CYCLIC-PARALLEL REAL HYPERSURFACES OF A COMPLEX SPACE FORM

By
U-Hang KI*

Introduction.

In 1973 Takagi [14] classified homogeneous hypersurfaces of a complex projective space $P_{n} C$ by proving that all of them could be divided into six types, and he [15], [16] showed also that if a real hypersurface M has two or three distinct constant principal curvatures, then M is congruent to one of the homogeneous hypersurfaces of type A_{1}, A_{2} and B among these ones. This result is generalized by Kimura [6], who gives the complete classification that a real hypersurface M of $P_{n} C$ has constant principal curvatures and $F C$ is principal if and only if M is congruent to one of homogeneous examples, where C denotes the unit normal and F is the almost complex structure. The study of real hypersurfaces of type A_{1}, A_{2} and B of $P_{n} C$ was originated by Cecil and Ryan [1], Kimura [7], Kon [8], Maeda [10], Okumura [13] and so on.

Real hypersurfaces with cyclic-parallel Ricci tensor of a complex space form $M^{n}(c)$ have recently been classified by Kwon and Nakagawa [9] in the case where $F C$ is principal. They also gave another characterization of real hypersurfaces of type A_{1} and A_{2} of $P_{n} C$.

On the other hand, many subjects for real hypersurfaces of a complex hyperbolic space $H_{n} C$ were investigated from different points of view ([2], [3], [11], [12] etc.) one of which, done by Chen, Ludden and Montiel [3], asserts that a real hypersurface M of $H_{n} C$ is of cyclic-parallel if and only if the structure tensor J induced on M and the shape operator A derived from the unit normal commute each other, that is, $J A=A J$. In particular, real hypersurfaces of $H_{n} C$, which are said to be of type A, similar to those of type A_{1} and A_{2} of $P_{n} C$, were treated by Montiel and Romero [12].

The purpose of the present paper is to show that a real hypersurface of a complex space form $M^{n}(c), c \neq 0$, is of cyclic-parallel if and only if $J A=A J$, and to give a complete classification of such hypersurfaces by using those examples constructed in [9], [12] and [15].

Received May 15, 1987. Revised August 6, 1987.

* Partially supported by KOSEF.

The author wishes to express here his sincere gratitude to the referee for providing kind and helpful advices.

1. Preliminaries.

We begin by recalling fundamental properties on real hypersurfaces of a Kaehlerian manifold. Let N be a real $2 n$-dimensional Kaehlerian manifold equipped with a parallel almost complex structure F and a Riemannian metric tensor G which is F-Hermitian, and covered by a system of coordinate neighborhoods $\left\{U ; x^{A}\right\}$. Let M be a real hypersurface of N covered by a system of coordinate neighborhoods $\left\{V ; y^{h}\right\}$ and immersed isometrically in N by the immersion $i: M \rightarrow N$. Throughout the present paper the following convention on the range of indices are used, unless otherwise stated:

$$
A, B, \cdots=1,2, \cdots, 2 n ; \quad i, j, \cdots=1,2, \cdots, 2 n-1
$$

The summation convention will be used with respect to those system of indices. When the argument is local, M need not be distinguished from $i(M)$. Thus, for simplicity, a point p in M may be identified with the point $i(p)$ and a tangent vector X at p may also be identified with the tangent vector $i_{*}(X)$ at $i(p)$ via the differential i_{*} of i. We represent the immersion i locally by $x^{A}=x^{A}\left(y^{h}\right)$ and $B_{j}=\left(B_{j}{ }^{A}\right)$ are also $(2 n-1)$-linearly independent local tangent vectors of M, where $B_{j}{ }^{A}=\partial_{j} x^{A}$ and $\partial_{j}=\partial / \partial y^{j}$. A unit normal C to M may then be chosen. The induced Riemannian metric g with components $g_{j i}$ on M is given by $g_{j i}=$ $G\left(B_{j}, B_{i}\right)$ because the immersion is isometric.

