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MINIMAL IMMERSIONS OF PROJECTIVE SPACES

INTO SPHERES

By

Hajime Urakawa

Introduction and statement of results.

The purpose of this paper is to show positivity of the dimension of th≪

parameter space of equivalence classes of all fullisometric minimal immersions

of the complex projective space P"(C)(n^2) or the quaternion projective spa≪

P2(H) into spheres.

Let (M, g) be a d-dimensional irreducible Riemannian symmetric space o＼

compact type. An isometric immersion 0 of (M, g) into the unit sphere Si ir

Rl+1 is called to be minimal if for every normal deformations @t of 0 with

@0=<p, the firstvariation of the volume (M, <P*go) is zero at t―Q, where g0 is

the standard Riemannian metric on Si with constant curvature one. For a con-

venience, we call that a minimal immersion 0 of (M, g) into S＼cRl+1 is full if

the image 0{M) is not contained in a hyperplane of Rl+1, and that two such

immersions <f>u@2 are equivalent if there exists an isometry j≫of Si such that

0z=po0lm

The firstmain problem of minimal immersions would be to determine the

set % of equivalence classes of all fullisometric minimal immersions of M into

Si. This problem was solved by do Carmo and Wallach [2], and Li [13].

We explain the standard construction of minimal immersions of a compact

irreducible Riemannian symmetric space (M, g) into spheres (cf. [2], [5]): Let

Ag be the usual non-negative Laplace operator of (M, g) acting on the space

C°°(M)of all real valued C°°functions on M. We denote by

o=^0<^<;2< ･･･<xk<

the set of all mutually distinct eigenvalues of Ag, and by Vk the eigenspace of

Ag with the eigenvalue lk. Put dim(V*)=m(£)+l. For each k^l, let {/,, ･･･,

fmo,)} be an orthonormai basis of Vk with respect to the inner product (cp,di)=

＼ <p(x)<p(x)dfiwith the canonical measure dp. of (M, g) normalized by I dp=

m(k)+l. Then the mapping xk of M into I2m(*)+1definedby
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xk: M^pv-―>{f≪{p), ･≫,/1,(1)(/>))gB"("+1

gives a minimal isometric immersion of (M, -y-g), d=dim(M), into the unit

sphere Sfa). Then the second main problem would be:

Problem (A). Is the minimal immersion xk rigid ?

Here the rigidity means, if 0 is another full minimal isometric immersion

of M into Sfa), then 0 is equivalent to xk.

Now the results of do Carmo and Wallach, and Li are the following:

Theorem 1 (cf. do Carmo and Wallach [2], Li [13], Ohnita [7])

1) Assume that there exists a full isometric minimal immersion 0 of (M, Cg)

with a positive constant C, into a unit sphere S＼. Then, for some k^l, lf^m(k)

and C=―r-.
a

2) The set 31 of equivalence classesof allfull isometric minimal immersions

of (M, -j-gj into S＼(l^m{k)) can be smoothly parametrized by a convex body L

in a vector space Wz such that the interior points of L correspond to those [0]

for which l=m(k), and the boundary points of L correspond to those [0] for

which Kmik).

Theorem 1 answers the firstproblem and Problem (A) is reduced in some

sense to the following:

Problem (A'). Whether or notis dim(W2) positive?

In fact,do Carmo and Wallach showed:

Theorem 2 (cf. do Carmo and Wallach [2])

Assume that(M, g) is the d-dimensional unit sphere of constant curvature.

Then

dim(WK2)^18 for d^3, and k^i.

Therefore the rigidity does not hold in the situation of Theorem 2. On the

contrary.

Theorem 3 (cf. Calabi [12], do Carmo and Wallach [2])

In case of M=SZ; or Sd(d^3) and k^3, every full isometric minimal im-

mersion 0 of (M, ~i-g) into S[ is equivalent to Xk, that is, the rigidity holds.

Theorem 4 (cf. Wallach [10], Mashimo [5], [6])

In case of M~Pn(C), Pn(H), or P2(Cay), the rigidityholds in some sensefoi
k
=1, i.e.,dim(PF2)=O for the immersion Xi
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In the other cases, the problems (A), (A') have been leftto be open because

of a technical difficultyto estimate the dimension of Wz below. In this paper,

we answer partially the problems (A), (A') as follows:

Theorem B. Assume that M is the complex protective space Pn{C) =

SU(n+l)/S(U{l)xU(n)) with the SU(n+l)-invariant Riemannian metric g. Then

we have

dim(W2)^91 for n^2, and k^A.

That is, in this case, the rigidity does not hold and arbitrary two full minimal

isometric immersions of (Pn(C), ,---#) into Sfa) can be deformed into each other

by a smooth homotopy of minimal immersions of the same type. Here m(k)+l ―

Theorem C. Let P＼H)~Sp(3)/Sp(l)xSp{2) be the quaternion projective

space of real dimension 8 with the Sp(3)-invariant Riemannian metric g. Then

we have
dim (H^ 29,007 for k^A.

That is, in this case, the rigidity does not hold and arbitrary two full minimal

isometric immersions of (P'＼H), ―£-g)into S (k) can be deformed into each other

by a smooth homotopy of minimal immersions of the same type. Here m{k)+l ―

(fe+4)!(fe+3)l

(k + l)＼ ^ ! 5! 3!
(2fe+5).
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§1. The standard minimal immersions.

In this section, we give the notion of the standard minimal immersions

after [2], [5].

Let M―GjK be a d-dimensional irreduciblesymmetric space of compact type,

and let g be a G-invariant Riemannian metric on M=G/K. We denote the set

of allmutually distincteigenvalues of the Laplace-Beltrami operator Ag of (M, g)

acting on the space C°°(M)of all real valued C°°functions on M by
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o=2.o<k,<L< ･･･<xk< ■■■,

and the eigenspace of Ae corresponding to the eigenvalue 2k by Vk. Put

dim(F*)=m(£)+l. We give the L2-inner product (,) on Vk by (f,h)―

I fhdpt, ||/||=(/,f)1'2,where dpt is the canonical measure of (M, g) normalized

by ＼ du=m(k)+l.

Suppose that &2>1. Let {/<,,fu ■■■,fmik)} be an orthonormal basis for Vk

with respect to ( , ) and define a mapping xk of J2m<*>+1 by

The action of G on M induces a natural one on Vk by (<?･/){p)=f{(J"1p), a^G,

p^M. The orthonormality of {/i}^ and the homogeneity of M imply the

image xk{M) is included in the unit sphere Sf (*} of the Euclidean space Rm(k)+1.

