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Introduction.

Let (M, g) be the n-dimensional unit sphere of Rn+1 and 5 an r-dimensional

connected submanifold of (M, g). Regarding 5 as a submanifold of Rn+1, we

can associate the Gauss map with it. It is a smooth mapping of S to the

Grassmannian manifold G?+1 of the r-dimensional linear subspaces in Rn+1,

defined as follows; S^>q^TqS<^G?+1. The target space G>+1 is a riemannian

symmetric space with a suitable metric. If the second fundamental form of S

is parallel,the Gauss map is a totally geodesic immersion by a result in Vilms

[10]. Here we note that if such a submanifold 5 is complete, itis characterized

as a symmetric submanifold, namely a submanifold preserved by the reflections

with respect to all the normal spaces, and moreover the latter submanifold is

analougously defined for the case that the ambient space is a riemannian sym-

metric space. The purpose of this paper is to extend the above result for a

symmetric submanifold of a simply connected riemannian symmetric space with-

out Euclidean factor.

We will first consider certain submanifold classes of such a riemannian

symmetric space which contain the symmetric submanifolds, and then define a

generalization of Gauss map for each submanifold class. The target space of

this generalization is generally a pseudo-riemannian symmetric space, and

moreover if the ambient riemannian symmetric space is compact, itis a compact

riemannian symmetric space. We will next show that for a symmetric sub-

manifold our generalized Gauss map is a totally geodesic immersion, and it is

moreover isometric if and only if the submanifold is totally geodesic. Last we

will give the list of the target spaces of the generalized Gauss maps for our

considerable submanifold classes of the simply connected irreducible riemannian

symmetric spaces.
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§1. Submaitif olds of riemannian symmetric spaces.

Let (M, g) be a riemannian symmetric space. Denote by R the curvature

tensor of (M, g). A vector subspace V of a tangent space TPM is said to be

strongly curvature-invariant if it holds that

(1.1) (1) RP(V, V)V(ZV and (2) RP(V＼ V1)V1dVL,

where V1 denotes the orthogonal complement of V. Obviously the subspace VL

is also strongly curvature-invariant. Let V, W be strongly curvature-invariant

subspaces of TPM, TqM, respectively. Then they are said to be equivalent to

each other if there exists an isometry <J>of(M, g) such that <}>{p)―q,</>*(V)=W.

Denote by [V] the equivalence class of a strongly curvature-invariant subspace

V and by S{M, g) the set of all the equivalence classes. For cv^S(M, g) a con-

nected submanif old S of M is called a c＼7-submanifoldif it holds that [TpS~]=cv

for any point />eS.

Lemma 1.1. For each ^V&SiM, g) there exists a complete connected totally

geodesic cv submanif old uniquely except the difference of congruence.

Proof. Take a strongly curvature-invariant subspace F of a tangent

space TPM which represents the equivalence class cy. By (1.1),(1) there exists

a unique complete connected totallygeodesic submanifold N such that p<=N and

TPN=V (cf. [3]).

We firstshow that TV is a ^-submanifold. Let q be another point of N and

join q to p by a geodesic y(t)in N. Then y(t)is also a geodesic in M and

moreover TqN is translated to TPN by the parallel translation of M along y{t).

Since the parallel translation along a geodesic in a riemannian symmetric space

equals the differentialof an isometry (cf. [3]), the subspace TqN is equivalent

to TPN ―V. Hence JV is a cV-submanifold.

Next let 5 be a complete connected totallygeodesic c^-submanifold and take

a point q(ES. Since [T,S]=c^, there exists an isometry <j>of (M, g) such that

0(q)=P and <fi*(TqS)―V. Then, since N, S are both complete connected totally

geodesic, it follows that <p(S)~N. Hence S is congruent to N. Q. E.D.

Let 5 be a connected (regular) submanifold of M. Then S is called a

symmetric submanifold if for any point />eS there exists an extrinsicsymmetry

tp,i.e., a unique isometry of (M, g) which preserves 5 and satisfiesthat

(1.2)

I

tp(p)=p,

{tp)*x= I

―x for

x for

x^TpS

xgNpS
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where NPS denotes the normal space at p. The tangent spaces of such 5 are

strongly curvature-invariant.

Lemma 1.2. A symmetric submanifold S of a riemannian symmetric space

(A/, g) is a complete <=V-submanifold for some cv^S(M, g). Next assume that(M, g)

is simply connected. Then a connected submanifold S of (M, g) is a complete

totallygeodesic cv-submanifold for some cyeS(A/, g) if and onlyif it is a totally

geodesic symmetric submanifold.

Proof. Since a symmetric submanifold is a riemannian symmetric spce with

respect to the induced metric, it is complete. Hence, to show the firstclaim,

we may see that S is a cy-submanifold for some cv^S(M, g), namely the tangent

spaces of S are equivalent to each other. This follows by the following fact;

The subgroup of isometries generated by the extrinsic symmetries tp,p<=S, acts

transitively on S.

The second claim easily follows by the firstclaim and the characterization

(Corollary 1.4, [6]) of a symmetric submanifold. Q. E. D.

Now we give concrete examples of cy-submanifolds of simply connected

compact riemannian symmetric spaces of rank one.

Example 1. Let (M, g) be the n-dimensional sphere Sn of positive constant

sectional curvature. Then any subspace VcTpA4 is strongly curvature-invariant,

and moreover two subspaces VczTpM, WdTqM are equivalent to each other if

and only if they have the same dimension. Hence the set S(M, g) are exhaused

by the equivalence classes cVr, O^r^n, of r-dimensional subspaces. Then a con-

nected submanifold is a cy-submanifold if and only if itis r-dimensional, and in

this case iV given in Lemma 1.1 is the r-dimensional totally geodesic sphere.

