
TSUKUBA J. MATH.

Vol. 12 No. 1 (1988). 259-268

CYCLIC-PARALLEL REAL HYPERSURFACES OF

A COMPLEX SPACE FORM

By

U-Hang Ki*

Introduction.

In 1973 Takagi [14] classifiedhomogeneous hypersurfaces of a complex pro-

jective space PnC by proving that all of them could be divided into six types,

and he [15], [16] showed also that if a real hypersurface M has two or three

distinctconstant principal curvatures, then M is congruent to one of the homo-

geneous hypersurfaces of type Au A2 and B among these ones. This result is

generalized by Kimura [6], who gives the complete classificationthat a real

hypersurface M of PnC has constant principal curvatures and FC is principal

if and only if M is congruent to one of homogeneous examples, where C denotes

the unit normal and F is the almost complex structure. The study of real hy-

persurfaces of type Au A2 and B of PnC was originated by Cecil and Ryan [1],

Kimura [7], Kon [8], Maeda [10], Okumura [13] and so on.

Real hypersurfaces with cyclic-parallelRicci tensor of a complex space form

Mn{c) have recently been classifiedby Kwon and Nakagawa [9] in the case

where FC is principal. They also gave another characterization of real hy-

persurfaces of type Ax and A2 of PnC.

On the other hand, many subjects for real hypersurfaces of a complex hy-

perbolic space HnC were investigated from different points of view ([2], [3],

[11], [12] etc.) one of which, done by Chen, Ludden and Montiel [3], asserts

that a real hypersurface M of HnC is of cyclic-parallelif and only if the struc-

ture tensor / induced on M and the shape operator A derived from the unit

normal commute each other, that is, JA―AJ. In particular,real hypersurfaces

of HnC, which are said to be of type A, similar to those of type Ax and A2 of

PnC, were treated by Montiel and Romero [12].

The purpose of the present paper is to show that a real hypersurface of a

complex space form Mn(c), c^O, is of cyclic-parallelif and only if JA―AJ, and

to give a complete classificationof such hypersurfaces by using those examples

constructed in [9], [121 and [151.
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1. Preliminaries.

We begin by recalling fundamental properties on real hypersurfaces of a

Kaehlerian manifold. Let N be a real 2n-dimensional Kaehlerian manifold

equipped with a parallelalmost complex structure F and a Riemannian metric

tensor G which is F-Hermitian, and covered by a system of coordinate neigh-

borhoods {U ;xA). Let M be a real hypersurface of N covered by a system of

coordinate neighborhoods {V;yh} and immersed isometrically in N by the im-

mersion i: M^N. Throughout the present paper the following convention on

the range of indices are used, unless otherwise stated:

A, B, - = 1, 2, ･■･,In; i, j, - = 1,2, -,2n-l.

The summation convention will be used with respect to those system of indices.

When the argument is local, M need not be distinguished from i(M). Thus, for

simplicity,a point p in M may be identified with the point i(p) and a tangent

vector X at p may also be identified with the tangent vector i*(X) at i(p) via

the differentialz* of z. We represent the immersion i locally by xA―xA(yh) and

Bj-=(BjA) are also (2n ―l)-linearlyindependent local tangent vectors of M, where

BjA=djXA and dj=d/dyj. A unit normal C to M may then be chosen. The

induced Riemannian metric g with components gjt on M is given by gj%―

G(Bj, Bi) because the immersion is isometric.

For the unit normal C to M, the following representation are obtained in

each coordinate neighborhood:

(1.1) FBi^JfBn+PiC, FC^-P'Bi,

where we have put Jji=G(FBj, Bi) and Pi = G(FBi, C), Ph being components of

a vector fieldP associated with Pt and Jji=J/gru By the properties of the

almost Hermitian structure F, it is clear that Jjt is skew-symmetric. A tensor

fieldof type (1,1) with components Jih will be denoted by /. By the properties

of the almost complex structure F, the following relations are then given:

JirJrh=-8ih + piph, prJrh = 0, prU=0, PiP^U

that is, the aggregate (/, g, P) defines an almost contact metric structure.

Denoting by 7;- the operator of van der Waerden-Bortolotti covariant differentia-

tion formed with gjU equations of Gauss and Weingarten for M are respectively

obtained:
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(1.2) ljBt=hjtC, !jC = -hjrBr,

where hjt are components of a second fundamental from a, A―(hjk) which is

related by hji=hjrgri being the shape operator derived form C. We notice here

that hji is symmetric. By means of (1.1) and (1.2) the covariant derivatives of

the structure tensors are yielded:

(1.3) ^iJiK=-hjtph+hJhpt, ljpi=-hirjir.