Moreover by the G-invariance of the metric g and the assumption of the irredu-

cibilityof the linear isotropy action of K, the mapping xk is an immersion and

the induced metric g=xfg0 coincides with the metric g up to a positiveconstant

C, where g0 is the standard Euclidean metric of JRm<ft>+1.Since xk: (M, g)-*

Sfl(k)is an isometric immersion and the Laplace-Beltrami operator A$ = ―A.g of

(M, g) satisfiesAgfi―--^-fi>i=0, 1, ･-･,m{k), a theorem of Takahashi [9] implies

that xk is a minimal immersion of (M, g) into a sphere of radius VdC/Xk. It

follows that C―~~. The isometric minimal immersion xk: (M, g)->S (k) is

called the &-th standard minimal immersion. Note that another orthonormal basis

of Vk gives also an isometric minimal immersion of (M, g) into SF(k), which is

equivalent in the sense of the introduction to the immersion xk.

Now we choose an element / in Vk as f(eK)$?Q, and put fo=＼ k-fdk and

/o=/o/ll/oll,where dk is the Haar measure on K normalized by ＼ dk ―l. Then

k-fo=fo, k^K, and fo(eK)$=0. That is, the G-module Vk is a c/ass one repre-

sentation of the pair (G, K). We can take an orthonormal basis {fiifJP of Vk

in such a way that (fo(eK),f1(eK), ■■･,fm(k)(eK))=(l, 0, ･･･,0), because there

exists an isometry A of the Euclidean space J2m<*>+1 such that A(xk(eK))-=(l, 0,

(1.1)

0). Then it can be proved that

xk(oK)=(f0(oK), floKY -,fm<≫{oK))=o-fo,

for every <t<eG, under the identification Rm(k)+1E)(a0, ■■-,flm{J))^Sfi) a^f^ V".

Therefore the standard immersion xk can be obtained as the orbit %h(aK)~a-f^

<reG, in the class one representation Vk over R of (G, K).



Minimal Immersions of Projective Spaces 325

The differentialxk, of xk can be expressed in terms of the Lie algebra g

of G as foliow: Let! be the Lie subalgebra of g corresponding to the Lie group

K, and let p be the orthogonal complement of f in g with respect to the Killing

form of g. We identify p with the tangent space TeKM by p^X>-> XeK^TeKM,

and the tangent space Ta.foVk at a-f0 with Vk itself. Then the differential

xk*oK of xk at oK^G/K is given by

(1.1/) x k*oK(Ta*XeK)= -,j x k(o exp(tX)K)t=o=a(X- f0),

where ra* is the differentialof the translation by a : G/K=>a'K*->oo'K^G/K.

Moreover we give an inner product ( , ) on p from the G-invariant metric g=

T' by

g(XeK,YeK) = (X,Y), X,Ye=p.

Then the mapping xk is isometric from (M, g) into Vk if and only if

(1.2) (aX'fo,aX-fo) = (X,X), X^p, and <reG,

by (1.1) and the above identifications. The mapping xk is an immersion of M

into Vk if and only if the mapping p=>X<―>X-fo<^Vk is injective.

§2. Parametrization of minimal immersion.

In this section, we preserve the notations in §1. Let {M―G/K, g) be an

irreducible Riemannian symmetric space of compact type and let xk be the k-th

standard minimal isometric immersion of (M, s) into Sfa). Then we have:

Theorem 2.1 (cf. [2], [7], [13])

1) Assume that there existsa full isometric minimal immersion of (M, Cg)

with a positive constant C, into a unit sphere Su Then, for some k^l, lt^m(k)

and C=―j-, where d-dlm(M).
a

2) The set % of equivalence classesof allfull isometric minimal immersions

of (M, ―j-g) into S[, l^m(k), can be smoothly parametrized by a convex body L

in a vector space W2 such that the interior points of L correspond to those [#]

for which l―m{k), and the boundary points of L correspond to those [#] for

which Km{k).

The sets W2, L in the above theorem can be constructed as follows: Let

Vo, Vi be the K-invariant subspaces of F* defined by

Vo=Rfo, and V,= {X-f0; X&p).
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By the G-invariance of the inner product ( , ) of Vk, the subspaces Vo and Vt

are mutually orthogonal with respect to ( , ). Put V the orthogonal complement

of the sum Vo+ V＼*n the space Vk with respect to ( , ). Then we get the

decomposition of Vk as K-modules:

(2.i) y*=Fo0F1ev/.

Let Px be the projection of Vk into Vx under this decomposition. Let 5 be the

set of all linear (over R) mappings of Vk into itself which are symmetric with

respect to (, ). Define the G-action on S by a-A―oAa~l, <reG, A^S, and the

G-invariant inner product ( , ) on S by (A, B)-trace(AB), A, B^S. Let Sj be

the set of all symmetric linear mappings of Vx into itself. The set Si can be

considered as a subset of 5. For every u, v<E.Vk, define a linear mapping PUiV

by Pu,v(t)=(u, t)v,f£Vl. Then the mapping Qu.v=l/2(Pu.v+Pv,u) belongs to S

and the linear span of Qu,u, u^Vk, coincides with 5. Moreover QUpV^Sx for

u, v&Vx, and the linear span of Qu,u, u&Vu coincides with Si. Note that

(2.2) {B, Qu.u)=(B(u), u), for every BeS and u&V*

by definition.

Now let Wi be the linear span of the G-orbit of Sx in S and W2={A^S;

{A, W^Q) its orthogonal complement. Define the subset L of W2 by

where / is the identity mapping of Vk and C+JSgO means that((C+/)(w), w)^Q

for all weF*.

Theorem 2.1 can be proved by the same manner as Theorems 1.3 and 1.5

in [5] (cf. see Li [13]).

§3. Estimation of the dimension of Wz.

We preserve the notations in §2. Consider the natural isomorphism Q of

the symmetric square SzVk of Vk onto S induced by S2Vksu-v>-j>QUiV^S. The

G-action on Vk is extended naturally to SzVk, and the G-invariant inner product

( , ) on Vk can be extended to the G-invariant one on S2Vk. Since we have

<f-Qu,v=RQu,vR~1::=Qou,ov, and

(Qu.v, Qu'.*)=(u-v, u'-vf), for a^G, u, v, u', v'^Vk,

the mapping Q is G-isomorphic and isometric. Moreover the image Q(S2Vx) of

the symmetric square S2Vx of Vi in (2.1) by Q coincides with Si. Therefore

the space Wx is identified by Q with the linear span of the G-orbits of S2Fi in
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S*Vk and W2 is also identified with its orthogonal complement in SzVk.

Furthermore, in order to estimate dimension of Wz, we consider its com-

plexification W%. We denote by Wc the complexification of a real vector space

W. We extend the inner product ( , ) on S2Vk to the hermitian inner product

on (S2Vk)c=S＼VkC). Then W1 is the linear span of the G-orbit of S2(V?) in

S＼VkC) and W% is its orthogonal complement in S2(VkC). We have:

Lemma 3.1. Let W3 be the sum of G-submodules of S2(VkC) over C, not

containing the K-irreducible components of S2(F?). Then Ws is included in W＼.