Example 2. Let (M, g) be the n-dimensional complex projective space CPn

of positive constant holomorphic sectional curvature. Denote by / the complex

structure on M. In this case a subspace V(zTpM is strongly curvature-invariant

if and only if it is one of the following cases (1), (2);

(1) V is an r-dimensional complex subspace, where O^r^Ln.

(2) V is an n-dimensional totally real subspace, i.e., JV^V1.

Moreover strongly curvature-invariant subspaces VdTpM, WdTqM are equi-

valent to each other if and only if they are either complex subspaces with the

same dimension or totally real subspaces with the dimension n. Hence the set

S(M, g) are exhausted by the equivalence classes cvrc, O^r^n, of r-dimensional

complex subspaces and the equivalence class (Vr of n-dimensional totally
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real subspaces. Then a connected submanifold is a cVc-submanifoid (resp. c＼7R-

submanifold) if and only if it is an r-dimersional Kahler submanifold (resp. n-

dimensional totally real submanifold), and in this case N given in Lemma 1.1

is the r-dimensional totally geodesic complex projective space CPr (resp. the

n-dimensional totally geodesic real projective space RPn).

Example 3. Let (M, g) be the n-dimensional quaternion projective space

HPn with the metric of riemannian symmetric space. Denote by Qd

Hom(TM, TM) the quaternionic structure on M. In this case a subspace Fc

TPM is strongly curvature-invariant if and only if it is one of the following

cases (1),(2);

(1) V is an r-dimensional invariant subspace, where OfSr^n, i.e., dimfly =

4r and FV = V for F<=Q.

(2) V is a 2n-dimensional totally complex subspace, i.e., there exist endo-

morphisms /, /, Ke=Q satisfying /2=/2=/s:2 = -l, //=-//=#, JK=-KJ=I,

KI=-IK=J, and moreover IV = V, JV = VL, KV^V1. Here -1 denotes the

minus identity map of TPM.

Moreover strongly curvature-invariant subspaces V(zTpM, Wc.TqM are

equivalent to each other if and only if they are either invariant subspaces with

the same dimension or totally complex subspaces with the dimension In. Hence

the set S{M, g) are exhausted by the equivalence classes cv1^, Q^rfSn, of r-

dimensional invariant subspaces and the equivalence class cVc of 2n-dimensional

totallycomplex subspaces. Then a connected submanifold is a cpk-submanifold

(resp. ^c-submanifold) if and only ifit is an r-dimensional invariant submanifold

(resp. 2rc-dimensional totallycomplex submanifold), and in this case N given in

Lemma 1.1 is the r-dimensional totally geodesic quaternion projective space HPr

(resp. the n-dimensional totally geodesic complex projective space CPn).

Example 4. Let (M, g) be the Cayley projective plane CaPz with the metric

of riemannian symmetric space. Then the set S(M, g) consists of two equi-

valence classes cvlt cv2. The equivalence class ^Vx is represented by a tangent

space of the projective line S8 of CaP2 and the other equivalence class ^U2 is

represented by a tangent space of the totally geodesic submanifold HP2dCaP2

which is induced by the natural inclusion of the quaternion number fieldH to

the Cavlev number field Ca.

Here we refer [5], [8], [9] to Examples 2, 3, 4, respectively
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§2. Generalized Gauss maps and symmetric submanif olds.

In this section we firstassume that (M, g) is a riemannian symmetric space

whose universal covering space does not contain any Euclidean factor, namely

the identity component I°(M, g) of the isometry group of (M, g) is a semi-

simple Lie group.

Fix an equivalence class c[/^S{M, g) and let S be a connected c^-submanifold

of M. To define the "Gauss map" associated with S we first construct the

target space.

Fix a point o of S and put V = T0S. Let Fs be the set of the strongly

curvature-invariant subspaces which are equivalent to V by isometries in I°(M, g).

Hereafter denote by G the identity component I°(M, g). Then the Lie group

G acts transitively on the set Fs by the following way; <fr-W=<fi*(W) for 0e

G, W^FS. We next define a relation ~ on the set Fs. Let WcTpM, Ud

TqM be subspaces in Fs. Then it holds that W~U if and only if there exists

a complete connected totallygeodesic submanif old AT±of M such that p, q^N1-

and TPN1 ―WJ-, TqNx―U1. This relation is an equivalence relation since N1

is uniquely determined by any one point in it and the tangent space. Denote

by (W} the equivalence class of W^FS with respect to thisrelation and by M*

the set of the equivalence classes. Since the action of G on Fs preserves the

relation ~, the Lie group G also acts transitively on the set M* by the fol-

lowing way; #'<W>=<.$*W> for (f>~G, <W>eM*.

We firstdefine a differentiate structure on M*. Thus M* is a smooth

manifold. Let p* be a point of M* and denote by K*(p*) the stabilizerin G

of />*. Moreover set p* = (W} where W^FS and WcTpM, and denote by N1{p*)

a unique complete connected totally geodesic submanifold of M such that ptE.

N＼p*) and TpNx(p^)=W1. Then this NL(p*) is independent of selecting the

representative W of p% and it characterizes K*(p*) as follows.

Lemma 2.1. It holds that

(2.1) K*(p*)={fs=G ; f(NKP*))=N*(p*)}.

Particularly, if (M, g) is simply connected, K*(p*) is a closed subgroup of G.

Proof. Let <j><=K*(/>*).Since 0*JF~W, it follows that 0(/>)GEAfx(/>*)and

(<f,^W)1=T^^N1(p^). Moreover since (^Wy=^(WL), it follows that <f>(N＼p*))

= N±{p*). Conversely assume that 0eG satisfies0(NL(p*))=NL(p*). Then it

follows that 0(/>)gNx(/)*) and ^^Wy^^^W^T^^N^p*). Hence it holds

that $*W~W, which implies that 6<eK*(/>*).
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We next show that the subgroup K*(p*) of G is closed. Define a linear

isometry 0 of TPM as follows;

( ―x for x^W,
0(x)=＼

{ x for x^W1.