For the unit normal C to M, the following representation are obtained in each coordinate neighborhood:

$$
\begin{equation*}
F B_{i}=J_{i}{ }^{h} B_{n}+P_{i} C, \quad F C=-P^{i} B_{i}, \tag{1.1}
\end{equation*}
$$

where we have put $J_{j i}=G\left(F B_{j}, B_{i}\right)$ and $P_{i}=G\left(F B_{i}, C\right), P^{h}$ being components of a vector field P associated with P_{i} and $J_{j i}=J_{j}{ }^{r} g_{r i}$. By the properties of the almost Hermitian structure F, it is clear that $J_{j i}$ is skew-symmetric. A tensor field of type (1,1) with components $J_{i}{ }^{h}$ will be denoted by J. By the properties of the almost complex structure F, the following relations are then given:

$$
J_{i}^{r} J_{r}^{h}=-\delta_{i}^{h}+p_{i} p^{h}, \quad p^{r} J_{r}^{h}=0, \quad p_{r} J_{i}^{r}=0, \quad p_{i} p^{i}=1,
$$

that is, the aggregate (J, g, P) defines an almost contact metric structure. Denoting by ∇_{j} the operator of van der Waerden-Bortolotti covariant differentiation formed with $g_{j i}$, equations of Gauss and Weingarten for M are respectively obtained:

$$
\begin{equation*}
\nabla_{j} B_{i}=h_{j i} C, \quad \nabla_{j} C=-h_{j}^{r} B_{r}, \tag{1.2}
\end{equation*}
$$

where $h_{j i}$ are components of a second fundamental from $\sigma, A=\left(h_{j}{ }^{k}\right)$ which is related by $h_{j i}=h_{j}{ }^{r} g_{r i}$ being the shape operator derived form C. We notice here that $h_{j i}$ is symmetric. By means of (1.1) and (1.2) the covariant derivatives of the structure tensors are yielded:

$$
\begin{equation*}
\nabla_{j} J_{i n}=-h_{j i} p_{h}+h_{j n} p_{i}, \quad \nabla_{j} p_{i}=-h_{j r} J_{i}^{r} . \tag{1.3}
\end{equation*}
$$

In the sequel, the ambient Kaehlerian manifold N is assumed to be of constant holomorphic sectional curvature c and real dimension $2 n$, which is called a complex space form and denoted by $M^{n}(c)$. Then the curvature tensor K of $M^{n}(c)$ takes the following form:

$$
K_{D C B A}=\frac{c}{4}\left(G_{D A} G_{C B}-G_{D B} G_{C A}+F_{D A} F_{C B}-F_{D B} F_{C A}-2 F_{D C} F_{B A}\right)
$$

Thus, equations of Gauss and Codazzi for M are respectively obtained:

$$
\begin{align*}
& R_{k j i h}=\frac{c}{4}\left(g_{k h} g_{j i}-g_{j h} g_{k i}+J_{k h} J_{j i}-J_{j h} J_{k i}-2 J_{k j} J_{i n}\right)+h_{k h} h_{j i}-h_{j h} h_{k i}, \tag{1.4}\\
& \nabla_{k} h_{j i}-\nabla_{j} h_{k i}=\frac{c}{4} A_{k j i}, \quad A_{k j i}=p_{k} J_{j i}-p_{j} J_{k i}-2 p_{i} J_{k j}, \tag{1.5}
\end{align*}
$$

where $R_{k j i h}$ are components of the Riemannian curvature tensor R of M. Let $S_{j i}$ be components of the Ricci tensor S of M, then the Gauss equation implies

$$
\begin{equation*}
S_{j i}=\frac{c}{4}\left\{(2 n+1) g_{j i}-3 p_{j} p_{i}\right\}+h h_{j i}-h_{j i}^{2}, \tag{1.6}
\end{equation*}
$$

where h denotes the trace of the shape operator A and $h_{j i}{ }^{2}=h_{j r} h_{i}{ }^{r}$.