Proof. It can be proved by the same manner as Lemma 5.4 In [2]. We

have only to consider unitary representations instead of real orthogonal ones of

compact Lie groups, making use of the Frobenius reciprocity theorem as in [1],

[3]. Proof is omitted.

By Lemma 3.1, we can give an estimation of dim(W2) by the analogous way

as in [2], In order to estimate dim(W3), note that,if the symmetric space M―
c

G/K is of rank one, i.e., a maximal abelian subalgebra of g contained in p is

one dimensional, then every eigenspace of the Laplace-Beltrami operator is an

irreducible class one representation of the pair (G, K) over R and its complexi-

ficationis also irreducible. Therefore we can make use of a finite dimensional

unitary representation theory of a compact Lie group to estimate dim (Wz), which
c

are carried out in the following sections, in case of projective spaces.

§4. Complex projective spaces (I).

4.1. In this section, we use the following notations:

G=SU(n + l), n^2,

K=S(U(l)xU(n))=＼

ri/detcr 0

L
0 a

B=git(n + l)={A:eMB+1(C)

rr-trace(Z) 0

ll o x

; <rt=U{n)＼

lX+X=Q, trace(X)=0),

; lGMn(C); £X+Z=o|

B(X, 3O=2(n + l) trace(XF), X, Fefl) the Killing form of a

■ o

p=- Zi

. zn

0 ,

eMB+1(C); zlt ･･･, z≫eC
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0
eMB+1(C); e^C, ＼et＼=l

Sn+1
I

(- n + 1 -j
t = iH(x1, xs, ■■■,xn+1); xt^R, S Xj=O[

I i=i J

-

(X1

where H{xu x2, ■■■, xn+1)=2xy/― 1 Xs

＼ 0

0

%n + l

Pn(C) with the coset space G/K having the

induced from the inner product (X, Y) =
1

n+T

n +1
ns4=i

Then we can identify

G-invariant Riemannian metric

B(X, Y), X, Feb.

Define an element lt in the dual space t* of i over R by i^H(xu x2,･･■,xn+1)

<-*Xi,l^z^n + 1, and introduce a lexicographic order>on t* in such a way that

i1>^2> ■･■>in>0>^B+i.
Put

I i=i J

Then D(G) (resp. D{K)) is the set of all dominant integral forms of G(resp. K)

with respect to i. Thus there exists a bijection between a complete set 3){G)

(resp. S)(K)) of nonequivalent irreducible modules of G(resp. K) over C and the

set D(G)(resp. D(K)) assigning A (eD(G) (resp. D(K)) to an element V=VA<=

£)(G)(resp.3)(K)) with the highest weight A. Under the above situations,we

have

Theorem 4.1.(the branching theorem) Let V―Va be an irreducibleG-

module over C with highest weight yi= S"=iWi^, mx>,m^ ･■･̂mn2:0. Then V

= Va decomposes as a K-modules,intoirreducibleones:

v A―2-i' k1X1+―+knXn>

where the summation runs over all the integers ku ■･･,kn for which there existsa

non-negative integer k satisfying

and

ns

*=1
lUi ― 2fci+(n + l)fc.



Minimal Immersions of Projective Spaces 329

Proof. See [3].

Note that the irreducible modules Vkx1-kxn+1 with highest weight kXi―kXn+1

―2kX1-＼-kX2.Jr･･･ +kAn, k^Q, exhaust all class one (i.e.,including the trivial repre-

sentation of K) irreducible modules of the pair (G, K) over C. The modules

Vkxl-kxn+1 are represented as follows (see for example [5]):

Let Sk'k(Cn+1) be the space of all complex valued C°°functions / on Cn+t

such that /tfz)=U|2*/(z) for every z<=Cn+1, X<=C. Put H*-*(CB+1)={/e

S*>*(Cn+1); A0/=0}, where Ao=S?J"1132/9^i3fi, the standard Laplacian of Cn+1.

Define an action of U(n+1), also SU(n+l) on Sk'k(Cn+1) by

(a-f)(z)=f(a-1z), z^Cn+1, <ye£/(n + l).

Then Hk-k(Cn+1) is the SU(n+l)-irreducible submodule of Sk-k(Cn+1) with heig-

hest weight kX1―kXn+1. Let C°°(Cn+1,R) be the set of all real valued C°°func-

tions on Cn+1 and put V*=i/*-*(CB+1)nC°°(CB+1, R). Then Vk is a class one

representation over R of the pair (G, K) whose complexification VkC is

Vkxx-kxn+1―Hk'k{Cn+1), and it induces the eigenspace of the Laplace-Beltrami

operator of the G-invariant Riemannian metric on G/K corresponding to the

inner product ―

(4.1)

B with the eigenvaluek(k+n)

vkC= y v v

v ― Zj Zj ' p,q
p=0, l,―, ft g=0, l,―, k

4.2. Now by Theorem 4.1, the class one representation Vkc is decomposed

into irreducible iv-modules as follows:

where VPn, P, q―R, 1, ･･･,k, are the Irreducible /f-modules with highest weight

f (2p-q)Xx+(p+q)X,+pX3+ ･■■+ pXn (n^3)

1 (2/>-o)^+(/)+<7)^ (≪=2).

The A'-module |3C>―

(0 wx---wn

Zi ; Zi, u'i^C(lSi^n) ＼is decomposed intoirredu
; o I
Zn J

cibleA"-modulesas follows:

Then the components of the decomposition F*c=(Vo)c0(F1)c(£(V'/)care given

as /C-modulesby

(yo)c=Vo.oAV1)c=V1.oQVo,u and (F')c= 2 Vp.q,
<.p,q)<BI

where I={(p, a); p, q=0, 1, - , k}＼{(0, 0), (0, 1), (1, 0)}. Then the A'-module
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S*(Vci) is decomposed as follows:

(4.2) 52(n)=F2ai^n+3)0F,2^n+ieF_2,+2,2cFo,o

Therefore we have:

Lemma 4.2. Every G-module over C which containssome of the K-irreducible

components (4.2) of S＼V1) has the highest weight 2?=i7n^j, where mt, l^i^n,

are one of the n-tuplesin the following table:

(i ) In case of n>4,

mx

m-±

ra3

2k 2&-1 26-2 26+3 2£+2 2£+6

k k+l k+2 k + l k+2 k+2

k

mn-i k

mn
k

k

k

k

k

k

k

k + l k + l k+2

k + l k + l k+2

k k k

(ii) in case of n=3,

m1 2k 2k-＼ 2&+3 2&-2 2&+2 26+6

mi k k + 1 k + 1 k+2 k+2 k+2

m3 k k k k k k

(iii) in case of n―2,

m, 2k 2k-3 2k+3 2k+6 2k-6

m2 k k k k k

where, in each case, k varies over the set of non-negative integers satisfying the

inequalities m^m^ ･･･^mn^0.

