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MINIMAL IMMERSIONS OF PROJECTIVE SPACES
INTO SPHERES
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Hajime URAKAWA

Intreduction and statement of results.

The purpose of this paper is to show positivity of the dimension of the
parameter space of equivalence classes of all full isometric minimal immersions
of the complex projective space P™(C)(n=2) or the quaternion projective space
P*(H) into spheres.

Let (M, g) be a d-dimensional irreducible Riemannian symmetric space of
compact type. An isometric immersion @ of (M, g) into the unit sphere Stin
R is called to be minimal if for every normal deformations @, of @ with
@,=0, the first variation of the volume (M, @*g,) is zero at t=0, where g, is
the standard Riemannian metric on S! with constant curvature one. For a con-
venience, we call that a minimal immersion @ of (M, g) into SICR"* is full if
the image @(M) is not contained in a hyperplane of R'*', and that two such
immersions @,, @, are equivalent if there exists an isometry p of S} such that
@,=p-D,.

The first main problem of minimal immersions would be to determine the
set A of equivalence classes of all full isometric minimal immersions of M into
Si  This problem was solved by do Carmo and Wallach [2], and Li [13].

We explain the standard construction of minimal immersions of a compact
irreducible Riemannian symmetric space (M, g) into spheres (cf. [2], [5]): Let
A, be the usual non-negative Laplace operator of (M, g) acting on the space
C=(M) of all real valued C> functions on M. We denote by

0:20<21<22< te <Izk< Ty,

the set of all mutually distinct eigenvalues of A,, and by V* the eigenspace of
A, with the eigenvalue 2,. Put dim(V¥*)=m(k)+1. For each k=1, let {f,, -,
Ffmery} be an orthonormal basis of V* with respect to the inner product (e, ¢)=

SMgD(x)(ﬁ(x)d‘u with the canonical measure dg of (M, g) normalized by Swd”:
m(k)+1. Then the mapping x, of M into R™®+! defined by
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Xp: M3 p > (folD), =, Frm(p))ERm D+

gives a minimal isometric immersion of (M, --—j

sphere SP®.  Then the second main problem would be:

g), d=dim(M), into the unit

Problem (A). Is the minimal immersion x, rigid ?

Here the rigidity means, if @ is another full minimal isometric immersion
of M into ST®  then @ is equivalent to x,.

Now the results of do Carmo and Wallach, and Li are the following:

THEOREM 1 (cf. do Carmo and Wallach [2], Li [13], Ohnita [7])
1) Assume that there exists a full isometric minimal immersion @ of (M, Cg)
with a positive constant C, into a unit sphere St. Then, for some k=1, [<m(b)

and C:}di.
2) The set N of equivalence classes of all full isometric minimal immersions
of (M, izdi g) into St(U=m(k)) can be smoothly parametrized by a convex body I

in a vector space W, such that the interior points of L correspond to those [®]
Sfor which I=m(k), and the boundary points of L correspond to those [D] for
which [ <m(k).

Theorem 1 answers the first problem and Problem (A) is reduced in some
sense to the following :

Problem (A’). Whether or not is dim(W,) positive ?

In fact, do Carmo and Wallach showed :

THEOREM 2 (cf. do Carmo and Wallach [2])
Assume that (M, g) is the d-dimensional unit sphere of constant curvature.

Then
dim (W,)=18 for d=3, and k=4.

Therefore the rigidity does not hold in the situation of Theorem 2. On the
contrary,

THEOREM 3 (cf. Calabi [12], do Carmo and Wallach [2])
In case of M=S?; or S¥d=3) and k<3, every full isometric minimal im-

mersion @ of (M, idk—'g) into St is equivalent to x,, that is, the rigidity holds.
THEOREM 4 (cf. Wallach [10], Mashimo [5], [6])

In case of M=P™(C), P"(H), or PXCay), the rigidity holds in some sense for
k=1, i.e., dim(W,)=0 for the immersion x,.
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In the other cases, the problems (A), (A’) have been left to be open because
of a technical difficulty to estimate the dimension of W, below. In this paper,
we answer partially the problems (A), (A’) as follows:

THEOREM B. Assume that M is the complex projective space P™C)=
SUn-+1)/S(UQ) X Uny) with the SU(n+1)-invariant Riemannian metric g. Then
we have

dim(Wp)=91  for n=2, and kz=4.
That is, in this case, the rigidity does not hold and arbitrary two full minimal

isometric immersions of (P"(C), ~§£Ag) into SM® can be deformed into each other

by a smooth homotopy of minimal immersions of the same type. Here m(k)+1=

—P1
n(n-+2k) 7(@%@_5]_1“)._)2_

THEOREM C. Let PYH)=Sp3)/Sp(1)xSp(2) be the quaternion projective
space of real dimension 8 with the Sp(3)-invariant Riemannian metric g. Then
we have

dim(W,)=29,007  for k=4.
That is, in this case, the rigidity does not hold and arbitrary two full minimal

isometric immersions of (P‘(H), —Sig) into S™® can be deformed into each other

by a smooth homotopy of minimal immersions of the same type. Here m(k)+1=
(A (k4D o
(E+1)1 £1513! (2k-5).
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§1. The standard minimal immersions.

In this section, we give the notion of the standard minimal immersions
after [2], [5].

Let M=G/K be a d-dimensional irreducible symmetric space of compact type,
and let g be a G-invariant Riemannian metric on M=G/K. We denote the set
of all mutually distinct eigenvalues of the Laplace-Beltrami operator A, of (M, g)
acting on the space C=(M) of all real valued C~ functions on M by
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0=2<<2, <A< o <A< +oe,

and the eigenspace of A, corresponding to the eigenvalue 2, by V* Put
dim(V*)=m(k)+1. We give the L%inner product (,) on V* by (f, h)=

Sth du, | fl=(f, /)%, where dyp is the canonical measure of (M, g) normalized
by Sudpzm(k)—]—l.

Suppose that k=1. Let {fo, f1, -+, fma} be an orthonormal basis for V*
with respect to (, ) and define a mapping x, of R™®+1 by

xk(p>:(f0<,b)y fl(p)y R f’m(k)(ﬁ))) pEM

The action of G on M induces a natural one on V* by (¢-f)(p)=f(¢7'p), ¢ =G,
peM. The orthonormality of {f;}7% and the homogeneity of M imply the
image x,(M) is included in the unit sphere ST*® of the Euclidean space R™*)+1,
Moreover by the G-invariance of the metric g and the assumption of the irredu-
cibility of the linear isotropy action of K, the mapping x, is an immersion and
the induced metric §=x¥g, coincides with the metric g up to a positive constant
C, where g, is the standard Euclidean metric of R™*®+!  Since x,: (M, g)—

St® s an isometric immersion and the Laplace-Beltrami operator A~:%AE of
(M, g) satisfies Agfi:%fi, 1=0, 1, ---, m(k), a theorem of Takahashi [9] implies

that x, is a minimal immersion of (M, §) into a sphere of radius +/dC/4;. It

A . . .. . . o .
follows that C=-"%. The isometric minimal immersion x,: (M, Z)—Sr® is

d
called the k-th standard minimal immersion. Note that another orthonormal basis

of V* gives also an isometric minimal immersion of (M, £) into S™®, which is
equivalent in the sense of the introduction to the immersion x,.

