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ON THE CURVES OF GENUS g WITH AUTOMORPHISMS

OF PRIME ORDER 2a+l

By

Atsushi Seyama

Introduction.

Let k be an algebraically closed field,and let C be a <;omplete non-singular

curve of genus g'^2 defined over k. In [2], M. Homma showst hat if a prime

number q is the order of an automorphism of C, then q^g + 1 or q=2g + l. He

determines all C in the case of q=2g+l as follows:

(i) If q is equal to the characteristicp of k, then C is birationallyequivalent

to the plane curve

y2= x9―x.

(ii) If q is not equal to p, then C is birationallyequivalent to one of the fol-

lowing plane curves

ym-r(y-iy = xq, l^r<m^g+l.

The case (ii)shows, in particular,there may be many isomorphy classes of curves

of genus g which admit an automorphism of prime order 2g + l^p. The aim o;

this paper is to classify these curves.

Fix a prime number q^5 different from p. For a pair of positiveinteger (r,s

such that any one of r,s and r+s is coprime to q, let C(r,s) be a non-singulai

model of the irreducible equation

yr(y-l)s=xi

over k. Then the genus of C(r,s) is (q―l)j2 and C(r,s) has an automorphism o

order q. In §1, we shallgive a basis of the space 01 differentialsof the firstkinc

on C(r,s),in forms suitable to our later use. In §2, we shall give a conditioi

under which C(r,s)fsare isomorphic in terms of r and s. This is our main result

In particular,we see that the cardinalityof the set of isomorphy classes is,(#+5)/i

if q=＼ mod 3, and (#+l)/6 if q=2 mod 3. In §3, we determine the order of tin

group of automorphisms of C(r,s) in the case of characteristiczero.
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Notation.

Throughout this paper, we fix an algebraically closed field k, and a prime

number q^5 different from the characteristicof k. All curves are considered to

be defined over k. We write |S | for the cardinality of a finite set S. The sub-

group of a group // generated by a family ＼hu･･-,hm} of elements of H is denoted

by {hi, ･･ -,hmy. As usual, Z, Q and C mean the ring of rationalintegers, the field

of rational numbers, and the fieldof complex numbers respectively.

§1. Bases of the space of differentials.

Let r0 and r, be positive integers such that any one of ro,r, and ro+ r. Is

coprime to q. We consider a complete nonsingular curve C over k which is bira-

tionallyequivalent to the plane curve

The curve C has an automorphism 6 of order q defined by

0*(y)= y, 0*(a:)= C.i?,

where C is a primitive g-th root of unity in k. Consider the ramified covering

J7:C―>P1=C/<0>,

correceponding to the inclusion k{x,yfot>―k{y)ck{x,y). The degree of -qis q, and

7]is ramified at excatly three points P0,Pi and Px lying above 0,1 and oogF' =

k U {co} respectively with the ramification index q. Consequently the divisors of

rational functions y,y ―l and x, and that of differentialdy are as follows:

div(y) = qP0 - qP^ div(y -1) = qP, - qP^,

div(a?)= r0iJo+nPi-(≫ro+ri)/>co,

div(dy) = (q-l)P0 + (q-l)P1-(q+l)Pm.

In particular,the genus g of C is given by (q―l)/2.

For any integer e coprime to q, we denote by e* the element of {1,･･･,q―1}

such that

e = e* modg.

Then we define a subset E of (1,･･>,a―l) by

£={* {!, ･･-, tf-1}
O^(a + b)q + q―(ro + ri)e ―l, w

ne - (roe)* + aq,rle = (r if)* + bq

For each eeE with roe= (roe)*+aq and rie= (rie)*+ bq, we put

u>e,= -^ dy .
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This differentialis of the firstkind. In fact, we easily see

div(<≫e)= (roe~~aq-l)P0+(rle--bq-l)Pl+((a+b)q+q~(ro+r1)e-l)P^O.

Lemma 1.1. We have

(0) E=iee{l,~-,q-l}
(r0e)* + (r1e)* + (reoe)*=q,＼

where r^^― (ro+ri). >

69

(1) ＼E＼= g.

Proof. Since (roe)*+(fie)*=(ro+fi)e--(a+b)q^l, we have ezE if and only if

l^(ne)* + (r,e)*^q~~l. That is,

(ro0)*+(rie)*= ((n+r,≫*.

Look at the equality ( ―c)*=g―c* for any integer c coprime to q, and we see that

ocT? if 5inrlnnlu if

(r0e)*+(r1e)*+ (rooe)*=q.

On the other hand, the function

e i―> (ro<?)*+ (>'i0)*+(rooe)*

takes exactly two values q and 2q on {1,･･･,q―l},e$E is equivalent to

(roe)*+ (rie)*+ (r<Ji)*=2q.

That is,

The last equality is equivalent to q―esE, and we have IE＼= g.

Proposition 1.2. We have the following.

(1) {coe}eqBis a basis of the space of differentialsof the first kind on C.

(2) For 2=0,l,oo, let G% be the set of gap values at Pi. Then the map E―> d

defined by e＼―>(ne)* is biiectivefor anv i=0.1. oo.