Then it preserves the curvature tensor Rp at p by (1.1). Since (M, g) is a

simply connected riemannian symmetric space, 0 is uniquely extended to an

isometry <j>of (M, g) such that <j>{p)=p and <fi*p= 0 (cf. [3]). Here we can

easily see that the totallygeodesic submanifold N1(p*) is a connected component

of the fixed point set of 0, which containes />. Hence N＼p*) is closed and

so iff/)*)is closed. Q. E. D.

By this lemma, if (M, g) is simply connected, the set M* is, as set,bijective

to the homogeneous space G/K*(p*) for any point p*<^M*. Then, since G acts

transitivelyon A/*, there exists a unique smooth structure on M* such that

M* is diffeomorphic to G/K*(p*) for any point p*(EM*. We regard M* as a

smooth manifold with this smooth structure.

We next define a pseudo-riemannian structure on M*. Denote by g the Lie

algebra of the Killing vector fieldson (M, g). Fix a point peM and denote

by sp an involutive isometry defined by the geodesic symmetry at p. Then it

induces an involutive automorphism a of G by the following way; a(<fi)=sp°0°sp

for 0eG. The differential of a is also an involutive automorphism of g.

Denote the differentialby the same notation a and let g±1be its ±l-eigenspaces.

Then the vector space g_! is identified with the tangent space TPM by the

correspondence: Q-i^X-+Xp<~TpM. Under this identificationthe adjoint repre-

sentation ad
9-1 (gO of Qx on g_! is identified with the Lie algebra spanned over

R by the endomorphisms R{x, y), x, y<=TpM (cf. [3]). Hence the metric gp

on TPM induces an inner product < , >fl_1on g_x such that the endomorphisms

ad?i_1(X), X^Qu are skew symmetric. Since g is semi-simple and adg_x is faithful,

the inner product < , >B_1 is uniquely extended to a nondegenerate symmetric

bilinear form < , > on g satisfying the following conditions (a), (b) (cf. [2]);

(a) The endomorphisms ad(X), Xeiq, of g are skew symmetric with respect

to < , >.

(b) The involutive automorphism a preserves < , >.

We here note that this bilinear from < , > is independent of taking the fixed

point p of M. This fact follows by the condition (a) and the uniqueness of

the extension < , > of < , >B_1. Now the Lie algebra g is isomorphic to that

of G, and so the bilinear form < , > on g moreover induces a bi-invariant
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pseudo-riemannian metric on G by virtue of the condition (a). This metric is

also denoted by < , >. If (M, g) is of compact type, i.e., G is a semi-simple

Lie group of compact type, the pseudo-riemannian metric is riemannian.

Assume that (M, g) is simply connected. Again fix a point p*<^M* and

let p^―iWy where WdTpM. Moreover let A7'be a complete connected totally

geodesic submanifold of M such that pEzN and TPN―W. Then N is a sym-

metric submanifold by Lemma 1.2. Let tp be the extrinsic symmetry of N at

p. Similarly as sp, it also induces an involutive automorphism r of G and thus

g. This involution r of g has the following properties (1),(2);

(1) [r,a]=0.

(2) r preserves the bilinear form < , > on g.

The property (1) follows since [_tp,sp]=0 and the property (2) follows since t

preserves < , >g_1. Now denote by f*(/>*)the Lie algebra of K*(p*). Then it

is characterized by r as follows.

Lemma 2.2. It holds that

!*(/>*)={Xeg;r(Z)=Z}.

Proof. We firstrecall that N±(p*) is a connected component of the fixed

point set of tp, which contains p. Hence, for any point q^N^ip^), it follows

that tp(q)―q and (tp)*(x)=x or ―x according as x(ETqN±(p*) or xeAyVx(£*).

Let **=!*(/>*) and t<=R. Then it holds that (exp^X^VJ-(/>*))=iVx(/>*) by

Lemma 2.1. Hence, by the above remark, it follows that (tp°exptX°tp)(q)=

(exptX)(q) and (tp°exptX°tp)* =(exptX)*q. Since tp°exptX°tpand exptX are

both isometries of(M, g),it holds that tp°exptX°tp=exptX, and thus z(X)=X.

Conversely assume that t{X)=X where leg, i.e., tp°QxptX°tp―QxptXfor

t^R. Again by the above remark it follows that tp((exptX)(q))―(exptX)(q)

for q(ENx(p*). Hence it holds that (exptX)(q)EENl(p*) and so (exptX)(Nx(p*))

= NL(p*). By Lemma 2.1 it follows that exptX^K*(/>*) and thus Zge!*(/>*).

Q. E. D.

Denote by p*(p*) the (-l)-eigenspace of r. By Lemma 2.1 it is identified

with the tangent space at the origin K*(p*) of the homogeneous space G/K*(p*).

Since < , > is preserved by r, its restrictionto p*(P*) is nondegenerate. Hence

the bi-invariant metric < , > on G induces a pseudo-riemannian metric g* on

G/K*(p*). This metric g* moreover induces a pseudo-riemannian metric on M*

such that G acts isometrically on M*. This is also denoted by g*. We here

note that the metric g* on M* is independent of taking the fixed point />* of

M* since the metric < . > on G is bi-invariant.
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We next show that this pseudo-riemannian homogeneous space (M*, g*) is

independent of selecting a connected cV-submanifold S and a fixed point o(eS.

Namely let (M'*, g'*) be the pseudo-riemannian homogeneous space constructed

above from another connected y-submanifold S' and another fixed point o'eS'.