Now we choose an element f in V*as f(eK)=0, and put f{,:SKk-fdk and
fo=114/llf4ll, where dk is the Haar measure on K normalized by Sde:I. Then
k-fo=fo, ke K, and fy(eK)=x0. That is, the G-module V* is a class one repre-
sentation of the pair (G, K). We can take an orthonormal basis {f;}™{ of V*
in such a way that (fo(eK), f1(eK), -, fmm(eK))=(, 0, ---, 0), because there

exists an isometry A of the Euclidean space R™®*! such that A(x,(eK))=(, 0,
-+, 0). Then it can be proved that

(L.1) 1 (6 K)=(fy(aK), f0K), -, fumu(cK))=0c"fo,

for every g<G, under the identification R™ " " 5 (ay, -+, Gpmey)— 2lP a, [ VE
Therefore the standard immersion x, can be obtained as the orbit x,(¢K)=0"f,,
0 &G, in the class one representation V* over R of (G, K).
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The differential x,. of x, can be expressed in terms of the Lie algebra g
of G as follow: Let f be the Lie subalgebra of g corresponding to the Lie group
K, and let p be the orthogonal complement of f in ¢ with respect to the Killing
form of g. We identify p with the tangent space T.xM by p3X— Xex&Tex M,
and the tangent space T,.,, V" at ¢-f, with V* itself. Then the differential
xpox Of xp at e KEG/K is given by

d
(L.19 Xirox(TorXex) =~ x4(0 €Xp UX)K) =0 a(X-fo),

where 7,. is the differential of the translation by o¢: G/K2¢’'K— oo’ KeG/K.

Moreover we give an inner product (, ) on p from the G-invariant metric g=

Ar
d"g by

g()(el{; eK) (X Y), X, YEp.
Then the mapping x, is isometric from (M, §) into V* if and only if
(1.2) (0X-fo, 6X-fo)=(X, X), Xep, and ¢€G,

by (1.1) and the above identifications. The mapping x, is an immersion of M
into V* if and only if the mapping p=X— X fo= V* is injective.

§2. Parametrization of minimal immersion.

In this section, we preserve the notations in §1. Let (M=G/K, g) be an
irreducible Riemannian symmetric space of compact type and let x, be the k-th
standard minimal isometric immersion of (M, g) into SP®. Then we have:

THEOREM 2.1 (cf. [2], [7], [13])
1) Assume that there exists a full isometric minimal immersion of (M, Cg)

with a positive constant C, into a unit sphere S,. Then, for some k=1, [=m(k)

and C:%’i, where d=dim (M).

2) The set W of equivalence classes of all full isometric minimal immersions

of ( M, —* g) into Si, [=m(k), can be smoothly parametrized by a convex body L

n a vector space W, such that the interior points of L correspond to those [@]
for which l=m(k), and the boundary points of L correspond to those [@] for
which [ <m(k).

The sets W,, L in the above theorem can be constructed as follows: Let
Vo, V. be the K-invariant subspaces of V* defined by

Ve=Rf, and V,={X f,: X&p}.
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By the G-invariance of the inner product (, ) of V*, the subspaces V, and V,
are mutually orthogonal with respect to (, ). Put V’ the orthogonal complement
of the sum V,+ V, in the space V* with respect to (,). Then we get the
decomposition of V* as K-modules:

(2.1) Vi=V,PV.PV’.

Let P, be the projection of V* into V,; under this decomposition. Let S be the
set of all linear (over R) mappings of V* into itself which are symmetric with
respect to (, ). Define the G-action on S by ¢-A=0Ac7?, 0=G, A<S, and the
G-invariant inner product (,) on S by (A, B)=trace(AB), A, BES. Let S, be
the set of all symmetric linear mappings of V, into itself. The set S, can be
considered as a subset of S. For every u, v V*, define a linear mapping P, ,
by P, o ()=(u, t)v, te V* Then the mapping Q. ,=1/2(P,, 1+ P, ) belongs to S
and the linear span of Q, ., u€V*, coincides with S. Moreover Q, ,&S; for
u, veV,, and the linear span of Q, ., u=V,, coincides with S;,. Note that

(2.2) (B, Qu .)=(B(u), u), for every BeS and ucV*

by definition.
Now let W, be the linear span of the G-orbit of S; in § and W,={AeS;
(A, W))=0)} its orthogonal complement. Define the subset L of W, by

L={CeW,; C+1=0},

where [ is the identity mapping of V* and C+1=0 means that ((C+1)}(u), ©)=0
for all us V-,
Theorem 2.1 can be proved by the same manner as Theorems 1.3 and 1.5

in [5] (cf. see Li [13]).

§3. Estimation of the dimension of W,.

We preserve the notations in §2. Consider the natural isomorphism @ of
the symmetric square S?V* of V* onto Sinduced by S*V*2u-v—Q, ,S. The
G-action on V* is extended naturally to S?V*, and the G-invariant inner product
(,) on V* can be extended to the G-invariant one on S*V*. Since we have

G'Qu,uonu,va-lzzQau,au: and
(Qu.v; Qu’,v’):(u'vy u,'v/); for GEG; u, v, u/: U/Evk’

the mapping Q is G-isomorphic and isometric. Moreover the image Q(S*V,) of
the symmetric square S*V, of V, in (2.1) by Q coincides with S,. Therefore
the space W, is identified by @ with the linear span of the G-orbits of S?V; in
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S2V*E and W, is also identified with its orthogonal complement in S*V*.

Furthermore, in order to estimate dimension of W,, we consider its com-
plexification W¢§. We denote by W€ the complexification of a real vector space
W. We extend the inner product (,) on S?V* to the hermitian inner product
on (S*VH*C=S%V*°)., Then W is the linear span of the G-orbit of S¥V¢) in
S V*) and W is its orthogonal complement in S((V*¢). We have:

LEMMA 3.1. Let W, be the sum of G-submodules of S%V*€) over C, not
containing the K-irreducible components of S*VS). Then W, is included in W§.

PROOF. It can be proved by the same manner as Lemma 5.4 in [2]. We
have only to consider unitary representations instead of real orthogonal ones of
compact Lie groups, making use of the Frobenius reciprocity theorem as in [1],
[3]. Proof is omitted.