Proof. For example, we determine the G-modules containing the i^-module

^a-^n+i- The remains are proved by the same manner. The weight X2―2.n+＼

coincides with X1+2X2+X3-^ Mrc(n^3) or ^+2^2(n=2). By Theorem 4.1, the

weight 2?=i Wjij of the G-module should satisfy the following:

(i ) in case of n2g4,

m1^2+^^w2^l+^^ms^ ･･■̂mn-1^lJrk^7nn^k,

5>nHI

2m,=(?i + l)(fc+ l),
i=i

(ii) in case of n=3,
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7)1^2+k^?n^l+k^?n3^k, and m1+m2+?n3=4(Hl),

(iii)in case of n―2,

m,>2+k>mo>k, and m,4-m?=3(& + l),

for a certain non-negative integer k

satisfying the above conditions.

331

Thus we can determine (m1? ･･･, mn)

Q. E. D.

4.3. We need the following lemma in order to decompose the G-module

S2(VkC) into the sum of irreducible G-modules.

Lemma 4.3. For a G-module (V, p) over C with a character 1, the character

Z(2) of the symmetric square SZV is given by

Z<2>(r)=y(Z(r)2+Z(r8)), tgeG.

Proof. See [8] for example. For completeness, we give here its proof.

For a fixed teG, let et^V be the eigenvectors of p(r) with the eigenvalues^,.

i.e., p{T)ei=hei, i―l, ■･･,N― dim(F). Then the basis ef1 e$-v(mi-| ＼-mN

=k) of the k-th.symmetric product SkV of V satisfies

where efi―ei e^mi times), and p{k)(z)is the G action on SkV induced from

the one on V. Then the character Z(ft)(r)of pik)(t)is given by

Consider the following generating function of the characters:

Then we have

/>(*)= S
0

P(z)=S £ (z^i)mi-(z^)m<v
A=omi-i―i-m,Y=&

mi,―, 771^ = °

c^r* - (zxNr*

= n(i-*;ii)-1

=det(I-zp(r))~1

=exp(trace(!-^))
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In fact, the series P(z) has the convergent radius bigger than or equal to

(C|2(r)|)-＼ where the constant C satisfies IZ^r^l ^C|Z(r,)| |Z(r2)| for every

Ti, t2eG. Then the coefficientsPn=P(n)(0)/n! of P coincide with Z{B)(r). For

example, P0=l, P,=Z(r), P2=l/2(Z(r)2+Z(r2)), ･･･. Q. E. D.

§5. Complex projective spaces (II).

In this section, we investigate the irreducibledecomposition of the symmetric

square S＼VkC) due to Lemma 4.3. In order to show dim(Wz)>0, we have only

to show the existence of the irreducible of the irreducible G-submodules of

S＼VkC) which do not appear in the table in Lemma 4.2.

5.1. In this section, we use the following notations:

H(
fil

£2_ 0

0 sn+1

eMn+1(C); s.gC, |et|=l(l^i^n + l)

g=it(n + l)={*eMB+1(C); lX+X=O},

i={H(xl, -, zB+1); xt^Rd^i^n + l)}.

Define an element li in the dual space t* of t over /2by i^>H(xu ･･･,xn+1)>->Xi,

l^f^n + 1, and introduce a lexicographic order>on t* in such a way that

lx>h> - >;Tn>0>l7l+1.

Note that h is the restrictionof L to t(l<2<n+l). Put

V i=l J

Then D(G) coincides with the set of all dominant integral forms of G with

respect to t and there exists a bijection between a complete set 3){G) of non-

equivalent irreducible modules of G over C and D(G), assigning AeD(G) to an

element V―V2^3){G) with the highest weight A. Moreover for each P=Va<^

3){G) with AgD(G), the module V― V＼G, considered as a G-module, belongs to

3){G), its highest weight A is the restrictionof A to i and its character 1A is

the restrictionof the one Xj of V to G. By the character formula of Weyl [11],

(5.1) D(h)l71{h)=＼eV＼ for each h =

p
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where |e^| is the determinant of (n + l)X(n + l) matrix whose {i,j) entries

are s＼i,

(5.2) lj=fj+n + l-j (./=1, - , n + 1),

and D(h) is given as follows:

(5.3) 0tf)=|e?+1-'l= n (s,-e,)

Note that the G-module Vkc=Hk-k(Cn+1) in 4.1 is also

module with highest weight kl1―kln+i-

G=U(n+l) irreducible

5.2. First let us consider the irreducible decomposition of S'＼VkC) as

modules:

G

(5.4) S≪(F*C)=2M/i, - , fn+i)Vfl,...,fn+1,

where fu ･■･,fn+1 vary over the set {(f1} ･･･, /B+1); /ieZ, /a^ ･･･^/B+i},

Vfl,...,fri+1is the G-Irreducible module with highest weight ^=ifdi, and the

number N(flt ■･･fn+i) is the multiplicityof Vfl>...ifn+1in S2(F*C). Then since

^/i.-./n+i ^s aJs0 ^e G-irreducible module Vj with highest weight A=^iS,1miXi,

mi=fi―fn+1(i=l, ■■■,n), we obtain the irreducible decomposition of S＼VkC) as

G-modules:

S2(FJC)-SMK ≫., mn)Vzn=im.h>

where mu ･･･,mn run over the set Umlt ･･･,mn): m^Z, m,l ･･･^mre^0}, and

M(mu ･･･,mn)= 2 N(fi, ･･･,fn+i) is the multiplicity of the G-

module F^ ^ in the one S2(VkC). Then if we find an irreducible module

vfi.~.fn+iof ^ in ^5-4) with W*≫ "･> /≫+i)>0, then S2(V*C) includes at least

one the irreducible module Vz2=imixt of G. Therefore we have only to consider

the decomposition (5.4) of S＼VkC) as G-modules.

Now by Lemma 4.3, the character Z*2>of the G-module S2{VkC) is given by:

(5.5) Dn+1Xki2)= ~{＼eV＼2/Dn+1+＼Sp＼/D'n+1},

where |ep| is the determinant whose (/, /gentries are e＼J,ri=kJrn, rj―n + l―j

U=2,-,n),rn+1=-k,Dn+1= U (et-Sj) and D'n+1= U (£*+£;)･ The

right hand side of (5.5) can be written as

n+l ,v

II Si J n+i(Si,･･･, £re+l)>
1=1

where
Pn+1(su

･･･, £n+i)is the polynomial in (su ･■･,sn+1) given by

(5.6)
Pu

+1= y { Ifi?JIV^≫+l+ I *l≫I^'≫+l} ,
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where p1―n+2k, pj=kJrnJrl―j(j=2, ･･･, n) and pn+1=0. Note that the poly-

nomial |s?j|(resp.＼elpJ＼)can be divided formally be the one Dn+1(resp. D'n+i).