Then it holds that (AT*, g'*) is isometric to (A/*, g*). In fact, since [TV S'~＼

= ＼T0S~＼=cv, there exists an isometry 0 of (M, g) such that <f>(o')=o and 0*(TO, S')

=T0S. This isometry induces a bijection of FS' onto Fs since 0°G°0"1 = G,

and the bijection moreover induces a bijection 0* of M'* onto M* since it

preserves the equivalence relation ~. Identify M'*, M* with the homogeneous

spaces G/K'*(of*), G/K*(o*), where o'*=<T0, S'>, o*=<ToS>. Then we can

easily see that the bijection 0* is identified with a smooth mapping of G/K'*(o'*)

to G//C*(o*) induced from the following isomorphism ^ of G: <p((p)=0°<p°0~v

for <p(EG. Here, noting that $ preserves the metric < , > on G, we can moreover

see that 0* is an isometry of (M'*, g'*) onto (M*, g*).

We call this pseudo-riemannian homogeneous space (M*, g*) the target space

associated with the equivalence class cy.

THEOREM 2.3. Let (M, g) be a simply connected riemannian symmetric space

without Euclidean factor and let ^V^SiM, g). Then the target space (M*, g*)

associated with c＼7is a pseudo-riemannian symmetric space.

Moreover if (M, g) is compact, the target space (M*, g*) is a compact rie-

mannian symmetric space.

Proof. Fix a point o*^M* and set o* = <,W) where W(zT0M. Moreover

let t0 be the extrinsic symmetry at o of the totally geodesic symmetric sub-

manifold N such that oc/V and T0N=W. Then, similarly as the above argue-

ment, the isometry t0induces an involutive isometry t* of M* = G/K*(oii) and

it moreover holds that t^(o^)=o^ and io=T. Obviously this isometry tt defines

the geodesic symmetry at 0*. Moreover since (M*, g*) is a pseudo-riemannian

homogeneous space, it is a pseudo-riemannian symmetric space.

Next assume that (M, g) is compact. Then the Lie group G is compact and

the metric < , > on G is riemannian. Hence (M*, g*) is a compact riemannian

symmetric space. Q. E. D.

Now we define a "generalized Gauss map" associated with a connected CV-

submanifold of M. Assume that (M, g) is a simply connected riemannian sym-

metric space without Euclidean factor and let <V~S(M, g). Let S be a connected

c^-submanifold and fix a point oe5. Then the target space (M*, g*) is con-

structed from S and 0. We define a smooth manning tc of S to M* in the
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following way. For a point p^S the tangent space TPS is contained in the set

Fs by the connectedness of S. Then we put /c(p)=<TpS)^M*. We call this

mapping k the generalized Gauss map associated with the cy-submanifold S.

We firstremark the followings (a),(b), (c);

(a) The generalized Gauss map k is independent of taking the fixed point

ogS since the set Fs is so.

(b) The generalized Gauss map k only depends on the congruence class of

5. Namely let S' be another connected cF-submanifold of M which is congruent

to S by an isometry 0 of (M, g). Then there exists an isometry <pof(M'*, g'*)

onto (M*, g*) such that a;'°0=0°a;,where (M'*, g'*), k' denote the target space,

the generalized Gauss map associated with 5'. In fact, thisisometry <pis given

by the isometry <j>*constructed above by <j>.

(c) Let (M, g) be the n-dimensional unit sphere 5n of the Euclidean space

Rn+1 and 5 an r-dimensional connected submanifold of Sn. Then the generalized

Gauss map associated with 5 is, so is called, the "usual" Gauss map since the

target space M* is identified with the Grassmannian manifold G"+1.

We next show the following theorem, which is a generalization of the

result bv Vilms ["101 described in Introduction.

Theorem 2.4. Let (M, g) be simply connected riemannian symmetric space

without Euclidean factor and let cvgS(M, g). If S is a symmetric cV-submanifold

of M, then the generalized Gauss map is a totally geodesic immersion of 5 to

(M*, g*).

Moreover it is isometric if and only if S is a totallygeodesic submanifold

of M.

Before proving this theorem we prepare the following lemma. Let (M, g)

be a riemannian symmetric space and S a symmetric submanifold of M. Let

Tit)be a complete geodesic of 5 and denote by tt the extrinsic symmetry of 5

at Tit). Moreover set T(t)=t(t/2^°tofor t<=R.

Lemma ([6]). The curve T(t) is a one-parameter subgroup of I＼M, g) satis-

fying the following conditions;

(1) T(0(5)=5 for tEER.

(2) u°T(t)oL= T(-t) for tz=R.

Proof of Theorem 2.4. Fix a point oeS and let (M*, g*) be the target

space constructed from S and o. Let f{t)be a complete geodesic of S such that

r(0)=o. By the condition (1) of the lemma it holds that Tn≫S=(T(t))*T0S.
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Hence it follows that

Hiroo Naitoh

T(O(0*)=T(fX<ToS≫=<Tr(≫S>

=≪(r(0)

for t<BR, where o*=(.ToS). Here set T(0=exp LY where Zeg. By the con-

dition (2) of the lemma it holds that t(X)= ―X and thus Ig|j*(o*). This im-

plies that T(t)(o*) is a geodesic of (M*, g*) by the general theory of symmetric

space. Hence the generalized Gauss map k transposes a geodesic of S to a

geodesic of (M*, g*).

We next show that the differential jc*0 at o is injective. Assume that

T(0(o*)=o* for all t^R. Then it holds that <T(0*ToS> = <ToS> and thus

(Tra)Sy=(T0S}. Since the geodesic f(0 intersects the totally geodesic submani-

fold A/'x(o*) orthogonally at 0, it follows that T(t)=o for £ejR. This implies

that k*0 is injective.

Hence c is a totally geodesic immersion. We show the second claim. We

first remark that d^/dt(0)=A^o since j(t)=T(t)(o)=(exp tX){o). Decompose the

Killing vector field X into the sum of a Killing vector field Xx in gx and a

Killing vector field X.x in g_L Then it holds that Xo~―(X_i)0. Hence it follows

that g(d7-/dt(0), dr/dt(0))=<A'_1, X^}, while it holds that £*(d£°?7dt(0),d≫≫7-/dt(0))

:^<Z, ^>. Here it holds that (X, X>=<Z_1, X.x> if and only if Zeg_1; equi-

valently, ^(0 is a geodesic of M. Hence it is isometric if and only if 5 is

totally geodesic in M. Q. E. D.