By Lemma 3.1, we can give an estimation of dim (W,) by the analogous way
asin [2]. In order to estimate dicm(W3), note that, if the symmetric space M=

G/K is of rank one, i.e., a maximal abelian subaigebra of g contained in p is
one dimensional, then every eigenspace of the Laplace-Beltrami operator is an
irreducible class one representation of the pair (G, K) over R and its complexi-
fication is also irreducible, Therefore we can make use of a finite dimensional
unitary representation theory of a compact Lie group to estimate diCm(W,,), which

are carried out in the following sections, in case of projective spaces.

§4. Complex projective spaces (I).
4.1. In this section, we use the following notations:

G=SU(n+1), n=2,

[1/dete 0
K=5(U(1)><U(n))={ 0 J; UEU(H)},
g

g=su(n+1={XEM,..(C); ‘X+X=0, trace(X)=0},
—trace(X) 017 -
f:{[ . XeMy(©), tX+X:0},
0 X
B(X, Y)=2(n+1) trace (XY), X, Y =g, the Killing form of g,

0 —Z - —Z,

p= 21 EMp(C); 2y, -, 2,0,

0

Zn
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- &y 0 ~ i - G n+1 _
T_ .. &A1n+l(c)’ Elvc, IEll'—ly I_Ilsl’_l ’
0 ‘8n+1
n+1

t:{H(—’Cl, Xay vy Xas1); XER, Exi:()};

i=1

X1
— x
where H(x,, x5, -, Xns)=21v —~ 1 e

0 Xn+1

0 Then we can identify

P™C) with the coset space G/K having the G-invariant Riemannian metric

1 e VY =
| B(X, Y), X, Yep.
Define an element A; in the dual space t* of t over R by t= H(x,, x4, -+, X n41)

induced from the inner product (X, ¥ )=—

—x; 1=7/=<n-+1, and introduce a lexicographic order >on t* in such a way that

> A> e > A >0 A
Put

D(G):{/lz }nlmiliet*; meZ(1Zi5n), m=zmy= - 2771,,20},
i=1

D(K):{A: i};‘lkiziet*; b Z=<i<n), b,

1\

By - ;kn;o}.

Then D(G)(resp. D(K)) is the set of all dominant integral forms of G (resp. K)
with respect to t. Thus there exists a bijection between a complete set 9(G)
(resp. D(K)) of nonequivalent irreducible modules of G(resp. K) over C and the
set D(G)(resp. D(K)) assigning A< D(G)(resp. D(K)) to an element V=V,
D(G)(resp. D(K)) with the highest weight 4. Under the above situations, we
have

THEOREM 4.1. (the branching theorem) Let V=V, be an irreducible G-
module over C with highest weight A=3" mA;, mi=n,= - =m,=0. Then V
=V, decomposes as a K-modules, into irreducible ones:

Vi=2 I/k121+m+knlny
where the summation runs over all the integers ky, -, k, for which there exists a

non-negative integer k satisfying

miZ ks FhzZm,2ky+kzm,= - Zmy =k, h=m, =k,

and

M=

m;= i} kit+(n-+1Dk.
i=1

=1

[I
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PRrROOF. See [3].

Note that the irreducible modules Vi, -41,,, With highest weight kA, —k4,.:
=2bA,-+kA+ - kA, k=0, exhaust all class one (i. e., including the trivial repre-
sentation of K) irreducible modules of the pair (G, K) over €. The modules
Via,-r1,4, are represented as follows (see for example [5]):

Let S**(C™*!) be the space of all complex valued C* functions f on C***
such that f(1z2)=121%*f(z) for every zeC", icC. Put H*¥C"")={fe
St . A f=0}, where A,=37410%/02,0Z;, the standard Laplacian of C™*'.
Define an action of U(n-+1), also SU(n+1) on S**¥(C"*1) by

(6-/2)=f(e7'2), zeC™"', ecU(n+1).
Then HF® *C™+Y) is the SU(n--1)-irreducible submodule of S* *(C™*!) with heig-
hest weight kA,—FkA,.;. Let C=(C™*, R) be the set of all real valued C> func-
tions on C**! and put Vi=H®*C"*")YNC=(C"*, R). Then V* is a class one
representation over R of the pair (G, K) whose complexification V*¢ is

Via-ta,e,=H"HC™), and it induces the eigenspace of the Laplace-Beltrami
operator of the G-invariant Riemannian metric on G/K corresponding to the

inner product —n._}_fB with the eigenvalue k(k-+n).

4.2, Now by Theorem 4.1, the class one representation V*¢ is decomposed
into irreducible K-modules as follows:

4.1) Vie= 3 2 Voo

p=0,1,, k g=0,1,, k
where V,,, p, ¢=0, 1, ---, k, are the irreducible K-modules with highest weight
@p—QhA-(p+@) et pAs+ - +ph, (n23)
P(11*3n+1)+q(—21+12):
0 wy—w,
The K-module p®=1| z, 0 5 25, w,C(L=Zi<n)t is decomposed into irredu-
Zn J
cible K-modules as follows:

DC:VLO@ Vo,l-

Then the components of the decomposition V*¢=(V)CE(V,)*E& (V)¢ are given
as K-modules by

(VO)C:VO,O: (V1>C:V1,o’$vo,1y and (V’>C: > Vp,q,

(p.ET

where I={(p, ¢); P, ¢=0, 1, -+, EI\{(0, 0), (0, 1), (1, 0)}. Then the K-module
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S%V¢) is decomposed as follows:

(4.2) SZ<V?>:V2(11-—1n.;.,)@vjz-lm.l@v—zzﬁexzﬂavo,o-

Therefore we have:

LEMMA 4.2. Every G-module over C which contains some of the K-irreducible
components (4.2) of SAV€) has the highest weight 3%.m;d;, where m;, 1=i=<n,
are one of the n-tuples in the following table:

(i) In case of n=4,

my 2k 2k—1 2k—2 2kR+3 2k+2 2k+6
Mo kB k+1 k2 R+1 k2 R42

g Bk k k+1  k+1 k42
May Bk k EH1 k1 k42
My k k k k k k

(i1) in case of n=3,
my 2k 2k—1 2k+3 2k—2 2k4+2 2k+6
my k R+l R+l k42 k42 k42
ms k k k k k k
(iii) in case of n=2,
my 2k 2k—3 2k+3 2k+6 2k—6
my, k k k k k

where, in each case, k varies over the set of non-negative integers satisfying the
inequalities m;=m,= -+ =m,=0.