On the other hand, according to the decomposition (5.4), we get

(5.40 Dn+1X"w= S N(fu-,fn+1)＼Bli

where lj=fj+n-＼-l―j,j=l, ■■■, n+1. We arrange the right hand side of (5.4';

as the sum of the terms e"1 ･■･fi^i"1 with at> ･･･>an+1 and the terms &＼l･･■s^"+t!

where there exist two integers l^f<j^n+l such that bt^bj, that is,

(5.4*) Dn+A= 2 N(f1, ■■■,/B+1)efi ･･･sfrV + Qieu ･･■, sB+1),
/.lS-s/re+ 1

where Q(elt ･■･,en+i) is the sum of the latter type.

Now we decompose the polynomial Pn+i(si, ･･■,en+1) in such a way that

(5.60 Pn+x= E A(glt - , qn+1)ep - 4n+V+i?(£!, -■, e≫+1),

where i?(sa, ･･･, en+i) is the sum of the monomials el1■■･sbnn+＼lof Pn+1 where

there exist two integers l^i<jSn-＼-l such that bi^bj. Then comparing with

(5.4") and (5.60, their first term sums coincide each other, in particular, we have

M.Qi, ■■･,Qn+i)=N(flf ■■■,/≫+i),

where fj=qj―(n+l)―k-{-j, j―1, ･■･,n+1. Therefore we have only to decompose

Pn+i(ei, ― , eB+i) as (5.6') and to seek the terms e^ ･･･s*^1, qt> ･･･><?re+i^0

with a non-zero coefficient A{qx, ･･･, qn+i). Then we obtain the G-module

Vxj=imiXi with mj―qj―^≫+i―(n+l)+;, ; = 1, ■･■,n, which is included in S2(F*C).

5.3. The task of the last step in 5.2 is accomplished as follows.

(i) First, decompose Pn+1 as a sum of the constant term Pn+i(eu ･･･, en, 0)

in sn+1 and the higher order term Qn+i = Qn+i(£i, ･･･, eB+i) in sB+i. Then the

constant term Pr}+1(e1, ･･･, sn, 0) is

Pn+i(eu -, eB, 0)=ABPB.

Here An=IIi-ie!fe+1 and Pre is the polynomial in (su ･■･, en) given by

^ = y{|fiJ>r/J5.+ |e^l/Z);},

where l^k+n―l, lj=n―j, j=2, ･･･, n. Then we have

･* n+l~&n* n＼ Qn +l･

(ii) In case of n^3, we furthermore decompose Pn into the sum of the

constant term Pn(eu ･･･, en-i, 0) in sn and the higher order term Qn(eu ･■･, ej

in £,. The former PB(£,,･■･,£,_,,0) is calculated as
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Pn(6l, ― , SB_!,Q)= An-1Pn-1.

Here An_1=n"=i1si and Pre-!is the polynomial in (e^ ･･■,en_i) given by
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where |e^'| is the determinant of (n ―l)X(n ―1) matrix whose entries are e＼j

lfg/fSn―1, l1=k+n―2, lj=n ―＼―j,j=2, ･･･,n―1. Then we have

Pn=An-lPn-l+Qn.

Cm) Go on inductively the above process. Lastly, we have

p-1r*- 2

p-1

2

2
/(e1-e2)+

-2(fe+ 2) -2 1
£1 £l -L

_2(& + 2) C2 1

c2(A + 2) -2 1

g2(* + l> I

g2(* + l) ]_

/

/D'z

A2=£1£2, and

A(ei, £2Je3)―A2P2+Q3(su eg,e8),

where Q3 is the sum of the terms of P3 higher than the constant in e8. Then

we have, in case of n>3,

(5.7)

where

(5.8)

Pn+1=AnAn-1 ･･･A2P2-f 2 AnAn-i
･･･AiQi+Qn+i,

i =3

X A ...A ― e2* + n-l TT -2k+n+l-j

J = 2

(5.9)

where i=3, ･･･,n

AnAre-1-Ai=nsf+re+i-i
ft

3=1 j=i+

In case of n=2, we have

(5.70

where

(5.80

~2k+n+l-j

Note that the first term AreAn-! ･･･A2P2 of (5.7) is a homogeneous polynomial

in (ei, ･･･, sn) whose degree is 2k+n+l―i in the variable £*,z=3, ■･■,n, and the

sum of the degrees in ex and e2 is 6k-＼-2n―l. The terms AnAre_i ･･･AtQi are
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homogeneous polynomials in (s},･･･,en) whose degrees in et are greater than

2k-＼-n+l―i, and the degree of the last term Qn+1 in en+1 is greater than or

equal to 1. Therefore all the monomials of AraAre-!･･■A2P2 are different from

the ones of S1"=3AnAre-1― AiPi+Qn+i-

(iv) Now we calculate the polynomial P2 in Uu s2): for k^A,

A-y{(£r-£r)V(£1-£2) + (£?fe+2-£l*+2)/(£i+£2)}

21

ft 2*+ l
(£*+1-e*+1) 2 s?£*-s- 2 (-l)seUik+1-s

s=o s=o

}

= ejk+1el+etk-hi+£ik-!i£i^(thelower order terms in sx)

Thus welhave, in case of n^3, k^4,

-_ n
A A ..A P cik + n.2k + n-i tt

~2k
+ n+i~j

n

! g4fe + n-2g2* + n + l tt g2k + n + l-j

7=3

n
I c4ft+n-4-2fe+n +3 "TTe2ft+n +l-j-rSi £2 11 S7-

+(the lower order terms in £a).

Therefore the polynomial Pn+1 includes the terms s^1 ･･･sV+i1, where {qu ■■■,gn+1)

are

1) q1=4k + n, qz=2k + n ―l, Qj=2k + n + l―j, j=3, ･･･, n, #n+i=0,

2) <7j=4^ + n―2, ^g=2fe + n + l, ^=2^ + n + l―/, /=3, ･･･, n, qn+i―0,

3) q^Ak + n-4, q2=2k + n+3, qj=2k + n + l-j, j=3, ･･･, n, ^n+1=0.

Therefore, together with 5.2, in case of n^3, the G-module S2(F*C) includes the

G-modules Vz2=lmtit, mj―qj―qn+1―(.n+l)+j,j=^l, ･･･, n, as follows:

1) (m1} m2} ms, ■･･,mn)=(4&, 2/?, 2^, ･･･, 2k), for fe^l,

2) (m,, m2s ms> ･･･, mB)=(4ife-2, 2£+2, 2k, ■■■,2k), for k^2,

3) (mu m2> mz, - , mn)=(4k-4, 2k+4, 2k, ･･･, 26), for k^4.

The 1) and 2) appear in the table in Lemma 4.2, but the last 3) does not so.