In the sequel, the ambient Kaehlerian manifold N is assumed to be of con-

stant holomorphic sectional curvature c and real dimension 2n, which is called

a complex space form and denoted by Mn{c). Then the curvature tensor K of

Mn(c) takes the following form:

Q
Kdcba=~t(GdaGcb―GdbGcajtFdaFcb~FdbFca―'2'FdcFba) ･

Thus, equations of Gauss and Codazzi for M are respectively obtained:

(1.4) Rkjih=^(gkhgji―gjhgki-irJkhJji―JjhJki―VkjJih)Jrhkhhji―hjhhki,

(1.5) lkhJi-lihki=^Akji, AkJt=pkJji-pjJkt-2pJkJ,

where Rkjni are components of the Riemannian curvature tensor R of M. Let

Sji be components of the Ricci tensor 5 of M, then the Gauss equation implies

(1.6) Sji=j{{2n + l)gji-?>pjpi}+hhji-hji＼

where h denotes the trace of the shape operator A and hji2=hjrhir.

2. Cylic-parallel hypersurfaces.

Let M be a real hypersurface of a complex space form Mn(c). The hy-

persurface M is called cyclic-parallelif the cyclic sum of la vanishes identically,

namely

(2.1) Vkhjt+Vjhtt+lihM^O.

It was proved in [4] that geodesic hypersurfaces of a complex space form Mn(c),

c^O, are cyclic-paralleland not parallel. Throughout the present paper we only

consider the case where the holomorphic sectional curvature c is not zero.

From now on we suppose that M is of cyclic-parallel. Then we have from

(1.5)
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or equivalently 37'khji ―c/A{Akji―AikJ). By the second equation of (1.5), it

follows that

(2.2) ^khji=j(pjjik+pjjk).

Differentiating this covariantly along M and making use of (1.3), we find

(2.3) ^m^khji=j{CJmpj)Jik+C7mpi)Jjk-hmipjpk-hmjpkpi+2hmkpjpi}.

Since equation (2.2) tells us that lkhjk=O, the Ricci formula for hji gives rise to

If we substitute (1.4), (1.6) and (2.3) into the last equation and take account of

(1.3), we get

(2.4) hhjt*={hi―j(n+l)}hjt+chr.jjrji'

+
c

"2
{(hjrp^pi+ihirp^pjj + jKgji-pjpi)

where ht―hjihji, which yields

(2.5) ft/≫irt/>r=(

where we have have defineda=

h2
c
J71 )hJrpr+japj

hrsprps. Thus, it follows that

(2.6) h,-^(n-l))a, ^hjWp*

On the other hand, if we substitute (1.4) and (2.3)into the Ricci formula,

which is given by

^v^khji-lklmhji=-Rmkjrhir-Rmkirh]r,

then we have

(2.7) hik2hmj―himzhkj+hjk*him―hjm2hik

--^{hmi(gkj-pkPj)-hki(gmj-pmpj)+hjm(gki-pkpi)―hjk{gmi-pmPi)

+JjkWmPi+liPm)-Jjm{lkPi+liPk)+Jik{!mPiJrljPm)

-Jim(^kPj^JPk) + 2Jmk(7jPi+ViPj)} ,

where we have used the second equation of (1.3). By transvecting (2.7) with

Jik and p}plpk respectively and making use of the fact that properties of the

almost contact metric structure (I, s, P), we can see that
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(2.8) Jsr(hmshjr*+hjshmr>)

= j{2n + l)c(ljpm+lmpJ)-jc{{prlrpj)pm+{prlrpm)Pj},

(2.9) ahmr2pr=phmrpr.

Combining (2.5) and (2.6) with (2.9),it follows that a(hjrpr-apj)=0 and hence

a(j8-a*)=0.

Let Mj be a set consisting of points of M at which the function (3―a2 does

not vanish. Suppose that Mx is not empty. We then have a=0 and thus

phmrPr=O because of (2.9). By transvecting hsmps, it follows that
jS2=0 and

hence /3 vanishes on Mt. Therefore the assumption of Mx will produce a con-

tradiction. Accordingly we have fi=a2 on M, which means that P is the

principal curvature vector corresponding to a, that is,

(2.10) hjrpr=apj.