PROOF. For example, we determine the G-modules containing the K-module
Vis-2,4,- The remains are proved by the same manner. The weight A,— 2,4,
coincides with 2,422,+23+ -+ +2.(n=3) or 2,--24,(n=2). By Theorem 4.1, the
weight 37, m,4; of the G-module should satisfy the following :

(i) in case of n=4,

mz2+kzmyzldkzme= - Zmy 21t bzm,2k,
and

S me=(n+ 1k +1),

(ii) in case of n=3,
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m=2+vbkzmy=1tkzmszk, and mytm,tms=4k+1),
(iii) in case of n=2,
mi=2+kzm,=k, and m;+m,=3(k-+1),

for a certain non-negative integer k.. Thus we can determine (my, -+, My)
satisfying the above conditions. Q. E.D.

4.3. We need the following lemma in order to decompose the G-module
SV *C) into the sum of irreducible G-modules.
LEMMA 4.3. For a G-module (V, p) over C with a character X, the character

Aoy Of the symmetric square S*V is given by
Liole)= s DA, <eC.

PrROOF. See [8] for example. For completeness, we give here its proof.
For a fixed =G, let ¢;€V be the eigenvectors of p(r) with the eigenvalues 4,
i.e., p(t)e;=2e;, i=1, -, N=dim (V). Then the basis ef*----e}¥ (my+---+my
=k) of the k-th symmetric product S*V of V satisfies

P P(T) (et e @B N)= AT e AT N eny,

where ePi=g;----- e;(m; times), and p‘®(r) is the G action on S*V induced from
the one on V. Then the character X, () of p'®¥(z) is given by
Xim(t)= = ATL e ARY
mytFmy=k

Consider the following generating function of the characters:

%

P(z)= 2 kx(k)()

Then we have

PO=3F B (@)™ @)™

my=k

+
i

= 5 (@)™ 22y

=det(/—zp(1))™*
=eXp (trace(éj1 —"L(Zizk))

:exp(é Xzh) k).
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In fact, the series P(z) has the convergent radius bigger than or equal to
(ClX(©)1)!, where the constant C satisfies |X(r,7y)| <C|X(z,)||(z,)| for every
71, 72€G6G. Then the coefficients P,=P™(0)/n! of P coincide with X,,(z). For
example, P,=1, P,=X(z), P,=1/20(z)*+X(z¥), ---. Q.E.D.

§5. Complex projective spaces (II).

In this section, we investigate the irreducible decomposition of the symmetric
square SYV*C) due to Lemma 4.3. In order to show dim(W,) >0, we have only
to show the existence of the irreducible of the irreducible G-submodules of
S*V*¢) which do not appear in the table in Lemma 4.2.

5.1. In this section, we use the following notations:

C=U(n+1),
I
=il = 0 |eMun(0); siaC, el =10sizn+D)}, .
0 '5n+1

d=u(n+1)={XEM,.,(C); *X+X=0},
E={H(xy, =, Xpr1); x:€R1Zi<0n1)} .
Define an element 7; in the dual space t* of t over R by i H(x,, -+, x4 )—xs,
1=7/=n-1, and introduce a lexicographic order>on t* in such a way that
L>2> o > 1> 0> Ay,

Note that 4; is the restriction of 4; to t(1<i<n-1). Put
~ ~ n+1 ~
DG)={T=5 filis 12, [i2fz - 2f2 nur}.

Then D(&) coincides with the set of all dominant integral forms of G with
respect to f and there exists a bijection between a complete set 9(G) of non-
equivalent irreducible modules of G over C and D(5), assigning A eD(&) to an
element VZV]E.‘D(@) with the highest weight 4. Moreover for each V=Vye
9(5) with A eD(é), the module Vleg, considered as a G-module, belongs to
D(G), its highest weight A is the restriction of A to t and its character X, is
the restriction of the one X3 of ¥V to G. By the character formula of Weyl [117,

&
5.1 Dihty=|es|  for each hi=| ", 0 le?,

Ent1
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where |¢li| is the determinant of (n+1)X(n+1) matrix whose (¢, j) entries
are gly,

(5.2) l=fi+n+1—j (j=I1, -, n+1),

and D(h) is given as follows:

(5.3) D(h)y=1ep*"t = TI (ei—¢)).

1si<jEn+1

Note that the G-module V*¢=H**C"*) in 4.1 is also G=U(n+1) irreducible
module with highest weight ki,— ki, ..

5.2. First let us consider the irreducible decomposition of S*V*¢) as G-
modules :

(5.4) SHVEOY)=Z N1, =, eV sp frans

where fi, -+, fne1 vary over the set {(fy, =, far); [i€Z, [r2  Z [anl,
Vfientey Is the G-irreducible module with highest weight 27} f.4;, and the
number N(fy, - fa4+:) is the multiplicity of V.., ., in SXV*). Then since
V f1e 7ney 18 also the G-irreducible module V,; with highest weight A=20 mk;,
my=f;—fau:(i=1, -, n), we obtain the irreducible decomposition of S¥V*¢) as

G-modules :

SZ(VkC):EM(mI: T nln)VZ?___Imil,;;
where my, ---, m, run over the set {(m,, ---, m,); m;€Z, m,= - =Z2m, =0}, and
M(my, -, my)= > N(fi, =+, fasy) is the multiplicity of the G-

J1izwzlnetemi=fi-fnyt
module Vg2 s, in the one SX(V*°). Then if we find an irreducible module

Vipersne Of G in (5.4) with N(fy, =+, fa41)>0, then S(V*€) includes at least
one the irreducible module Vsr  msa; Of G. Therefore we have only to consider
the decomposition (5.4) of S V*¢) as G-modules.

Now by Lemma 4.3, the character X%, of the G-module SAV*€) is given by :

1 ) ) ,
(5-5) DIL-)'IXI(ZZ):—-Z—{ IEEjIZ/Dn+1+IE%TJI/Dn+1} »
where |¢7/] is the determinant whose (7, j)-entries are &}/, ri;=k-+n, r;=n+1—j

(=2, -, n), Ynax=—Fk, Dyyy= II (e;—¢;) and Dy = II (5i+5j>- The

12i<jsn+1 1si<jin+1
right hand side of (5.5) can be written as

n+1 ok ~
i=]:I;$i P1z+1(51, Tty 5n+1)y
where P, ..(g;, >+, €,41) is the polynomial in (e, --+, €,41) given by

~ 1 ) ,
(56) Pn+l:§{lszi.')jll/Dn+l+]5?£plen+l}y
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where p,=n+2k, py)=k+n+1—j(j=2, ---, n) and p,,,=0. Note that the poly-
nomial |e2i|(resp.|e3?i|) can be divided formally be the one D, (resp. D5..).
On the other hand, according to the decomposition (5.4), we get

(5.4") Dn+1xlf2)= 2 N(fl! Tty fn+1}|€€j| )