Therefore the G-module S＼VkC) includes the G-irreducible module Vj%=imixit

(mu m2) m3, ･･･mn)=(4k― 4, 2^+4, 2k, ■･･,2k), for k^4, which does not include

the /sT-irreducible components of S2(Ff). The dimension of Vsg^m^ is given

by the dimension formula of Weyl [11]:
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D(4k-4+n, 2fc+3+n, 2k + n-2, ･･･,26 + 1, 0)
dim(72n

1mi;i)= Din, n-1, -, 1,0)

(2fe-7)(n + l)(n+2)(4fe+ n--4)(2& + n+3)

24(n-l)

(2 k + n-5＼/2k + n-2＼
2&-3 A 2k )
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^4,725, for n^3 and 6^4.

In case of n―2, the firstterm AtPt of (5.70 is

A2Ps=el*+2ei*+1+el*ei*+8+e{*-2e|*+6+(thelower order terms in e1).

Then S2(VkC) includes the followingirreducibleG-modules Vnix1+m2xz''

1) (mltms)={4k,2k), k^l,

2) (mltmt)=(4k-2,2k+2), k^2,

3) (m,, m2)=(4ife-4,2fe+4), y^^4.

The 1) and 2) belong to the tablein Lemma 4.2, but the last V^k-^^+^k+i)^

does not so. The dimension of F^-^j+^+^a is given by

dim(V(4*-4);,1+w≫+4);.)=£>(4fc-4+2,2fc+4+l, 0)/D(2,1,0)

= -|(2*-7)(4fe-2)(2ife+5)

^91, for 6^4.

Theorem B is proved completely.

Remark, In case of n―2 and k―2, we have the following irreducible

decomposition of the symmetric square S＼V2C) of F2C=//2-2(C3):

S2(V2C)=Vs- 4cF6' 60F6- W6' 0cF5' W5' 1021/4-2cF2' ^F0- °,

where Vx-V means the irreducible G-module with highest weight xh+yAz. In

this case, each irreducible component of S2(V2C) includes certain ^-irreducible

components of S2(Ff), and we have dim(W3)=0. It seems to be dim(Wr2)=0.

§6. Quaternion projective spaces Pn-＼H)=Sp(n)/Sp(l)XSp(n ―l)

6.1. In this section, we use the following terminologies:

G=Sp(n)={xe(J(2n); '*/≫*=./≫}, n^3,

where /.=(_?
0")

and /, is the identity matrix of degree n
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K=Sp(l)xSp(n-l)=-

B=8t>(n)

Hajime Urakawa

a 0 b 0

0 .4 0 B (a b＼ (A B＼

0 C 0 D

{*eu(2n); lXJn+JnX=O}

=

((A

-

B)

＼＼-B
AI

f=Si>(l)XSl>(n-l)

; A, B<=Mn(C), lA + A=O, B = 1b＼

' x 0 y 0

―y U x U

0 -F 0 X

B(X, F)=(2n+2)Trace(ZF), X, Feg, the Killing form of a,

p=

0_ 1

-*Z_ 0

0 -W

-lW 0

the orthocomplement of f in

1 p

'T'

Si

£n

0

0

lz

w

A
z

0

; Z, If£M(l,n-l,C)

g relative to

0

Sn1

B

1

Si^C, |e,|=l(l^l^n)l

X

I -

subalgebra of a and !, where

Xn

Xi

0

0

X n

0

{H(xu ･■･,xn); Xi^R(l<,i^n)}, the Cartan

H{xu -, xn)=2nV-

Then we can identify Pn~l(H) with G/K having the G-invariant Riemannian

metric induced from the inner product (X, Y)= ―B(X, Y), X,Y<=p.

Define an element At in the dual space t* of t over R hy^t^H(xu ･■■,xn)>-*

Xi(l^t^n) and introduce a lexicographic order>on t* by

Let 2T+(G)(resp. S+(K)) be the set of positive roots of the complexification flc

Cresn. ic) of aCreso. i) relative to i. Then we have
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S+(G)=-{Xi±Xj;l^i<j^n}＼J{2Xt; l^i^n],

L i=i J

D(K)=＼A= S 6^i; feiSZ(l^^n), 6^0 and 62^ ･･･^^^o|
I i=i >
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Then Z)(G)(resp, D(K)) is the set of all dominant integral forms of G(resp. K)

with respect to i. Moreover there exists a Injection between Z)(G)(resp. D(K))

and a complete set iD(G)(resp. 3){K)) of non-equivalent irreducible modules of G

(resp. K) over C corresponding AeD(G)(resp. D(K)) to an element V―Va^£0(G)

(resp. 3){K)) with the highest weight A.

Then we have:

Theorem 6.1.(Lepowsky [4]) Let X=J^2=i aiX^DiG), fi='E?=ibiXi^D(K).

Then the multiplicitym(X, ft)of the K-module V^ in the G-module V;_ is given

as follows: Define

Ar=-ax―max(a2j, b2),

Ai―mm(ai, bi)―max(ai+1, bi+1), 2^i^n ―l,

^rt=min(an, bn)^0.

Then m(X, p)=0 unless 61+2?=1^lie2Z and Au A.z,･･･,An-^Q. Under these

conditions.

L ＼ n-2 /

where L runs over all the subsets of {1, 2, ･･･,n)(also the empty set),＼L＼denotes

the number of elements in L, and ( j denotes the binomial coefficient,which is

defined to be zero if x<y.

It turns out by Theorem 6.1 that VkC=Vkx1+kxz, k'^0, are the class one

modules of the pair (G, K) over C.

The complexification pc of p Is the irreducible module of K with highest

weight 2.1+Az. Then the symmetric square S＼pc) of pc, which is S2(Ff) in §3,

is decomposed as a /^-module into as follows:

(6.1) S＼pc)=Viil+2XiRVi2+heV0.

Then by Theorem 6.1, we have:
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Lemma 6.2. ( I ) Let n=3. Then every G~module over C which includes

certain of the K-irreducible components (6.1) of S2(p ) has the highest weight

SI=j a-ih, where the triple{au a2,a3) is one of them in the following table:

0-1

a,

a*

k+2

k

2

k>2

£+3 k+1

k

1

k

1

k^l k^l

k+A k-＼-2 k

k

0

k

0

k

0

k^O k>l k>0

(II) In case of n'^4, if ar^a2^ ･･･̂ an^0 satisfy one of the following con-

ditions:

(i) £3=^3, (ii) a4^2, or (iii)a^l, for some 5t^i^n, then the G-module

Va with the highest weight A ―^ji^aiXi includes no the K-irreducible components

of S＼pc).

Proof. We give only a proof of (II). Case (I) can be proved by the

same manner as case (II).

By (6.1), we have only to consider the /^-modules Va with highest weight

^=2?=:Mi as follows:

(1) (hub2, -,bn)=(2,2,0, -,0),

(2) (bubt, -,&≫)=(0, 1,1,0, -,0),

(3) (bu bt, -,6B)=(0, 0, -,0).