Applying pm to (2.8) and summing up m, we obtain

(2.11) pTVrPj = 0

because of the fact that c^O. By means of (2.2),(2.10),(2.11) and the defini-

tion of a, we can easily see that a is constant everywhere. Thus, differentiat-

ing (2.10) covariantly along M, we find

(V*/iJr)/>r+/iyrV*/>r=aV*/>,,

which together with (1.3) and (2.2) yield

(2.12) jJjk-hjrhksJrs=aVhPj.

If we take the symmetric part of this,then we obtain 1'kpj+ljPk=Q provided

that a^O. But, if a-0, then (2.12) implies hjrhu2Jrs=-(c/4)T7ipj with the aid

of (1.3),which together with (2.8) and (2.11) give ijpm+lmPj-Q. Consequently

we see in any case that h/Jrk=Jjrhrk. Thus we have the following fact:

Lemma 1. Let M be a cyclic-parallelreal hypersurfaces of Mn(c), c^O.

Then the shape operator and the induced structure tensor commute each other, thatis,

(2.13) AJ=JA.

Remark 1. Chen, Ludden and Montiel [3] proved thislemma for the case

where c<0. The converse assertion of Lemma 1 is well known. The prooi

was used the theory of Riemann fibre bundles (cf. [3], [8]). But, we introduce

here the other simple proof. The method is similar to that used in the previous

nnnpr ffil
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From (2.13),it is easy to see that

(2.14) hjrpr = apj

by means of the properties of the almost contact metric structure. Differentiat-

ing (2.14) covariantly and taking account of (1.3), we obtain

(2.15) Wkhjr)pr-hJrhilJrt=akpJ-ahkrJjlr,

where ak=lka, which together with equations of Codazzi and (2.13) give

(2.16) ■^Jjk+2hjrhsrJks=akpj-ajpk+2ahJrJk＼

It means that ak=Bpk for some function B. It is easy to see that a is con-

stant everywhere. Thus, the last equation reduces to

(2.17) hji^ahji+jigji-PjPi)

because of (2.13) and the properties of (/, g, P). Accordingly (2.15) becomes

(2.18) Wkhjr)pr=jJjk.

Lemma 2. Let M be a real hypersurface satisfying (2.13) of Mn(c), c^O.

Then M is of cyclic-parallelprovided that a2+c=0.

Proof. Since we have a2+c=0, the relationships(2.14) and (2.17) tell us

that M has at most two constant principal curvatures a and a/2. Their multi-

plicitiesare denoted respectively by r and 2n ―1―r. Thus, the trace of the

shape operator is given by

(2.19)

and that of A2 is given by

(2.20)

h=^(2n-l+r)

/i2=£l(2n-l+3r).

On the other hand, it is seen from (2.17) that h2=ah―(az/2)(n ―1). There-

fore, the last three equations imply that r―1 because of ≪2+c=0 and c=£0.

Accordingly (2.19) and (2.20) reduces respectively to

(2.21) h-na, h2=^-(n + l)a2.

We also have the followings:

(2.22) h3=~(n+3)a＼ /z4=-^-(n+7)a4,
4 o

where [h3 and ht denote the trace of A3 and AA respectively. By using (2.21)
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and (2.22),it is not hard to see that
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which together with (2.17) implies that hji=(l/2)a(gji + pjpi) because of a^O.

Differentiating this covariantly, we find

Therefore, by means of (1.3) and (2.13) we can verify that M is of cyclic-

parallel. This completes the proof.

Differentiation(2.17) covariantly and making use of (1.3), we get

(2.23) Wkhjr)hir+Wkhtr)hjr=aVkhJi+j{(hkrJjr)pt+(hkrJir)Pj},

from which, taking the skew-symmetric part with respect to indices k and j

and utilizing(2.13) and (2.14),

hjrXfkhir-hkrljhiT=ja(pkJji-pJki)+jpi(hkrJjr).

Thus, it follows that

hjr^khir-hi1khjr=j{pjhirjkr-pthjrjkr+a(pjjik-pijjk)},

where we have used (1.5),(2.13) and (2.14). From thisand (2.23),itis seen that

(2.24) ■2h/ikhir-d7khJt=j{-2pi(hjrJJlr)+a{pjJib-pifJk)}.

Transforming this by hj and using (2.13),(2.17) and (2.18), we obtain

ahFkhtr + jVkhJt=j{(a*+j)jihpj-jJkjpt-api(hjrJrt}

Combining this with (2.24),it follows that

(a2+c)
^khjt-j{pjJik + ptJjk)}=0

which shows that M is of cyclic-parallelbecause of Lemma 2.