Remark. In Theorem 2.3 and Theorem 2.4 we may change the simply

connectedness of M for the following condition (#) with respect to an equi-

valence class cy.

(#) The unique complete connected totally geodesic cy-submanifold is de-

fined by a connected component of the fixed point set of an involutive isometry

of (M, g).

In fact, the arguements in this section are valid under this assumption (#).

Moreover the classificationof such c^-submanifolds has been studied in Nagano

[4].

§3. Target spaces and the local expressions as symmetric space.

In this section we assume that (M, g) is a simply connected irreducible rie-

mannian symmetric space and then express the target spaces M* locally and

concretely as symmetric space. We note thatin this case (M, g) is of compact
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type or of noncompact type.

Let g be a semi-simple Lie algebra and a an involutive automorphism of g.

Moreover let g±1be the (±l)-eigenspaces of a. Then a pair (g, a) is called an

(effective)symmetric Lie algebra if the adjoint representation adg_i(gi)of g: onto

g_i is faithful,and it is moreover said to be irreducible if it is not decomposed

into any sum of proper factors. Here the direct sum of symmetric Lie algebras

is defined naturally. Also, a symmetric Lie algebra (g, a) is said to be of com-

pact type if g is a semi-simple Lie algebra of compact type, while it is said to

be of noncompact type if gx does not contain any compact simple ideal of g.

Next assume that g is a semi-simple Lie algebra of compact type. Let a,t

be involutive automorphisms of g and <, > a nondegenerate symmetric bilinear

form on g. Then a triple(g, a,r) is called a pairwise symmetric Lie algebra if

the pairs (g, a), (g,r) are symmetric Lie algebras such that ＼_a,r]=0, and more-

over a quadruple (g, a,r, <,≫ associated with a pairwise symmetric Lie algebra

is called an orthogonal pairwise symmetric Lie algebra if the bilinear form <,>

is preserved by a, r and the endomorphisms ad(Z), X<=q, of g are skew sym-

metric with respect to <,>.

We note that for these objects (g, a), (g, a, x),(g, a, x,<,≫ the equivalences

are naturally defined respectively. Next let (M,g) be a simply connected com-

pact riemannian symmetric space and N a symmetric submanifold of M. Then

N is called substantialif TV is not contained in any proper product factor of

(M,g). We have the following two correspondences.

Lemma 3.1 ([6]). The congruence classes((M, g), N) of the simply connected

connected compact riemannian symmetric spaces (M, g) and the totally geodesic

substantialsymmetric submanifolds N of M with dim iV^l bijectivelycorrespond

the equivalence classes of the orthogonal pairwise symmetric Lie algebras

(9, o, t, <,≫.

Moreover the equivalence classes of the pairwise symmetric Lie algebras

(g, a, t) bijectivelycorrespond the equivalence classes of the symmetric Lie alge-

bras (a, f) of noncompact type.

Here the correspondence: ((M, g), AO-Kg, a,x, <,≫is given by the following

way. Let g be the Lie algebra of the Killing vector fields on (M, g). Fix a

point peN and let sp, tp be the geodesic symmetry of (M,g) at p and the ex-

trinsic symmetry of N> at p. Then <r,r are the involutive automorphisms de-

fined from sp, tp, and <,> is the bilinearform defined from gp on TVM. (See

§2 for these constructions.) We note that the object(g, a, <,≫ only depends on
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the ambient space (M, g). Next the correspondence: (g, a, r>-Kg, f) is given by

the following way. Decompose g to the sum of the (±l)-eigenspaces g±1 by a

and put g=gi + V―1 g_!. Then g has a semi-simple Lie algebra structure of

noncompact type, and z induces the involutive automorphism f of g since it

holds that [>,r]=0.

Now let (M,g) be a simply connected compact irreducible riemannian sym-

metric space and (g, <r,<,≫ the object associated above with (M, g). Let cvoe

S{M, g) be the trivial equivalence class of a O-dimensional subspace. Then, by

Lemma 1.1 the set S(M, g)―{cWo＼ is bijective to the congruence classes of the

totally geodesic symmetric submanifolds TV of M with dim A^l. Since in this

case a symmetric submanifold of M is necessarily substantial, by the first cor-

respondence of Lemma 3.1 the set S(M,g)―{cv0} is moreover bijective to the

equivalence classes (g, a, z, <,≫ by the automorphisms which preserve the object

(9, a, <≫≫･ Let g be the Lie algebra constructed from (g, a) in the second cor-

respondence of Lemma 3.1. It is a simple Lie algebra of noncompact type since

(g, a) is irreducible. Then, by the second correspondence, the equivalence classes

(g, a, z) underlying the above equivalence classes (g, a,z, <,≫ is moreover bijec-

tive to the equivalence classes (g, f) by the automorphisms which preserve g.

The latter equivalence classes are classified in Berger [1]. Hence, using this

classification, we can decide the local structures of the target spaces M*.