In each case, the numbers Au l^i^n―1, as in Theorem 6.1 are given as follows:

For (1), A-L―fli―max(a2,2), A2-=m＼n{a2, 2)―a3, Ai=―ai+u 3^i^n―l. For (2),

A1=a1―max(a2, 1), ^42=min(a2, 1)―max(fl3,1),^43=min(a3, 1)―a4,At=― ai+u 4^

iSn―l. For (3), A1=a1―aif Ai=―ai+u 2^/^n―1.

If either the conditions (i), (ii) or (iii)hold, then for every case (1)~(3),

one of the
^4/s

l^t^n―1, is negative. Thus Theorem 6.1 implies (II).

Q. E. D.

By the character formula [11], the character 1a of the irreducible module

Va with highest weight yl=2£=i0i^i is given by

(6.2) Dn(e)XA(e)= Isi'-eT1'! for each s



Minimal Immersions of Projective Spaces 341

where Ie*>―e**-Î is the determinant of nx?i-matrix whose (i,j) entries are

(6.3)

(6.4)

lj ―

Dn{

a^+n + l ―j, 1^/^n, and

e)=|e?+1"-'-s7(B+1"J)l

■^IKsi-e-i1) n (ei-ej-e-j'+s-i1)

6.2. In the following, we assume n=3.

By Lemma 4.3, the character X＼t)of the symmetric square S＼VkC) of the

class one module VkC=VkX.+*;., of the pair (G, K) is given by

(6.5)

for s

D&{z)X＼M=^

, where

(6.6) P3(s) =

{

_fc+3 c-(& + 3)

fffc+3 --(ft
+ 3)

-*+3 c-(ft + 3)
£3 £3

Ds(s)Ps(e2)

_fc+2 .-(£ + 2)
Ex ―Si

£2 52

-*+2 ff-(*+2)
e3 e3 *3 63

Assume that

S＼vkC)= 2 N(au a2, at)Vaih+a^2+aaii.
alsa2-a3-°

Then we have the identity:

(6.7) A.(e)Z?≪(6)= 2 N(au a2, a,)＼^-s-j'J＼,

where Ij^aj+i―j, j=l, 2, 3. And then the right hand side of (6.7) can be

decomposed of the form:

- 2 Md, a2, a3)£Tl3£2/2£ill+Q(£i,£2,£3),
a1so2aa3ao

where Q{slt e2,s3) is the sum of the monomials s^s^sl3, satisfying one of the

following conditions:

(6.8) (i)O^x, (ii) qx^q*, or (iii)q^qz.

So let us decompose D31＼2)into the following:

(6.9) AZk, = - 2 A{qu q,, qJ&HlHT+R^, e2, e8),
0>9l>92>93

where R(su s2, e3)is the sum of the monomials e^s^Sg3, satisfying one of the
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conditions (6.8). Then we have

A(qu q2> g3)=N(au aif a3),gi= ―(a3+l), ^2=-(g2+2), g3=―(a1+Z).

Therefore we have only to seek the monomials A(q1, qz> qz)e＼1eqizsyiwith A(qu

q2, g3)^0, 0>g1>qi>g3 of D3(e)Xkis)(e).Then the module S＼VkC) includes the

one 7-(g3+3)^-(9,+2)jia-{g1+i);3with multiplicityA{qu g2,g3).

and

6.3. The task of 6.2 is accomplished as follows:

First, we put

D3(su s2, s3)=elsZJ3(e1, e2, es),

where P3 and D3 are the polynomialsgiven by

Then

P3(£i, £2, £3)=

-fc+3
^-(ft

+ 3)

-*+3 ff-(* + 3)
eg c 2

e2fe+G 1
£3 ―I

£?+2 £T(* + 2)

££ ―So'

-2*+5
£.3 ≪S

Si ―Si

^3

1

1

-ft + 2
*3

#i(Si,
£2,£3)^(£i-£l1)(£2-£21)(£!-l)

X(£X―£2―Eo'+sJ^OiSs―£^―l+£T1£3)(e2£3―£3―l+el^s)

nyk
- -*-s

1 ＼^^(gi, £2,£3)2 , ^3(si, £2, e3)^8(ef, el> e§)|

I 1 D3(ei, £2,£3) AsUi, £2,£3) J

Here JP3(elf e2,£3)2(resp. Da(elf e2, s3)P8(ef, el, e|)) is divided formally by ^8(si,

£2,s3)(resp. Ds($＼,t＼,sf)). Then it follows that

(6.10)

and

(6.11)

≪ , . ―■2j ≪p(.£i>£2J£3

Z58(e,,so, s3)Pa(el el e|)

3V.£l> &2> £3)

= 2 Wei, e2)s%

where both sums are in fact finite sums in p, and both coefficients

aP(si,b2),bp(si,s2) are the sums of the form A(au a^s^s?2, au a2, and A(au az)

being integers. So decompose the constant l/2(ao(si>sz)'Jrb0(si,e2)) in s$,

into the sum of monomials A(au a^efH^2, and seek the monomials

―A(pu pz, ―2k-3)£p11£$*£-3zk-3with the conditions 0>p1>pi>―2k―3. Then

the monomial ―A(pu p2, ―2k―3)£pl1sp22£^2k~:idoes never cancel with every term

of l/2SpSi(aP(£i, ea)+bp(elt s2))el"-s+p. Thus Dsl＼2) should include the

monomial ―A(pu p2, ―2k―3)eP.1Ep22£^2k~3in the decomposition (6.9). Therefore

the module S2(VkC) should include the one F2j;1_(p242);2_{p1+1)^3with multiplicity

A(plt pt, -2^-3).
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We have only to compute l/2(ao(e1,e2)+b0(s1}e2)). By (6.10),and (6.11)5 we

obtain

where

and

≪o(Sl, £2)

Ps(eu s,, O)2

Di(elt So, 0

pfc+3

P&i, e2, 0)-

-(fc + 3)
£*+2

Ds(eu e2, 0)P8(e?, el 0)

_e-(ft+2)
si Si―ej.

_*+3 _-(fc + 3) -fc+2 ,-(* + 2) _ s-

-10 0

-(-l){(£r2-£T(*+2')(£2-£21)-(£i-£T1)(4+2-£lU+2))}

D3(su e2, O)=(-l)(e1-e-1l)(e.2-e~21)(e1-e2-£-21+s-11)

= (-DeT1(e1-el1)(eJI-el1)(e1-e,)(e1-sl1).