From this fact and Lemma 1 we have

Theorem 3. Let M be a real hypersurface of a complex space form Mn{c),

c=£0. Then M is of cyclic-parallelif and only if AJ―JA.

Remark 2. It is obvious that if M is of cyclic-parallel,then the Ricci

tensor is cyclic-parallelbecause of (1.3),(1.6) and (2.10).
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3. Homogeneous hyper surf aces.

It is known that the complete and simply connected complex space form

Mn(c) consists of a complex projective space PnC, a complex Euclidean space

Cn or a complex hyperbolic space HnC, according as c>0, c=0 or c<0. Some

standard examples given by [9], [12], [14] of real hypersurfaces Mn{c), c=£0

whose second fundamental form are cyclic-parallelare introduced. In a complex

Euclidean space Cn+1 equipped with Hermitian form <j>,the Euclidean metric of

Cn+1 which is identified with R2n+2 is given by Re0. The unit sphere S2n+1=

{z^Cn+1: $(z,z)=l＼ is denoted.

First of all,examples of real hypersurfaces of PnC are considered. For any

positive number r a hypersurface N0{2n, r) of S2n+1 is defined by

C n ＼

AT (Ov＼ v＼―U-7 ... -7 ＼(=zQZn + ＼l―r^n + l . sr＼ I _ 12 ― ,]_ |2l

For an integer m(2^m<n ―l) and a positive number s, a hypersurface

N(2n, m, s) of S2n+1 is defined by

N(2n, m, s)―
C m n + l "i
J/_ ... _ ＼(= C2n+l(― rn + ＼. VI? I2―c V ＼? l2l

I j= l j=m + l J

Then, for the projection iz of the Hopf-fibration S2n+1 onto PnC, Afo(2n―1, r)

=7t(N0(2n, r)) and M(2n ―1, m, s)=x(N(2n, m, s)) (n2>3) are examples of real

hypersurfaces of PnC whose shape operator and the induced structure tensor

commute each other. Itis known [14] that M0(2n ―1, r) and M(2n―1, m, s) are

both compact connected real hypersurfaces of PnC with constant two or three

distinct principal curvatures respectively, which are said to be of type Ax and

Az respectively. In [13], it is proved that M0(2rc―1, r) and M(2n ―1, m, s) are

only hypersurfaces of PnC satisfying AJ=JA.

In the next place, the example of real hypersurfaces of HnC defined by

Montiel [11] and Montiel and Romero [12] isintroduced. In Cn+1 with standard

basis, a Hermitian form <j>is defined by

n
6{z, w)=―zowo+ S zkwk.

where z=(z0, ･･･,zn) and w=(w0> ･･･, wn) are in Cn+1. Let H＼n+l be a real hy-

persurface of the Minkoski space C"+1 defined by

#fB+1={ze=C?+1: $(z, z)=-l},

and let G be a semi-Riemannian metric of H＼n+l induced from the complex

Lorentzian metric Re0 of C?+1. Then (Hfn+1, G) is the Lorentzian manifold of

constant curvature ―1, which is called an anti-de Sitter space.



Cyclic-parallelreal hypersurfaces
267

Let r and s be integers with r+s ―n ―1 and t^R with 0<t<l. We con-

sider a Lorentzian hypersurface Nr+.(t) of Hfn+i defined by the following:

Nr+S(t)= {(*,..-,*B)e#r+l: *(-iz.n+si*,r=-4s+11**r}

and a Lorentzian hypersurface of H＼n+l is given by

Nn={(z0, - , 2n)^mn+i: 1^-^1=1}.

Since it is known that Hfn+1 is a principal Sx-bundle over a complex hyperbolic

space with projection a: H＼n+1^HnC, and Nr+S{t) and Nn are SMnvariant, we

see that Mr+i{f)=i:{.Nr+s(t))and Mn=7:(Nn) are real hypersurfaces of HnC,

where tc: Nr+S(t)-+Mr+S(t) and it: Nn-*Mn are semi-Riemannian submersions which

are compatible with S^fibration. It is seen that Mr+S(t) and Mn are complete

connected real hypersurfaces of HnC with constant two or three distinctprincipal

curvatures, which are said to be of type A ([9]). In [12], it is proved that

Mr+S(t) and Mn are only complete hypersurfaces of HnC satisfying A]―]A.

Thus, by combining above facts and Theorem 3, we obtain the following clas-

sifications.

Theorem 4. M0(2n ―1, r), M(2n ―1, m, s), Mr+s(0 and Mn are only complete

and connected cyclic-parallelreal hyper surfaces of Mn(c), c^O.
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