J1zz2fn4t
where [;=f;+n+1—j, j=1, ---, n+1. We arrange the right hand side of (5.4')
as the sum of the terms &1 --- e272+ with a,> -+ >a,., and the terms gft --- g2ntt

where there exist two integers 1=/<j=n-+1 such that b,<b;, that is,

(5.4") Doy = 2 N(fy, -, fn+l)5{1 6%’1*1‘+Q(51, “, East),

Srzwzfntt

where Q(ey, ==+, &n41) IS the sum of the latter type.
Now we decompose the polynomial Ignﬂ(el, -+, €n4y) in such a way that

(5.6%) ﬁnn: > Agy, 5 Quer)e - Em—ﬁl‘f‘R(Sl; &),

Q> 4120
where R(ej, *--, &a41) is the sum of the monomials &t --- ghnit of ﬁnﬂ where
there exist two integers 1=/<j=<n+1 such that b;<b;, Then comparing with
(5.4”) and (5.6"), their first term sums coincide each other, in particular, we have

A((hy ) (]n+1):N(f1, <y faen),

where f;=¢;—n+1)—k+j, j=1, ---, n+1. Therefore we have only to decompose
ﬁnﬂ(el, e, Enen) as (5.67) and to seek the terms eZt--- eIhYY, g,> -0 >gn41 20
with a non-zero coefficient A(gy, -, ¢n+1). Then we obtain the G-module
VZ}‘:WM with m;=¢;—qns:1—m+1)-+j, j=1, -+, n, which is included in S*V*¢).

5.3. The task of the last step in 5.2 is accomplished as follows.
(i) First, decompose ﬁnH as a sum of the constant term 15”“(51, e &g, 0)
in eyy; and the higher order term Qn+1=Q,+:(e1, -+, &ns1) IN &nyr. Then the

constant term ﬁn+1(sl, -, &g, 0) is
Priies, -+, &n, 0)=A,P,.
Here A,=TI".,&2**! and P, is the polynomial in (e, ---, €,) given by
Py {1681/ Dy |11/ D4},
where l,=k+n—1, l;=n—j, j=2, ---, n. Then we have
P =BaPrt- Qi

(ii) In case of n=3, we furthermore decompose P, into the sum of the
constant term P,(ey, =+, €a-1, 0) in &, and the higher order term Q,(g,, -, &n)
in &,. The former P,(e,, -+, €4-1, 0) is calculated as
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Pn(ex, o, Ep-1y 0)=An-—1 n-1e
Here A,_,=]1}=!e; and P,., is the polynomial in (¢, ---, &,-,) given by
1
Pn-.=~2—{IE%flz/Dn—nL16%’]’1/D;-1},

where |eli| is the determinant of (n—1)X(n—1) matrix whose entries are &ls,
1=iZn—1, i=k+n—2, l;=n—1~j, j=2, ---, n—1. Then we have
PnZAn—l n-l"l’"Qn-

(iii) Go on inductively the above process. Lastly, we have

et g 1P gih+D g2 q
1 ;
Pi=—1{1eft ¢, 1 Dyt 2+ g2 1|/ Dir,
2
e g 1 gllhvn g2 1
1 sIlz+1 12 8?(kﬂ) 1
Py= (e1—e)+ (exteayp,
2 || cr+r 2(k+1)
tor 1 &€y 1

A,=¢.e,, and
Py(ey, &5, 65)=8,PQ(ey, &, &),

where (), is the sum of the terms of P; higher than the constant in ;. Then
we have, in case of n=3,

5.7) Prii=Bubes o+ APk 33 By - AQit Qs
where
(5.8) AnAn—l A2=E§k”"l ﬁ E?k+n+x—j,
j=2
(5-9) AnAn—-l Ai: ﬁ[ €§_k+n+1—i ﬁ e§k+n+l—j’
Jj=1 J=i+1

where 7=3, -, 7.
In case of n=2, we have

(5.7 Py=A,P,+-Q;,
where
(.8") Z\.zzfjlegk“,

Note that the first term A,A,_, - AP, of (5.7) is a homogeneous polynomial
in (e, -, &,) whose degree is 2k-n+1—: in the variable ¢;, /=3, ---, n, and the
sum of the degrees in &, and ¢, is 62+2n—1. The terms A,A,_, --- A,Q; are
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homogeneous polynomials in (e;, -+, £,) Whose degrees in ¢; are greater than
2k+n+1—7, and the degree of the last term Q. in &, is greater than or
equal to 1. Therefore all the monomials of A,A,_, - AP, are different from
the ones of 3 3A,An 1 A P4 Q s

(iv) Now we calculate the polynomial P, in (g;, &,): for 2=4,

Py= —;— {(e¥—eb*)?/(e,—e2)+ (372 —e34 %) /(e +e0))

— 1 k+1 k+1 : S k=8 2E4r $.8.2k+1-8
=5 (et —eb )S;OEIEZ — Q (—1)eiel

I

=glkHlgd L g8k-1g2 1 22k=3:41 (the lower order terms in &,).
Thus weZhave, in case of n=3, k=4,

-~ n
— k+n- 2k 1-7
AnAn~1 ___AZPZ__Egk-}'ns% +n 1}:[551' tn+1-j

n
tk+n-2.2k+n+1 2k+n+1~j
+e&i 4] 1—];’5)' prisd
i=

n

dk4n-4 2k +n+8 2k+n+1-j

+ei £y 1135]' ’
j=

+(the lower order terms in e,).

Therefore the polynomial 13,,+1 includes the terms ¢ --- ¢2%%1, where (g1, **, Gn+1)
are

1) q=4k+n, ¢=2k+n—1, ¢;=2k+n+1—j, =3, -+, 1, gn1=0,

2) gi=4k+n—2, ¢;=2k+n+1, ¢;=2k+n-+1—j, j=3, -, 1, gn+:=0,

3 g=4k+n—4, ¢.=2k+n+3, ¢g;/=2k+n-+1—j, j=3, -, 1, ¢n+,=0.
Therefore, together with 5.2, in case of n=3, the G-module S V*¢) includes the
G-modules Vzp_ m;z, m;=q;—qn+1—n+1+7, j=1, .-+, n, as follows:

1) (my, my, Mgy -, my)=(4k, 2k, 2k, -, 2k), for k=1,

2)  (my, mg, My, -, Mmpy=A4k—2, 2k-+2, 2k, -, 2k), for k=2,

3)  (my, my, ma, -+, my)=1A4k—4, 2k+4, 2k, -+, 2k),  for k=4.