2. Cylic-parallel hypersurfaces.

Let M be a real hypersurface of a complex space form $M^{n}(c)$. The hypersurface M is called cyclic-parallel if the cyclic sum of $\nabla \sigma$ vanishes identically, namely

$$
\begin{equation*}
\nabla_{k} h_{j i}+\nabla_{j} h_{i k}+\nabla_{i} h_{k j}=0 . \tag{2.1}
\end{equation*}
$$

It was proved in [4] that geodesic hypersurfaces of a complex space form $M^{n}(c)$, $c \neq 0$, are cyclic-parallel and not parallel. Throughout the present paper we only consider the case where the holomorphic sectional curvature c is not zero.

From now on we suppose that M is of cyclic-parallel. Then we have from (1.5)

$$
2 \nabla_{k} h_{j i}=-\nabla_{i} h_{k j}+\frac{c}{4} A_{k j i}
$$

or equivalently $3 \nabla_{k} h_{j i}=c / 4\left(A_{k j i}-A_{i k j}\right)$. By the second equation of (1.5), it follows that

$$
\begin{equation*}
\nabla_{k} h_{j i}=\frac{c}{4}\left(p_{j} J_{i k}+p_{i} J_{j k}\right) . \tag{2.2}
\end{equation*}
$$

Differentiating this covariantly along M and making use of (1.3), we find

$$
\begin{equation*}
\nabla_{m} \nabla_{k} h_{j i}=\frac{c}{4}\left\{\left(\nabla_{m} p_{j}\right) J_{i k}+\left(\nabla_{m} p_{i}\right) J_{j k}-h_{m i} p_{j} p_{k}-h_{m j} p_{k} p_{i}+2 h_{m k} p_{j} p_{i}\right\} . \tag{2.3}
\end{equation*}
$$

Since equation (2.2) tells us that $\nabla_{k} h_{j}{ }^{k}=0$, the Ricci formula for $h_{j i}$ gives rise to

$$
\nabla_{k} \nabla_{j} h_{i}{ }^{k}=S_{j r} h_{i}^{r}-R_{k j i h} h^{k h} .
$$

If we substitute (1.4), (1.6) and (2.3) into the last equation and take account of (1.3), we get

$$
\begin{align*}
h h_{j i}^{2}= & \left\{h_{2}-\frac{c}{2}(n+1)\right\} h_{j i}+c h_{r s} J_{j}^{r} J_{i}^{s} \tag{2.4}\\
& +\frac{c}{2}\left\{\left(h_{j r} p^{r}\right) p_{i}+\left(h_{i r} p^{r}\right) p_{j}\right\}+\frac{c}{4} h\left(g_{j i}-p_{j} p_{i}\right),
\end{align*}
$$

where $h_{2}=h_{j i} h^{j i}$, which yields

$$
\begin{equation*}
h h_{j r}^{2} p^{r}=\left(h_{2}-\frac{c}{2} n\right) h_{j r} p^{r}+\frac{c}{2} \alpha p_{j}, \tag{2.5}
\end{equation*}
$$

where we have have defined $\alpha=h_{r s} p^{r} p^{s}$. Thus, it follows that

$$
\begin{equation*}
h \beta=\left\{h_{2}-\frac{c}{2}(n-1)\right\} \alpha, \quad \beta=h_{j i}^{2} p^{j} p^{i} . \tag{2.6}
\end{equation*}
$$

On the other hand, if we substitute (1.4) and (2.3) into the Ricci formula, which is given by

$$
\nabla_{m} \nabla_{k} h_{j i}-\nabla_{k} \nabla_{m} h_{j i}=-R_{m k j r} h_{i}{ }^{r}-R_{m k i r} h_{j}^{r},
$$