We start with an irreducible symmetric Lie algebra (§,f) of noncompact

type and with simple Lie algebra g, and next find the symmetric Lie algebra

(g, p) associated as follows with (g, ?). Let (g, a, z) be the pairwise symmetric

Lie algebra corresponding (g, f). Then (g, p) is the symmetric Lie algebra cor-

responding the pairwise symmetric Lie algebra (g, a, at). Here we note that

(g, p) is not always effective. In fact, this occurs if and only if a=z, and then

the totally geodesic symmetric submanifold TV coincides with the ambient space

M. Hence this case is out of our consideration. Now, using these symmetric

Lie algebras (g, ?), (g, p), we clarify the local structures of M, N, M* associated

with (g, f). First the local structure of M is given by (g, a). Here g is the

compact form of g and the subalgebra qu the set of fixed points of a, is the

maximal compact subalgebra of g. Next the local structure of M* is given by

(g, r). Hence let I*, i* be the subalgebras of the fixed points of r, f respec-

tively. Then I* is the compact form of f*. Lastly let g±1 be the (±l)-eigen-

spaces by a and decompose qu g_j to the (±l)-eigenspaces g1±1,g_1±1 by z re-

spectively. Then the subalgebra t of the fixed points of t is given by gn +

V―1 8_i_i. Since A^ is the totally geodesic submanifold of M defined by the

Lie triple system g_1_1, the local structure is given by the quotient space
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9u + 8-i-i/9ii. Here gn + g_i_iis the compact form of t and gu is the maximal

compact subalgebra of t.

Next let {M, g) be the irreducible riemannian symmetric space of noncom-

pact type which is dual to (M, g). Then the local structure of M is given by

the quotient space g/gi. Let N be the totally geodesic symmetric submanifold

of M defined by the Lie triple system V"! g_i_!. Then the local structure of

N is given by the quatient space i/8n- We here note that a totally geodesic

symmetric submanifold of M is obtained in this way from a totally geodesic

symmetric submanifold of M. Let M* be the target space associated with the

congruence class((M, g), N). The local structure of M* is given by (g, £).

Lastly we list up the local structures of M, N, M* and M, N, M* in the

form of quotient space. The local structures of M, N are the noncompact

duals of the local structures of M, N. Hence we do not describe the local

local structures of M, N in the following tables. Moreover we assume that N

is neither M nor one point of M.

Table I.(The case that M is of classicaltype and not of group type.)

No

1

2

3

4

5

symm

(local
etric Lie a

structure

M

Igebra (g, f) ; symmetric Lie algebra (g, p)

of M*) I associated with (g, f)

AT [ M*
i

I

s/(2n,R)/sl(n,C)+T

su(2n)/so(2n)

sl(2n,R)/sp(n, R)

su(2n)/so(2n)

S
sp(n)/u(n)

su(n)

sl(n,R)/sl(k, R)+sl(n-k, R)+R

su(n)/so(n)

sl{n, R)/so＼n)

su(n)/so(n)

6

su

su

su

sl{2n, R)/sp(n, R)

su(2n)/s(u(n )+

sl(2n,R)/sl(n, C)+T

| su(2n)/sp{2n)

sl(n, R)/sok(n)

so(n)/ so(k)+sn(n ―k)

SU{R)/S(

su(n ― k

*(2n)/su*(2i)+su*(2n-2i)+R

(2n)/sp(n)

*{2n)/sp＼n)

su(2n)/sp(n)

s nrA)R^llu{n)/lo{n).

su*(2n)/spKn)

sp(n)/sp(i)+sp(n―i)

~~'＼su(2i)/~s"p(j)£

su(2n―2i)/s n―i

u I

I su(

yi su(2n)/sp(n)

su(n)/ s(u(k)+u(n ―k))

sl{n,R)/sl{k,R)+sl(n-k, R)+R

+ u{2n―2i))

/su*(2i)+su*(2n-2i)+R
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7
su*(2n)/sl(n,C)+T su*(2n)/so*(2n)

su(2n)/sp(n) so(2n)/u(n) su(2n)/s(u(n)+u(n))

8

su*(2n)/so*(2n) su*(2n)/s/(n,C)+T

su(2n)/sp(n) su(n) su(2n)/so(2n)

9

su＼n)/
suk(k+ h)+sui-k(n-k-h)+T

su＼ri)/suk(n ― h―i+k)

+ sui-k(h+i-k)+T

su(n)/s(u(i)+u(n―i))

su(n―h―i+k)/
s(u(k)+u(n-h-i))@

su(h+i―k)/
s(u(i-k)+u(h))

su(n)/
s(u(k+ h)+u(n-k-h))

10

sui{n)/soi{n) sutiri)/soXri)

su(n)/s(u(i)+u(n―i)) so(n)/so(i)+so(n―i) su(n)/sn(n)

11

su2＼2n)/sp＼n) su2i(2n)/sp%n)

su(2n)/
s(u(2i)+u(2n-2i))

sp{n)/sp{i)+sp(n―i) su(2n)/sp(n)

12

sun(2n)/so*(2n) sun(2n)/sp(n, R)

su(2n)/s(u(n)+ u(ri)) sp(n)/u(n) su(2n)/so(2n)

13

sun(2n)/sp(n, R) sun(2n)/so*(.2n)

su(2n)/s(u(n)+u(n)) so(2n)/u(n) su(2n)/sp(n)

14

soHnyso^k + fo+so'-Hn-k-h) soKn)/
sok(n-h-i+k)+sol-k(h+i-k)

so(n)/so(i)+so(n―i)

so{n ―h―i+k)/
so(k)+so(n ―h―i)@

so(h+i―k)/
so(i―k)-{-so{h)

so(n)/

so{k-＼-h)-＼-so(n ― k ― h)

15
so2i(2n)/suKn)+T so2t(2n)/suKn)+T

so(2n)/so(2i)+so(2n―2i) su(n)/s{u(i)+u{n―i)) so(2n)/u(n)

16

son(2n)/so(n, C) son(2n)/sl(n, R)+R

so(2n)/ so{n)-＼-so(n) u(n)/so(n) so(2n)/'so(n)+so(n)

17
son(2n)/sl(n,R)+R son{2n)/so(n, C)

so(2n)/so(n)+so(n) su(n) so(2n)/u(n)

18

so*(2n)/so*(2i)+so*(2n-2i) son2n)/suHn)+T

so(2n)/u(n) su(n)/s(u(i)+u(n―i))
so(2n)/
so(2i)+so(2n-2i)
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19