The 1) and 2) appear in the table in Lemma 4.2, but the last 3) does not so.
Therefore the G-module S*V*¢) includes the G-irreducible module Vz2_ m;2,
(my, my, My, - my)=@Ak—4, 2k+4, 2k, ---, 2k), for k=4, which does not include
the K-irreducible components of S V¢§). The dimension of Vgr_ m;:, is given
by the dimension formula of Weyl [117:
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DA4k—4+n, 2k+3-Fn, 2k+n—2, ---, 2k+1, 0)
D(n, n—1, ---, 1, 0)

_ Ck=7(n+Dn+2)dk+n—4)(2k-+n+3) (2k+n-5)(2k—l—n—~2)
- 24(n—1) 2k—3 2k

=4,725, for n=3 and k=4.

dim (Vzp me1,)=

In case of n=2, the first term A,P, of (5.7) is
A Py==gtkteglhtl gikg2k+s.1 oak-252k+3.1 (the Jower order terms in &,).
Then S2(V*€) includes the following irreducible G-modules Vi, 1,4mp1,°
1) (my, m)=(4k, 2k), k=1,
2) (my, my)=4k—2, 2k+2), k=2,
3) (my, my)=4k—4, 2k+4), k=4.

The 1) and 2) belong to the table in Lemma 4.2, but the last Vi-sa,+crni,
does not so. The dimension of V(k-41,+crro1, IS given by

dim (V(4k-4)11+(2k+4)12):D(4k—4+2; 2k+4+1, 0)/D(2, 1, 0)
=—;—(2k——7)(4k—2)(2k+5)
=91, for k=4.

Theorem B is proved completely.

REMARK. In case of n=2 and k=2, we have the following irreducible
decomposition of the symmetric square S*V2¢) of V*=H**C(?):
SZ(VZC):V8,4EBVG,6€BVG.3@VG,O®V5,4@VE,I@2V4,2$V2.1®V0,0,

where V=¥ means the irreducible G-module with highest weight x4,+y4,. In
this case, each irreducible component of S*(V?C) includes certain K-irreducible
components of SXV¢), and we have dim (W;)=0. It seems to be dim (W;)=0.

§6. Quaternion projective spaces P™~'(H)=Sp(n)/Sp(1)xSp(n—1).
6.1. In this section, we use the following terminologies :

G=Sp(n)={x€U@n); ‘xJ.x=Ja}, n=3,

where ]n:(_? IO") and I, is the identity matrix of degree n.
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a 0lb 0O 5 A B
a
K=SplyxSpn—1)={| L A0 B ;( )esmn,( )eszmn—l),
d cC D

g=8p(n)={Xeul@n); *X],+ [, X=0}

A B ~
=( _ _); A, BEM,(C), *A+ A=, B:zB},
—B 2

t=8p(1) X 8p(n—1)

x Oly O ‘
O X0 Y eVITIR yeC, X, YEM,AC), K+-X=0, V=Y,
-5 01z 0 ,

0 -Y0 X

B(X, Y)=02n+2)Trace(XY), X, Y =g, the Killing form of g,

0 zZl 0w
—tZ 0 W 0

p— '—“0» —"‘*-—W—-O'Vrz y Zy I/I/E‘M(l’n'—ly C) )
—tW 0 |—Z 0

the orthocomplement of f in g relative to B,

€

. 0 1
T=\__e D &€, |ol=1(1=i<
et ; &0, e =1(1=iZn)t,

et

t={H(xy, -+, 2,); x,€R(1=i=<n)}, the Cartan subalgebra of g and t, where

Xy

Hxy, o, xa)=2my/= 1| —52 —
0 ] .

—Xn
Then we can identify P"-'(H) with G/K having the G-invariant Riemannian
metric induced from the inner product (X, V)=—B(X, Y), X, Yep.

Define an element 2; in the dual space t* of t over R by = H(x,, -
x(1=i=<n) and introduce a lexicographic order>on t* by

I

2> e > 2,30,

Let 2*(G)(resp. 2*(K)) be the set of positive roots of the complexification g¢
(resp. ¥€) of g(resp. ¥) relative to . Then we have
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IIA

SHG)= {4y 1=i<E=n} U224 1SS},

A

SHK)={Aikdy; 250 EnP U245 1

A
lIA

i=n}.

Put

\/

I

DG)={A=F auds; e, Z(Sisn), aiza:z - Za,

~o},
D(K):{/I:;Z)lbili; b,e Z1<i<n), b,=0 and by= - gbn;_()}.

Then D(G)(resp. D(K)) is the set of all dominant integral forms of G (resp. K)
with respect to t. Moreover there exists a bijection between D(G)(resp. D(K))
and a complete set D(G)(resp. D(K)) of non-equivalent irreducible modules of G
(resp. K) over C corresponding A< D(G)(resp. D(K)) to an element V=V, 9(G)
(resp. 9(K)) with the highest weight A.

Then we have:

THEOREM 6.1. (Lepowsky [4]) Let 2=27, a; 4, D(G), p=21 b;3, € DK).
Then the multiplicity m(A, p) of the K-module V, in the G-module V, is given
as follows: Define

Ai=a;—max (a,, b,),
A;=min(a;, b;))—max (a1, biyy), 2=i=n—1,
A,=min(a,, b,)=0. ’
Then m(, p)=0 unless b,+>1, A €24 and A, A;, vy Apo1 =0, Under these

conditions,

(4, p=2( 1)!1.5(nwz"'“IL]“I'l/z(‘br{“Z?:lAi)“ZieLAi)
m ,y::L _ ,

n—2
where L runs over all the subsets of {1, 2, ---, n}(also the empty set), |L| denotes
the number of elements in L, and (;) denotes the binomial coefficient, which is
defined to be zero if x<y.

It turns out by Theorem 6.1 that V*“=V,, 1421, k=0, are the class one
modules of the pair (G, K) over C.

The complexification p¢ of p is the irreducible module of K with highest

weight A,-+2,. Then the symmetric square S%(p¢) of p¢, which is SXV¢) in §3,
is decomposed as a K-module into as follows:

6.1) S2(pc):V211+222@V22+23@V0-

Then by Theorem 6.1, we have:
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LEMMA 6.2. (1) Let n=3. Then every G-module over C which includes
certain of the K-irreducible components (6.1) of S*9€) has the highest weight
%1 a;d;, where the triple (a,, a., as) is one of them in the following table:

a, k+2 k+3 k+1 | k+4 k+2 K
k k k k k k
a, 2 ; 1 1 0 0 0

| kzz} P21 k21| k20 k21 k20

() In case of n=4, if a;=a,= -
ditions:

(1) a,=3, (i) a,=2, or (iii) a;=1, for some 5=i=n, then the G-module
Vi with the highest weight A=32, a;A; includes no the K-irreducible components
of S*p°).

v

a,=0 satisfy one of the following con-

PROOF. We give only a proof of (II). Case (I) can be proved by the
same manner as case (I[).