then we have

$$
\begin{align*}
& h_{i k}{ }^{2} h_{m j}-h_{i m}{ }^{2} h_{k j}+h_{j k}{ }^{2} h_{i m}-h_{j m}{ }^{2} h_{i k} \tag{2.7}\\
& =\frac{c}{4}\left\{h_{m i}\left(g_{k j}-p_{k} p_{j}\right)-h_{k i}\left(g_{m j}-p_{m} p_{j}\right)+h_{j m}\left(g_{k i}-p_{k} p_{i}\right)-h_{j k}\left(g_{m i}-p_{m} p_{i}\right)\right. \\
& \quad+J_{j k}\left(\nabla_{m} p_{i}+\nabla_{i} p_{m}\right)-J_{j m}\left(\nabla_{k} p_{i}+\nabla_{i} p_{k}\right)+J_{i k}\left(\nabla_{m} p_{j}+\nabla_{j} p_{m}\right) \\
& \left.\quad-J_{i m}\left(\nabla_{k} p_{j}+\nabla_{j} p_{k}\right)+2 J_{m k}\left(\nabla_{j} p_{i}+\nabla_{i} p_{j}\right)\right\},
\end{align*}
$$

where we have used the second equation of (1.3). By transvecting (2.7) with $J^{i k}$ and $p^{j} p^{i} p^{k}$ respectively and making use of the fact that properties of the almost contact metric structure (J, g, P), we can see that

$$
\begin{align*}
& J^{s r}\left(h_{m s} h_{j r}{ }^{2}+h_{j s} h_{m r}{ }^{2}\right) \tag{2.8}\\
& =\frac{1}{4}(2 n+1) c\left(\nabla_{j} p_{m}+\nabla_{m} p_{j}\right)-\frac{1}{4} c\left\{\left(p^{r} \nabla_{r} p_{j}\right) p_{m}+\left(p^{r} \nabla_{r} p_{m}\right) P_{j}\right\}, \\
& \quad \alpha h_{m r}{ }^{2} p^{r}=\beta h_{m r} p^{r} . \tag{2.9}
\end{align*}
$$

Combining (2.5) and (2.6) with (2.9), it follows that $\alpha\left(h_{j r} p^{r}-\alpha p_{j}\right)=0$ and hence $\alpha\left(\beta-\alpha^{2}\right)=0$.

Let M_{1} be a set consisting of points of M at which the function $\beta-\alpha^{2}$ does not vanish. Suppose that M_{1} is not empty. We then have $\alpha=0$ and thus $\beta h_{m} p^{r}=0$ because of (2.9). By transvecting $h_{s}{ }^{m} p^{s}$, it follows that $\beta^{2}=0$ and hence β vanishes on M_{1}. Therefore the assumption of M_{1} will produce a contradiction. Accordingly we have $\beta=\alpha^{2}$ on M, which means that P is the principal curvature vector corresponding to α, that is,

$$
\begin{equation*}
h_{j r} p^{r}=\alpha p_{j} . \tag{2.10}
\end{equation*}
$$

Applying p^{m} to (2.8) and summing up m, we obtain

$$
\begin{equation*}
p^{r} \nabla_{r} p_{j}=0 \tag{2.11}
\end{equation*}
$$

because of the fact that $c \neq 0$. By means of (2.2), (2.10), (2.11) and the definition of α, we can easily see that α is constant everywhere. Thus, differentiating (2.10) covariantly along M, we find

$$
\left(\nabla_{k} h_{j r}\right) p^{r}+h_{j r} \nabla_{k} p^{r}=\alpha \nabla_{k} p_{j},
$$

which together with (1.3) and (2.2) yield

$$
\begin{equation*}
\frac{c}{4} J_{j k}-h_{j r} h_{k s} I^{r s}=\alpha \nabla_{k} p_{j} . \tag{2.12}
\end{equation*}
$$

If we take the symmetric part of this, then we obtain $\nabla_{k} p_{j}+\nabla_{j} p_{k}=0$ provided that $\alpha \neq 0$. But, if $\alpha=0$, then (2.12) implies $h_{j r} h_{i s}{ }^{2} J^{r s}=-(c / 4) \nabla_{i} p_{j}$ with the aid of (1.3), which together with (2.8) and (2.11) give $\nabla_{j} p_{m}+\nabla_{m} p_{j}=0$. Consequently we see in any case that $h_{j}{ }^{r} J_{r}{ }^{k}=J_{j}{ }^{r} h_{r}{ }^{k}$. Thus we have the following fact:

Lemma 1. Let M be a cyclic-parallel real hypersurfaces of $M^{n}(c), c \neq 0$. Then the shape operator and the induced structure tensor commute each other, that is,

$$
\begin{equation*}
A J=J A \tag{2.13}
\end{equation*}
$$

Remark 1. Chen, Ludden and Montiel [3] proved this lemma for the case where $c<0$. The converse assertion of Lemma 1 is well known. The proof was used the theory of Riemann fibre bundles (cf. [3], [8]). But, we introduce here the other simple proof. The method is similar to that used in the previous paper [5].

From (2.13), it is easy to see that

$$
\begin{equation*}
h_{j r} p^{r}=\alpha p_{j} \tag{2.14}
\end{equation*}
$$

by means of the properties of the almost contact metric structure. Differentiating (2.14) covariantly and taking account of (1.3), we obtain

$$
\begin{equation*}
\left(\nabla_{k} h_{j r}\right) p^{r}-h_{j r} h_{k s} J^{r s}=\alpha_{k} p_{j}-\alpha h_{k r} J_{j}^{r}, \tag{2.15}
\end{equation*}
$$

where $\alpha_{k}=\nabla_{k} \alpha$, which together with equations of Codazzi and (2.13) give

$$
\begin{equation*}
\frac{c}{2} J_{j k}+2 h_{j r} h_{s}^{r} J_{k}^{s}=\alpha_{k} \dot{p}_{j}-\alpha_{j} p_{k}+2 \alpha h_{j r} J_{k}^{r} . \tag{2.16}
\end{equation*}
$$

It means that $\alpha_{k}=B p_{k}$ for some function B. It is easy to see that α is constant everywhere. Thus, the last equation reduces to

$$
\begin{equation*}
h_{j i}^{2}=\alpha h_{j i}+\frac{c}{4}\left(g_{j i}-p_{j} p_{i}\right) \tag{2.17}
\end{equation*}
$$

because of (2.13) and the properties of (J, g, P). Accordingly (2.15) becomes

$$
\begin{equation*}
\left(\nabla_{k} h_{j r}\right) p^{r}=\frac{c}{4} J_{j k} \tag{2.18}
\end{equation*}
$$

Lemma 2. Let M be a real hypersurface satisfying (2.13) of $M^{n}(c), c \neq 0$. Then M is of cyclic-parallel provided that $\alpha^{2}+c=0$.

Proof. Since we have $\alpha^{2}+c=0$, the relationships (2.14) and (2.17) tell us that M has at most two constant principal curvatures α and $\alpha / 2$. Their multiplicities are denoted respectively by r and $2 n-1-r$. Thus, the trace of the shape operator is given by

$$
\begin{equation*}
h=\frac{\alpha}{2}(2 n-1+r) \tag{2.19}
\end{equation*}
$$

and that of A^{2} is given by

$$
\begin{equation*}
h_{2}=\frac{\alpha^{2}}{4}(2 n-1+3 r) \tag{2.20}
\end{equation*}
$$

On the other hand, it is seen from (2.17) that $h_{2}=\alpha h-\left(\alpha^{2} / 2\right)(n-1)$. Therefore, the last three equations imply that $r=1$ because of $\alpha^{2}+c=0$ and $c \neq 0$. Accordingly (2.19) and (2.20) reduces respectively to

$$
\begin{equation*}
h=n \alpha, \quad h_{2}=\frac{1}{2}(n+1) \alpha^{2} . \tag{2.21}
\end{equation*}
$$