20

22 |

23

24

25

26

27

28

29

30
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so*(2n)/suKn)+T

so(2n)/u(n)

S0*(2n)/se>(n, I

so(2n)/u(n)

sp(n,R)/s

sp(n)/u(n)

P(n)/u(n)

so*(2n)/so*(2i)+so*(2n-2i)
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! so(2n-2i)/u(n-i) so{ln)/u{n)
s o*(2n)/so(n, C)

soin)

I m(2

f

so(2n)/so(n)+so (n)

n)l

R)

s p (

so*(4n)/su*(2n)+R

n
)

I S

u(

so(in)/u(2n)

p{n, R)/su＼

n)/s(u(i)+u(n

sp(n)

n)+T

i)) l sp(n)/s

n, R)/sp(i

I sp(n)/u(n)

sp(n,R)/sl{n>R)+R

s

7

: sp(n)/u(n)

■■(n-h-i+^+sp1-*

sp*(n)/suXn)+T

i)+u(u―i)) i sp(n)/u( n)

I so*(4n)/su*(2n)+R

21 ! ■■--
so(4n)/u(2n)

p(i,R)+sp(n―i

1 s

sUn,R)/su＼n)+T

C)

l)+sp(n-i)

R)+sp(n-i, R)

sp(2n,E)/sp(n, C)

sp(2n)/sp(n)+sp(n)

h+i-k)_

spin)/
sp(k+ h)+sp(n-k-h

s

s p{2 n, R)/sp(n

sp(2n)/u(2n)

sp(n, R)/sl{n, R)+R

sp(n)/u{ri) | u(n)/so(n)

spi(n)/spk(k + h)+spi-k(n-k-h)
＼

| spin ―h―i-f

I sp(n)/sp(i)+sp(n-i)

: sp＼n)/su＼n)+T

sp(n)/sp(i)+sp(n

I

E＼/F＼

EJsp(A)

i)

sp(k)+sp(n-h-i)R

sp(h+i-k)/
＼__±Piiz:A)+sp{h)_

T

su(n)/s(u(

u(2n)/sp(n)

sm(6)/s/>(3)

spn(2n)/sp(n, C)

' sp(2n)/u(2n)

n(2n)/su*(2n)+R

sp(2n)/sp(n)+sp(n)

E＼/su*(fi)+su(2)

EJFA

spn(2n)/su*(2n)+R

sp(2n)/sp(n)+sp(n) | sp(n)

spn(2n)/sp(n,C)

sp(2n)/sp(n)+sp(n)

Table II.(The case that M is of exceptional type and not of group type.)
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31

E1Jsu*(6)+su(2)

E6/sp(4)

i El/so%lO)+R

32 i ―-

33

34

35

36

37

38

39

40

EJsp{A)

E＼/sp＼A)

EJsp{A)

1 E ＼/sp(A, R)

EJsp{A)

E6

/s/(6,R)+sl(2, R)

/sp(4)

El/su2(6)+su(2)

I E6/su(6)+su(2)

E＼/so＼10)+T

EJsu(6)+su(2)

E§/so*(io)+r

E6/su(6)+su(2)

EI/suX6)+sl(2, R)

Hiroo Naitoh

El/Fl

FJsp(3)+ sm(2)

E＼/sp＼A)

I sp(4)/sp(2 )+sp(2)

EJsu(6)+su(2)

! Ee/so(10)+T

El/soH10)+T

: so(10)/so(5)+so(5)cT

E

EJsp{A)

i/s/(6, R)+sl(2, R)

! su(6j/so(6)c i
i su(2)/so(2) j

E＼/sp(A,R)

s/>(4)/k(4)

E＼l

EJsp(4)

Ee/su(6)+su(2)

so4(10)+T

so(10)/so(4)+so(6) EJsu(6)+su(2)
"T~

El/su＼6)+su(2)

sm(6)/s(m(2)+m(4))

so(10)/u(5)

EJso(10)+T

£i/so*(10)+ T

E6/so(10)+T

El/su＼6)+sl(2, R)

£8/s≪(6)+s≪(2) ~TS1^S}M(3))R ]^./^(6)+"s≪(2)"

E$/spl(4)

E6/su(6)+su(2)

El/Fl

I Fi/sp(3)+su(2) j EJsp{A)

I E＼/F＼ E＼/sp＼A)
4^ ,
Ee/su(6)+su{2) ＼sp(4)/spa)+sp(3) ＼Ee/Ft
■ i i

42

43

44

El/sp{A,R)

EJsu(6)+su(2)

j El/su＼6)+sl{2, R)

E6/so(10)+T

El/so*(10)+T

EJso(lO)+T

s/>(4)/u(4)

Et/sp(4, R)

EJsp{A)

I El/so*(10)+T

so(10)/u(5)
[ £6/su(6)+sm(2)

!
El/su＼6)+sl(2, R)

SU(6)/s(m(1)+m(5))c ! p / /imiT



45

46

47

48

49

50

51

52

53

54

55

56

57

58

EI/so2(10)+T

EJso(10)+T

I
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s

EI/so2(l0)+T

o(10)/so(2)+so(

El/su2(6)+su{2)

EJso(lO)+T

E＼/Fl

EJso(W)+T

E＼/sp＼4)

£6/so(10)+ T

E＼/so＼m+R

EJF,

E＼/F＼

EJF4

EJF,

Ei/su*(6)+su(2)

EJF,

E＼/E%+T

EJsu(8)

E＼/su(2)+so*(l2)

E7/su(S)

E]/so%12) + sl(2,R)

E,/su(S)

E＼/su＼%)

EJsuiS)

E＼/E＼+R

£7/su(8)

E＼/su*(8)

E7/su(S)

8) j E6/so(l0)+T

I El/su＼6)+su(2)

sm(6)/s(m(2)+m(4))

El/F＼

F4/so(9)

s/>(4)/s/>(2)+

FJ so(9)