By (6.1), we have only to consider the K-modules V, with highest weight
A=32.b,2; as follows:

(1) (bh bZ: Tty bn):(z, 23 0’ T 0)7
(2) (bly bZ: ) bn):<0, 1) 1: 0, Tty 0))
(3) (bh bz, Tty bn>:(0: 0: ) 0)-

In each case, the numbers A;, 1=/=<n—1, as in Theorem 6.1 are given as follows:
For (1), Ai=a,—max(a,, 2), A,=min(a,, 2)—a;, A;=—a;4;, 3=Zi<n—1. For (2),
A;=a;—max (a,, 1), A;=min(a,, 1)—max(a,, 1), As=min(a,, 1)—a,, A;=—a;4,, 4=
i=n—1. For (3), A;=a,—a,, A;=—a;;,, 25i=n—1.
If either the conditions (i), (ii) or (iii) hold, then for every case (1)~(3),
one of the A;’s 1=i=<n-—1, is negative. Thus Theorem 6.1 implies (II).
QE.D.

By the character formula [11], the character X, of the irreducible module
V1 with highest weight A=37,a;4; is given by

€1

(6.2) Da(e)Xs(e)=eli—e3%|,  for each &= L E——
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where |eli—e3%| is the determinant of nXm-matrix whose (7, j) entries are

eli—g7l,
6.3) lj:a,-+n+1—j, 1=7=n, and
(6.4) D,(e)=]elti-i—gjn+1-0|

=11 (ei—eiY) TI (ei—e;—eji4eqh).

i=1 1si<jsn
6.2. In the following, we assume n=3.

By Lemma 4.3, the character X%, of the symmetric square S*V*¢) of the
class one module V*¢=V,,; .41, of the pair (G, K) is given by

1 [ Pye)* | Dy(e)Py(e?)
65) Dy(etp(e)= 5 [y DTED )
2 U Dy(e) Diy(e?)
€1
& 0
for e= E?’ET— , where
1
0 re
e
€'f+3~8](k+3) El;+2_5»l-(k+2) 51_5;1
(6.6) Pyle)=| ef**—e7**? efti—e3*'P gy—ey’ |,
E§+3__E-;(k+3> 51§+2_E:<k+2) e Th

Assume that

SZ<VkC): Z N(”l: gy as)l/fa121+a222+a31.3-

ajzagzag=0

Then we have the identity :

6.7 D3(€>X’f2)(5):a > Na,, as, ay)|eli—ejl],

12092a320
where I;=a;+4—7, j=1, 2, 3. And then the right hand side of (6.7) can be

decomposed of the form:

=2 Nay, as ageitieytes Qe 6, &),
1ZQg=agz

where Q(e,, €5, €;) is the sum of the monomials ¢7'c2%e3% satisfying one of the
following conditions :

(6.8) (i) 0=q,, (ii) ¢:=¢q., or (i) ¢.=¢:.
So let us decompose D,X%,, into the following :

6.9 Dax’fZ):_‘ P Alg,, g 43>5f15g2538+R(51, €2, €3),

0>91>¢2>4q3

where R(e,, &, &) is the sum of the monomials ¢¥'¢22%, satisfying one of the
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conditions (6.8). Then we have

Algs, g2, g9)=N(@s, a5, a5), ¢;=—(a3+1), g2=—(0:+2), gs=—(a,+3).
Therefore we have only to seek the monomials A(g, gs, gs)ei'ei2es® with Alg,,
Gay 92070, 0>>q,>>q.>q5 of Dy(e)X%y(e). Then the module S*V*C) includes the

one V-A(q3+3)1r<q2+2)12—<q1+1>13 with multiplicity A(gi, gs, gs).

6.3. The task of 6.2 is accomplished as follows:

First, we put

Py(e,, &, 53)'-:53””'3’133(81, &3, €3),
and -
Dy(ey, €5, e2)=e3°Dy(ey, &, ¢4),

where ﬁf, and ﬁ3 are the polynomials given by

k+3_ej(k+3) sl}ei—? EA(k +2) 51_‘5:1

&1

N

Piley, &g, €5)=| eht3—gq(FtD  ght2 o+ o g2t |
g2k+o_] g2k g ghtt_ ghie

Diles, €5, e)=(e,— 7" )(es—£3")(e3—1)

X(e1;—egy—e3tFe7 N ees—e2—14e7le,)(ea83—e2—1463%,).
Then

Piyley, &5, 9)" | Diley, &9, €3)Paled, €5, a%)}
~ 1 [-3 ’
Dy(ey, &, &) Dyel, €3, €3)

1
Dax}fz):é‘}k”g‘?‘{

Here Py(ey, €5, €5)?(resp. Diley, e, e3)Py(e, €2, €2)) is divided formally by Di(ey,
&2, €3)(resp. Dy(e2, €2, €2)). Then it follows that

Py(e,, €2, 33)

610 —~ - s <2 3y
( ) Dy(ey, €, €1) Z’gap(al ees
and
7 B2 .2 .2
(6.11) Dite, g’z:ﬁ)f ety b ) Thles, ek,
1, €2, &3 =

where both sums are in fact finite sums in p, and both coefficients
ap(€1, &2), by(ey, e5) are the sums of the form A(ay, a,)e3e%2, a4, a,, and A(a,, a,)
being integers. So decompose the constant 1/2(a.(cq, €5)+bo(es, €5)) in e,
into the sum of monomials A(a,, a,)e%1¢%2, and seek the monomials
— A(py, Do, —2k—3)eB1eP263%%% with the conditions 0>p,>p,>—2k—3. Then
the monomial — A(p,, p,, —2k—3)eB182¢3%%~* does never cancel with every term
of 1/23,::1(ap(ey, &)+byley, €2))e3? %2, Thus DgX%, should include the
monomial — A(py, ps, —2k—3)eB1e%2e32%-% in the decomposition (6.9). Therefore
the module S*V*¢) should include the one Viia,-(p,42 2,-p,+1 1, With multiplicity

[1(]’1) IbZ’ '''' 2k~ 3)
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By (6.10), and (6.11), we

We have only to compute 1/2(ay(e1, €2)-+boley, €2))
obtain
Poes, &, 0)2 Do, €2, 00Pylel, €3, 0)
a )= ~3(51 &y b &)= 3 2 & y €2, ,
R s R B, & 0)

g7 D o gt

where
Sk e—(k+1) 57;4-2_
Pyleq, &5, 0)=| eft?—g3#+® ehti g k+2) g,—&3!
-1 0 0
—1\( ok —(k
1—511)(52+2—52( +2))},

=(—D{(eF? —e7F D) (g,—e31)— (e
—D(er—e7)(e2—e3")(e1—e—e3 27

and
ﬁa(ely 52: O):(
Det'(er—e7)(es—e3")(e1—¢5)(e,—e3").

Dividing formally 153(51, g5, 0)% (resp. ﬁg(sl, €, 0)133(51, €3, 0)) by Ds(ey, &5, 0)(resp

_.(_

Dye2, €2, 0)), we have:

ktl-s u 2-8-20+U
s+s 6§+3 +

LEMMA 6.3.