We also have the followings:

$$
\begin{equation*}
h_{3}=\frac{1}{4}(n+3) \alpha^{3}, \quad h_{4}=\frac{1}{8}(n+7) \alpha^{4}, \tag{2.22}
\end{equation*}
$$

where h_{3} and h_{4} denote the trace of A^{3} and A^{4} respectively. By using (2.21)
and (2.22), it is not hard to see that

$$
h_{j i}^{2}=\frac{3}{2} \alpha h_{j i}-\frac{\alpha^{2}}{2} g_{j i}
$$

which together with (2.17) implies that $h_{j i}=(1 / 2) \alpha\left(g_{j i}+p_{j} p_{i}\right)$ because of $\alpha \neq 0$. Differentiating this covariantly, we find

$$
\nabla_{k} h_{j i}=\frac{1}{2} \alpha\left\{\left(\nabla_{k} p_{j}\right) p_{i}+\left(\nabla_{k} p_{i}\right) p_{j}\right\}
$$

Therefore, by means of (1.3) and (2.13) we can verify that M is of cyclicparallel. This completes the proof.

Differentiation (2.17) covariantly and making use of (1.3), we get

$$
\begin{equation*}
\left(\nabla_{k} h_{j r}\right) h_{i}^{r}+\left(\nabla_{k} h_{i r}\right) h_{j}^{r}=\alpha \nabla_{k} h_{j i}+\frac{c}{4}\left\{\left(h_{k r} J_{j}^{r}\right) p_{i}+\left(h_{k r} J_{i}^{r}\right) p_{j}\right\} \tag{2.23}
\end{equation*}
$$

from which, taking the skew-symmetric part with respect to indices k and j and utilizing (2.13) and (2.14),

$$
h_{j r} \nabla_{k} h_{i}^{r}-h_{k r} \nabla_{j} h_{i}^{r}=\frac{c}{4} \alpha\left(p_{k} J_{j i}-p_{j} J_{k i}\right)+\frac{c}{2} p_{i}\left(h_{k r} J_{j}^{r}\right)
$$

Thus, it follows that

$$
h_{j}^{r} \nabla_{k} h_{i r}-h_{i}^{r} \nabla_{k} h_{j r}=\frac{c}{4}\left\{p_{j} h_{i r} J_{k}^{r}-p_{i} h_{j r} J_{k}^{r}+\alpha\left(p_{j} J_{i k}-p_{i} J_{j k}\right)\right\}
$$

where we have used (1.5), (2.13) and (2.14). From this and (2.23), it is seen that

$$
\begin{equation*}
2 h_{j}^{r} \nabla_{k} h_{i r}-\alpha \nabla_{k} h_{j i}=\frac{c}{4}\left\{-2 p_{i}\left(h_{j r} J_{k}^{r}\right)+\alpha\left(p_{j} J_{i k}-p_{i} J_{j k}\right)\right\} \tag{2.24}
\end{equation*}
$$

Transforming this by h_{m}^{j} and using (2.13), (2.17) and (2.18), we obtain

$$
\alpha h_{j}^{r} \nabla_{k} h_{i r}+\frac{c}{2} \nabla_{k} h_{j i}=\frac{c}{4}\left\{\left(\alpha^{2}+\frac{c}{2}\right) J_{i k} p_{j}-\frac{c}{2} J_{k j} p_{i}-\alpha p_{i}\left(h_{j r} J_{k}^{r}\right)\right\}
$$

Combining this with (2.24), it follows that

$$
\left(\alpha^{2}+c\right)\left\{\nabla_{k} h_{j i}-\frac{c}{4}\left(p_{j} J_{i k}+p_{i} J_{j k}\right)\right\}=0
$$

which shows that M is of cyclic-parallel because of Lemma 2.
From this fact and Lemma 1 we have
THEOREM 3. Let M be a real hypersurface of a complex space form $M^{n}(c)$, $c \neq 0$. Then M is of cyclic-parallel if and only if $A J=J A$.

Remark 2. It is obvious that if M is of cyclic-parallel, then the Ricci tensor is cyclic-parallel because of (1.3), (1.6) and (2.10).