Ell

! E6/su(6)+su{2)
I

I EJF,

spm

IF＼

EJs

!ej

E$/so＼lO)+

T0s0(lO)/so(9)

su(6)/sp(3)

/>(4)

so(io)+r

R

Et/Ft

El/su*(6)+su(2)

Ei/spKi)

! sp(4)/spa)+sp(S)

so(12)/tt(6)

Ee/sp(4)

E6/su(6)+su(2)

EWsu(2)+so*(l2)

E＼/E＼+T

EJsu(6)+su(2)

E]/su＼%)

sm(8)/s(m(4)+k(4))

I E7/E6+T
i

! EJsu(2) + so(12)

EJso(l2)+su(.2)

E＼/soXl2)+d(2, R)

so(12)/so(6)+so(6)

su(2)/so(2)

i El/su*(S)

su(S)/sp(4)

TREJsp{A)

E'/El + R

EJsu(8)

EJE.+ T

E7/su(8)

129
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59

60

61

62

63
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sm(8)/so(8)

so(12)/m(6)

El/slCS, R)

EUs

E7/su(S)

o*(12)+s/(2, jR)

EVEl+T

EJso(W)+T

i EVE＼+T

E6/su(6)+su(2)

E2JsuHS)

E1/so(12)+su{2)

E7/Ee+T

E,/su(8)

jsm(8)/s(m(2)+m(6)) ! E,/Et+T

64

65

66

67

68

69

70

71

72

: Eyso＼l2)+su(2))

E＼/sl{8,R)

E7/su(8)

E*/so*(l2)+sl(2, R)

E1/so(l2)+su(2)

EVEl+T

E,/so(12)+su(2)

E27/su2{8)

E1/so{l2)+su{2)

EVE＼+T

E1/so(12)+su(2)

EVso＼l2)+su(2)

EJso{l2)+su{2)

E*/su＼8)

E7/so(12)+su(2)

E°/so2(l2)+sl(2,R)

E7/Ee+T

El/El+T

E,/E6+T

EVsuXS)

E7/E6+T

E37/so*(12)+su(2)

E,/E6+T

EVEt+R

E7/E6+T

E7/su*(8)

E7/E6+T

E＼/E＼+ sl{2,R)

EJsoaS)

I so(12)/so(4)+so{8)

Eysu＼S)

sm(8)/s(m(4)+m(4))

EVE＼+T

Ee/so(l0)+T

50(12)75,

su(2)/

so(12)/u(6)

E7/so(12)+su(2)

EJsu(8)

! £7/so(12)+su(2)

£?/so2(12)+s/(2,R)

t-s.

E

EJE.+ T

?/s0*(12)+su(2)

£?/sm2(8)

su(8)/s(u(2)+u(6))

i TREJFt

su(8)/sj&(4)

so(16)/m(8)

EVE＼+R

E*/su*(8)

El/so*(16)

EJsu(8)

EJso(l2)+su(2)

EJE.+ T

EJsu(8)

EJE7+su(2)
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74

75

76

77

78

79

80

81

82

83

84

85

Symmetric submanifolds and generatlzed

E＼/E＼+ sl(2, R)

£7/su(8)0su(2)/s0(2)

El/so＼l6)

so(l6)/so(8)+so(8)

£8/so(16)

Ea/so(16)

E＼/E*+su(2)

EJso(l2)+su(2) EJE,+su(2)

El/E*+su(2)

E7/so(l2)+su(2)

＼Ei/so＼l6)

Es/so(l6)
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E＼/so*(16)

E&/snae>)

Ei/so8(i6)

E8/so(16)

El/E$+su(2)

E8/so(16)

Ei/so＼l6)

E8/E7 + su(,2)

EI/E*+su(2)

EJE^sui?)

£!/£?+s/(2,12)

E8/E1+su(2)

El/so*(16)

E8/E7+su(2)

F＼/sp(3,R)+sl(2, R)

FJsp(3)+su(2)

F＼/so(9)

i

so(16)/so(4)+so(12) Es/E, + su(2)

£!/£?+s/(2,R)

£7/£6+Tcsu(2)/so(2) j EJE,+ su{2)

so(16)/m(8)

E|/so*(16)

E8/so{l6)

F＼/sp(S,R)+sl(2, R)

I s/≫(3)/u(3)csm(2)/so(2)i FJsp(3)+su(2)

F＼/spK3)+su(2)

sp(3)/sp(l)+sp(2) | FJso(9)

F＼/so＼9)

sn(9)/so(4)+so(5) F4/sp(3)+su(2)

Fl/sp＼3)+su(2)

sp(3)/sp(l)+sp(2)

I Fl/soK9)

so(9)/so(8)

F</sj*3)+

i FJso(9)

G%/sl(2, R)+sl(2, R)

su(2)/so(2)Rsu(2)/so(2)

su(2)

GJsu(2)+su(2)

F4/s/>(3)+su(2)

F＼/sp＼3)+su(2)

FJsp(3)+su(2)

Fl/sp＼3)+su(2)

F4/so(9)

Fl/so＼9)

FJso(9)

G%/sl{2, R)+sl(2, R)

G2/su(2)+su(2)
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Table III.(The case that M is of group type.)

Let I be a simple Lie algebra of noncompact type whose complexification lc

is also simple, and denote by a the conjugation of lc with respect to I. More-

over let I) be a maximal compact subalgebra of I and denote by /3 the Cartan

involution of I with respect to I). The /^-linearextension of /9 to lc is also

denoted by /3 and the complexification of f)is denoted by f)c. Then the pairs

(lc,a), (lc,/3)are irreducible symmetric Lie algebras of noncompact type and

they are associated with each other. These exhaust the case that M is of

group type. Denote by L the compact real form of I.

86

87

Ik

Ik

171

lc/J)c

U/1)

lc/J)c

＼cl＼
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