2k+2-5-2t-u l-s+u
&2

x

1

[
+

k+2 . {

(i) ey, &)=
§= 0 0
52k+z s Zb—us—51+s—u+E{Hl—s—uséﬂ-s 2t u}

=Y
-~
I
&
[

2

k 2s+1
(11) bo(el’ 52):__ E (E%k_2s+2-—8I2k+23'2) 2 (_l)uegsﬂ 2u
§=0 u=0
k s s
_SZOS%kH—ZsI:E ( 1)p+]5%s+2—2p+ §0<_l)p+s -2 zs]

. i 5—1 2s[’§s(_1)pegk+2~2s—2p+ kz—)s(_l)kﬂﬂ;ﬂs—z zs]
p=0 p=0

PrOOF. We have
(&1, &2)=(—1)e; AB,
where
A={(ef?P—e7 5 ) (ey—er)—(e;—e7 ) (eh 2 — g3 ¥ ¥9)}/C,
{(eb2—e7 D) (ey—e3!)— (e, — €T Nef 23 **2)} /D,
Here C=<51_€_1—1)( '—'851) and D:(er—éz)(si—-e.}l), Then
k+1
(€§+1—2cﬂeé+1vzz),

A=

3

o~

and the numerator of B is rearranged as
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(sk*zeo-s e*""”))—F(e_] k2 El<k+2>5) (Ek+25 — &7 (k+2>)
_(EIEIH—Z ET(’H'Z)EEI).

Thus we have

+
{g( k1~ Se l -8 6, 12e+2 s) E(Ekﬂ s —1 -s__ 5724555*‘2"5)}/(51_52/

k+2 &
— E E 8f—s—u(eé—s+u_sgl+s—u)_
§=0 u=0

Hence we have (i). For (ii), it follows that

bo(es, e2)=(—1De {(e}t—e7®* *)(ed—e3?)

—(e—er)(eFF —e® N} /(e 67 ) (et a3 ) e e (e 63 ")
=(—De E/(e;+e7")eg+e3") (e +es)
where

E={(e¥**—e**)(ef—ert) — (el —e1")(ed* M —

e52% N} /(e +e3h)

{(52k+45 —e7 E-—2Iz 4)-{-(8_2 2k +4

E—Zk 485)
—(e3F ezt —eler® ) —(eted i — e et (e ten).
Then we have
2k+5
slE:: ;} (——1)‘(5%“4“5%“—e%“e%"““)
2k+1

— (_l)t(s%k+4—t8;2—t_612—L€gk+4—z>

F g E/(3 5 2: E) ( I>L+u(s‘2k+u—L~’uE2—l+u E2k+---.—-u,.72+t u)

We rearrange F as follows:

. 2k+3 bs }
F= 2 (_1) {82k+5 -5~ 2[8‘5 62k+a—s—2t5§s}
s==(2k+8) t=ag

where a,=2, b,=2k+3, a,=1, b,;=2k-+2, a_,=3, b_,=2k-+4, a;

=0, b,=2k+3—s
s=22) and a_,=2-+s, b_y=2k-+-5(s=2).

Then we have
F:—‘(E?IH—Z—‘EV”Z 2\(

&3
2k+1 2k+1-s .

B (D x (e
$=0 i=o

~E%k—1«s~2&)(sg+2_sss—2) .

Thus
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2k+1
G=F/(&,+ e;l),—_.«( Eo(_l)ue%k+l—2u)(sz___s.2.1)

zkil-s k+2 2¢ 2k 2L $+2 —8-2
DI C “sEE)(eftP—e3t?).

2k+1
-2 (=1
8=0
Here we rearrange G as follows:

G=H+I,
H=the sum of terms of even order in ¢,, and
I=the sum of odd order in e,.

Then
k
H: Q’(s%k+2—28_ETZk—2+28)(e§$+2_EE2S—2) s
and
k
I: —_ 20 E%k+l—28{E§S+S+(__1)352__(__1)85—21__8—2‘28—3}
k
_|_ 208—1-1—23{sg(k~s)+s+(#1)k~352_(_‘1)k-segl_sgz(k-s)—s} .
Thus
k 28+1
]‘I/(Eg”{"&;l): Z (5%k+2_2s_5T2k_2+28) 20(41)u538+1—2u ,
and
If(suter)=— 2 sttoi=s| B (—Dragrrt-sp (-1 5 (—1jee;s=>]
< = e
T B e B (—Dpepen s (e B (< Dpegeee ],
$=0 2=0 2=0 -
Therefore we obtain (ii). Q.E.D.

By Lemma 6.3, we obtain the following tables:
(i) the monomials of —ay(e,, e.)=—2 A(a,, a,)e%1edz:

| —a, | —a, | Alay, a0 |
D | —ze—2tstatu | —lis—u | 1
2) | —k—l+stu —k-2tstu—u | -1
3) ‘ ok—2tst2tu | l-stu | —1 |
8 | —k-listu —hest2tu | 1

where 0=s=<k+2, 0=¢t<k+1, and 0=u=<k.
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(ii) The monomials of —by(e,, e2)=—3 B(b, bs)eltele:
—b —bs B(bs, bs)
5) | —2k+2s—2 —28—1-4-2u (—1)*
0=u=2s+1
6) | 2k—2s+2 —2s—14+2u (—1)%+t
7 —2k—1+2s —25—2+2p (—1)p+
0=p=s
8) —2k—1+23 2+21> (_1)p+s
9 | I+2s —2k—2+2s+2p | (—1)?
0=p=k—s
10) 1+2s 24+2p (—1)k+14p+s

where 0=s=k.
Making use of the above tables, it turns out that 1/2(ay(e;, e2)-+boles, &)
includes the following monomials:

(i) —er'ez®®®  (k=0),
(i) —e7le3®*®  (k=4), and
(iif) —e7tez®*-® (k=4).

Therefore SYV*€) includes the following G-irreducible modules with multiplicity
one:

( i ) V2k11+2k12 (kg()),

(ii) Varajrar-niz, (k=4), and
(kz4).

(iii) V2k21+(2k~5)22+313

The module Viz2,4262, appears in the table in Lemma 6.2, but both the latter
ones Viratr-01y Verdytei-s 42,8 =4) do not so. Thus we obtain, if k=4,

dim (Wy)=dim (V2k11+(2k*8)12)+dim(V2k11+(2k*5)X2+323)
=1,287+27,720=29,007 .
By Lemma 3.1, we obtain Theorem C.

REMARK.
we have

In case of P*(H) and k=4, it follows that m(4)+1=1,274. Then

29,007 =dim(W,)= 1 (m&)+1)(m(4)+2)=812,175.
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