3. Homogeneous hypersurfaces.

It is known that the complete and simply connected complex space form $M^{n}(c)$ consists of a complex projective space $P_{n} C$, a complex Euclidean space C_{n} or a complex hyperbolic space $H_{n} C$, according as $c>0, c=0$ or $c<0$. Some standard examples given by [9], [12], [14] of real hypersurfaces $M^{n}(c), c \neq 0$ whose second fundamental form are cyclic-parallel are introduced. In a complex Euclidean space C^{n+1} equipped with Hermitian form ϕ, the Euclidean metric of C^{n+1} which is identified with $R^{2 n+2}$ is given by $\operatorname{Re} \phi$. The unit sphere $S^{2 n+1}=$ $\left\{z \in C^{n+1}: \phi(z, z)=1\right\}$ is denoted.

First of all, examples of real hypersurfaces of $P_{n} C$ are considered. For any positive number r a hypersurface $N_{0}(2 n, r)$ of $S^{2 n+1}$ is defined by

$$
N_{0}(2 n, r)=\left\{\left(z_{1}, \cdots, z_{n+1}\right) \in S^{2 n+1} \subset C^{n+1}: \sum_{j=1}^{n}\left|z_{j}\right|^{2}=r\left|z_{n+1}\right|^{2}\right\} .
$$

For an integer $m(2 \leqq m \leqq n-1)$ and a positive number s, a hypersurface $N(2 n, m, s)$ of $S^{2 n+1}$ is defined by

$$
N(2 n, m, s)=\left\{\left(z_{1}, \cdots, z_{n+1}\right) \in S^{2 n+1} \subset C^{n+1}: \sum_{j=1}^{m}\left|z_{j}\right|^{2}=s \sum_{j=m+1}^{n+1}\left|z_{j}\right|^{2}\right\} .
$$

Then, for the projection π of the Hopf-fibration $S^{2 n+1}$ onto $P_{n} C, M_{0}(2 n-1, r)$ $=\pi\left(N_{0}(2 n, r)\right)$ and $M(2 n-1, m, s)=\pi(N(2 n, m, s))(n \geqq 3)$ are examples of real hypersurfaces of $P_{n} C$ whose shape operator and the induced structure tensor commute each other. It is known [14] that $M_{0}(2 n-1, r)$ and $M(2 n-1, m, s)$ are both compact connected real hypersurfaces of $P_{n} C$ with constant two or three distinct principal curvatures respectively, which are said to be of type A_{1} and A_{2} respectively. In [13], it is proved that $M_{0}(2 n-1, r)$ and $M(2 n-1, m, s)$ are only hypersurfaces of $P_{n} C$ satisfying $A J=J A$.

In the next place, the example of real hypersurfaces of $H_{n} C$ defined by Montiel [11] and Montiel and Romero [12] is introduced. In C^{n+1} with standard basis, a Hermitian form ϕ is defined by

$$
\phi(z, w)=-z_{0} \bar{w}_{0}+\sum_{k=1}^{n} z_{k} \bar{w}_{k} .
$$

where $z=\left(z_{0}, \cdots, z_{n}\right)$ and $w=\left(w_{0}, \cdots, w_{n}\right)$ are in C^{n+1}. Let $H_{1}^{2 n+1}$ be a real hypersurface of the Minkoski space C_{1}^{n+1} defined by

$$
H_{1}^{2 n+1}=\left\{z \in C_{1}^{n+1}: \phi(z, z)=-1\right\},
$$

and let \bar{G} be a semi-Riemannian metric of $H_{1}^{2 n+1}$ induced from the complex Lorentzian metric $\operatorname{Re} \phi$ of C_{1}^{n+1}. Then $\left(H_{1}^{2 n+1}, \bar{G}\right)$ is the Lorentzian manifold of constant curvature -1 , which is called an anti-de Sitter soare.

