size of the replications to obtain the estimator need not be too

large (at least from the viewpoint of improved risk). For p=5, 50 replications

practicallyachieves the same risk as Io. Also note that there is a subtle prob-

lem in the application of Monte Carlo method: (i) either we apply (2.5) directly

for A, (ii),or we apply (2.5) to the roots of A. From logical point of view (i)

is legitimate. Finite averaging itselfimproves the constant risk minimax esti-

mator. Therefore for the purpose of risk comparison this method was used for

the case p=5 and 2=1. On the other hand the orthogonal invariance does not

exactly hold with simulated uniform distribution. From practical viewpoint,

however, the latter seems to be a reasonable thing to do.
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