Dividing formally P3(£u s2> 0)2(resp. D3(su s2, 0)P3(e21

D3(£l, el, 0)), we have:

Lemma 6.3.

si, 0)) by &a(elf e2, 0)(resp

k+'i k+1 k
( i ) ao(fii, e2)=- S S 2 {ef*+8-≪-"-≪eJ-*+u-eJ+1-≫ ≪e*+*-≪-≪+≪

S=0 J= 0 2J=0

(ii) bo(su £2)= ―

-2*+2-S-2J-u

k

ks

s=o

ef

g-l+S-U I £A+ 1-S-Mgft+S-2J-Ml

S-2S + 2
2S+1

s.-2k + 2S-2＼ V1 I 1＼Mc.2S + l-2M

Lp=o p=o J

- 2 £TI-2S["SS(-1)P£|*42-2S-2P+ 2S(-1)*+1+P+"£22"2S]
s=o Lp=o p=o J

Proof. We have

ao(eu e2)=(-l)e1AB!

where

yl={(e}+≪-eT<*+≫)(e,-el1)-(e1-eT1)(eJ+≪-sl{*+≪)}/C

JB={(e*+2-eT(*+≫)(e2-ei1)-(e1-eTI)(e|+8-el<*+8))}/JD

Here C=(ei―eI1)(£2―e^1) and £)=($!―£2)(£1--£l1).Then

4=
*if(ef+1-"-e!+1-2t)

£=0

and the numerator of B is rearranged as
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(£r2£2-£T1£la+2))+(£T1£|+2-£Ta+2)£2)-(£r2£i1-£iST(i+a))

Thus we have

B={
k + 2

s=o

k + Z

s

£2 Si £2 I 'k(6i+1-sel1--eT2-'e?i-)}/(s1-si)

S=0 I

k

Zj Si V£2 £2 J
M = 0

Hence we have (

where

i) For (ii), it follows that

bo(elf e2)=(-l)e1{(ef*+4-eT2*-'lX6i-622)

-(£f-£72)(£lfe + 4-£o2i-4)}/(£1+£T1)(£2 + £71)(£1+ £2)(£l+ £21)

= (-l)s1E/(e1 + eT1)(e8+So1)(e1 + e2),

£={(ef*+4-eT2*-4)(ei-si2)-(e?-eT2)(eI*+4-sr*-4)}/(e1+el1)

= {(ef*+4ei-sT8S2"-<)+(eT8ei*+4-eT2*-1sl)

-(elk+*s-2i-eU-atk-i)-(elelk+i-s-1*k-is?)}/(e1+6T1)

Then we have

2

iyUlk+i-te22-t-e21-t4k+i-t)

2fe+l
■V1 ( 1U/.2H4-!.-2-( --2-£c2fc+4-t＼

£ = 0

Thus we obtain

Zk + 5
F=e1E/(e1+e2)= 2

£= 0

2* + l
2 (

U = 0

･＼＼t+u[ s2k+S-t-Ue2-l + U -2k+S-l-u--2+t-U＼
i.) {Si £2 £1 So )

We rearrange F as follows:

2£+3 bs
E＼ V1 "V I 1＼S<c2*+5-S-2≪-S c2k+5-S-2t̂ -S＼r― Zj Zj ＼ -U t*i £2 £1 ≪2if

s=-(2fe+ 3)t=as

where ao=2, bo=2k+3, a,=l, b1=2k+2, a.^3, ft_!=2ife+4, as=0, 64=2fe+3-s

s^2) and a-s=2+s, b-s―2k+5(s^2). Then we have

F=-(ef*+2-eiB*-S!XeS!-e71)

Thus

( l)s

£= 0

/'£8*+ R-S-2J g2*-J-*-2tVgS + 2 g-S-2-j
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G=F/(e1+≪71)=-- (221(-i)"e^+1-2")(£2-£21)

2ft+l 26+1-s

S=0 £=0

Here we rearrange G as follows:

G=H+I,

//=the sum of terms of even orderin s2,and

/=the sum of odd orderin e2.

Then

and

Thus

and

≪=0

/=

+

k

k
s

s=o

_2ft + 2-2S
*1 ―Si ){S2 ―£2 )

£2fc + l-2sj ei'+8+(-l)'62-(-l)*el1-e7" 3}

671-8*{ei(*"f)+s+(-l)*"'e2-(-l)*-'el1-eiI(*-')-8}

H/iez+s^

//(£2+£21)= -

(ef*+2-*≫_eT**-*+*≪)£21(-l)

U = 0

k

s=o Lp=o

+ 2 el1"28
S=0

Therefore we obtain (ii).

rk-s
2

Lp=o

M-2S + l-2tt
*2

(_1)P£|S + 2-2p + (_1)S +l
|]

(-l)?£22-2Pl

2>=0 J

p = 0

By Lemma 6.3, we obtain the following tables:

(i ) the monomials of ― aQ{eu s2)――2-*4(fli, <22)£?1£22

1)

2)

3)

4)

―fll

-2k-2+s+2t+u

-k-l+s+u

-2k-2Jrs+2t+u

-k-l+s+u

―a2

―1+s―u

-k-2jrs+2t-u

345

-2-2p]2 j.

Q. E. D.

1 ―S+ M

―k ―s+2t+u

A(a,, a.)

1

^

I

1
i

!

where 0<s<k+2, 0<t<k+l, and Q^u^k.
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(ii) The monomials of ―bo{tu s2)=―2#(&i, h2)sb11s^

-ft. -b. B(bu ft,)

5) -2k+2s-2 -2s-1+2m (-1)"

0^m<2s+1
6) 2k-2s+2 -2s-l+2u (-l)u+a

7) -2k-l+2s &S L>~＼~dtl) (-l)p+1

O^p^s
8) -2k-l+2s 2+2/> (-iy+s

9) l+2s -2k-2+2s+2p (-l)p

O^p^k-s
10) l+2s 2+2/) / J＼k+i+p+s

where O^s^k.

Making use of the above tables, it turns out that l/2(ao(si,e2)+&0(si>£2))

includes the following monomials :

(i) -ei1^'2*^ (^^0),

(ii) -eT'el"*-" (fc^4), and

(iii) -£74£2(2*-3) (&^4).

Therefore S2(VkC) includes the following G-irreducible modules with multiplicity

one:

(i) Vthil+ikis (k^O),

(ii) V2kh+(2k-8U2 (&^4), and

(iii) V2*;1+(g*-6);8+8i8 (fe^4).

The module V2ki1+2kxz appears in the table in Lemma 6.2, but both the latter

ones V2kt1+<i2k-8)Zz,Vik21+tsk-s)it+sia(k^4)do not so. Thus we obtain, if k^4,

dim(W^8)^dim(7g*i1+(g*_8,ji2)+dim(V2*iJ+(2*-5)i2+8is)

^1,287+27,720=29,007.

By Lemma 3.1, we obtain Theorem C.

Remark. In case of P＼H) and k―4, it follows that m(4)+l=l,274. Then

we have

29,007^dim(PF2)^y(m(4)+l)(m(4)+2)=812,175.
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