Let r and s be integers with $r+s=n-1$ and $t \in R$ with $0<t<1$. We consider a Lorentzian hypersurface $N_{r+s}(t)$ of $H_{1}^{2 n+1}$ defined by the following:

$$
N_{r+s}(t)=\left\{\left(z_{0}, \cdots, z_{n}\right) \in H_{1}^{2 n+1}: t\left(-\left|z_{0}\right|^{2}\right)+\sum_{j=1}^{r}\left|z_{j}\right|^{2}=-\sum_{k=r+1}^{n}\left|z_{k}\right|^{2}\right\}
$$

and a Lorentzian hypersurface of $H_{1}^{2 n+1}$ is given by

$$
N_{n}=\left\{\left(z_{0}, \cdots, z_{n}\right) \in H_{1}^{2 n+1}:\left|z_{0}-z_{1}\right|=1\right\} .
$$

Since it is known that $H_{1}^{2 n+1}$ is a principal S^{1}-bundle over a complex hyperbolic space with projection $\bar{\pi}: H_{1}^{2 n+1} \rightarrow H_{n} C$, and $N_{r+s}(t)$ and N_{n} are S^{1}-invariant, we see that $M_{r+s}(t)=\pi\left(N_{r+s}(t)\right)$ and $M_{n}=\pi\left(N_{n}\right)$ are real hypersurfaces of $H_{n} C$, where $\pi: N_{r+s}(t) \rightarrow M_{r+s}(t)$ and $\pi: N_{n} \rightarrow M_{n}$ are semi-Riemannian submersions which are compatible with S^{1}-fibration. It is seen that $M_{r+s}(t)$ and M_{n} are complete connected real hypersurfaces of $H_{n} C$ with constant two or three distinct principal curvatures, which are said to be of type A ([9]). In [12], it is proved that $M_{r+s}(t)$ and M_{n} are only complete hypersurfaces of $H_{n} C$ satisfying $A J=J A$. Thus, by combining above facts and Theorem 3, we obtain the following classifications.

ThEOREM 4. $\quad M_{0}(2 n-1, r), M(2 n-1, m, s), M_{r+s}(t)$ and M_{n} are only complete and connected cyclic-parallel real hypersurfaces of $M^{n}(c), c \neq 0$.

Bibliography

[1] Cecii, T.E. and Ryan, P.J., Focal sets and real hypersurfaces in a complex projective space, Trans. Amer. Math. Soc., 269 (1982), 481-499.
[2] Chen, B. Y., Differential geometry of real submanifolds in a Kaehlerian manifold, Mh. Math., 91 (1981), 257-274.
[3] Chen, B. Y., Ludden, G.D. and Montiel, S., Real submanifolds of a Kaehlerian manifold, Algebraic, Groups and Geometries, 1 (1984), 174-216.
[4] Chen, B. Y. and Vanheke, L., Differential geometry of geodesic spheres, J. Reine Angew. Math., 325 (1981), 28-67.
[5] Ki, U.H. and Kim, Y. H., Submanifolds of complex space forms admitting an almost contact metric compound sturcture, Annali de Mat., CXLIII (1986), 339-362.
[6] Kimura, M., Real hypersurfaces and complex submanifolds in a complex projective space, Trans. Amer. Math. Soc., 296 (1986), 137-149.
[7] Kimura, M., Real hypersurfaces in a complex projective spaces, Bull. Austral. Math. Soc., 33 (1986), 383-387.
[8] Kon, M., Pseudo-Einstein real hypersurfaces in complex space forms, J. Differential Geometry, 14 (1979), 339-354.
[9] Kwon, J.-H. and Nakagawa, H., A characterization of a real hypersurface of type A_{1} or A_{2} of a complex projective space (Preprint).
[10] Maeda, Y., On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, 28 (1976), 529-540.
[11] Montiel, S., Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan,

37 (1985), 515-535.
[12] Montiel, S. and Romero, A., On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata, 20 (1986), 245-261.
[13] Okumura, M., Real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 213 (1975), 355-364.
[14] Takagi, R., On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1973), 495-506.
[15] Takagi, R., Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan, 27 (1975), 43-53.
[16] Takagi, R., Real hypersurfaces in a complex projective space, J. Math. Soc. Japan, 27 (1975), 506-516.
[17] Takahashi, T., Sasakian manifolds with pseudo-Riemannian metic, Tôhoku Math. J., 21 (1969), 271-290.
[18] Yano, K. and Kon, M., CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, 1983.

Kyungpook Univ.
Taegu, 702-701
Korea