Proof. Since |E ＼= g, and

div (<*>,)= Z ((rte)*-l)Pit
i=0.1,oo

it sufficesto show that the map E ― d is injective for each i. But thisis obvious

because r,-is coorime to a.

Remark 1.3. Let C be a primitive q-th root of unity in the complex number

fieldC, and let <ptbe an element of Gal (QiQIQ) defined by ci>e(C)=Ce,for esE. Then
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the proof of Lemma 1.1. shows that (Q(Q, {peW) is a CM. type. This CM. type

arises as follows. Assume k=C, and let / be the Jacobian variety of C. The

automorphism 0 of C induces an automorphism d of order q of J, and we have an

isomorphism i of Q(C) into End(/)(g)Q defined by i(Q = d. Then (/, f) is of type

(Q(C),tee}**).

§2. Main results.

First of all,we restrict the equations of curves which we have to classify.

Proposition 2.1. Let r0 and r, be positive integers such that any one of r^Y＼

and fo+ fi is coprime to q.

Then the irreducible equation yr°(y―l)ri―xqis birationally equivalent to yr{y―l) ―

xq, for some r=l, ･■･,a―2.

Proof. Let s be a positiveinteger such that ris= l+qb, and put

ros= r+ga, r=l, ■･･,q―1.

Since n + fi and s are coprime to q, we have r^q―l.

We shall show that the function fieldk{x,y) defined by the equation

is isomorphic to the function fieldk(u,v) defined by the equation

But it is easy to see that

(p(u)=xslya(y―l)b,<p(v)=y,

gives an isomorphism, <p:k(u,v) ―> k(x,y).

For each r=l, ■■-,q―2,we fix a non-singular model of yr(y―l)=xq, which is

denoted by Cr. The curve Cr is a special one of C in §1, so we use the following

notation; the automorphism of order q of Cr is denoted by dr, three fixed points of

dr are denoted by Pr,a,Pr,i and Pr,oo,the set of gap values at Pr,i is denoted by

Gr,i(2=0,1,oo),and the set

{ee{l,■■-,q―1}|O^aq+q―(r+l)e―1, where re = (re)*+ aq}

is denoted by Er.

Proposition 2.2. Let C and C be curves of genus g = (#―l)/2 which admit

automorphisms of order q,0 and 6' respectively. Then the following conditions are

equivalent.
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(1) C and C are isomorphic.

(2) (C, (0)) and (Cy, <0'>) are isomorphic, that is, there is an isomorphism

ip:C ―>C

such that (0/} = <p(0)<p-＼

Proof. Since <#'> Is a g-Sylow subgroup of the automorphism group of C by

Corollary A.4. in [4], the statement is trivial.

The following lemma gives two sorts of isomorphisms among (Cr, <#r≫'s.

Lemma 2.3. For r and se{l, ･ ･ -,q―2}, we have the following.

(1) // rs = l mod q, then there is an isomorphism

Or :(Cr, <0r≫ (C,, ≪?.≫

such that

(2) 7/ ―(r+l)s=r mod^, ^Ae?≪there is an isomorphism

Tr:(Cr,<er≫―(C,,<0,≫

SMC/? ^fl/

rr(Pr,0)= P,,o,rr(i'r,i)= P,.co,rr(Pr,≪)= P,,,.

Proof. Let ^(j7,?/)(resp. fe(≪,y)) be the function field of Cr (resp. Cs) with the

equation yr(y―l)=xq (resp. ys(y―l) = w9).

For (1), we put

rl if r is even
rs = l + qb,d=i .

(Q if r is odd.

Then

o*{u)=(-l)b+dsxsly＼o*{v)=-y + l

gives a desired isomorphism ar.

For (2),let fe{l,･･･,^-2} be such that

(g-(r+l))l = l + qb.

Then q-(t+l)=s, and

T*(u)=xtlyt-b-l(y-l),T*(v)=yKy-l)

gives a desired isomorphism rr.
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Definition 2.4. We define a subgroup S of the group of permutations of the-

set (ZlqZ)*-{-l) by

S=<ff,T>,o(r)= Vr,T(r)=-rl(r+l),

where (ZjqZ)* is the group of invertibleelements of the field ZjqZ.

The group S is isomorphic to the group of permutations of three letters. In

fact.S is consisting of the following six elements:

1: r i―> r,

Tin―■> -rj(r+l),

a : r i > ＼jr

ara". r i > ―(r + 1)

aT:r ,___,._ (r+i)/fi (aTy:T ,―> - l/(r+1).

Then the map 7rdefinedbelow gives an isomorphism of S onto the group of per-

rmitatinnQnf (0 1 ool

1

at i >

f

f

＼o
<7T(7 I >

(<xr)2H―>

c

(°

＼oo

(°

＼co

)

Iii what follows, regarding {1, ･･･,#―2} as a complete set of representatives,

we use the notation Cr etc. for rz(ZlqZ)*―{ ―l). By Lemma 2.3.,we have,

Corollary 2.5. For any TG(ZlqZ)* ―{ ―l} and for any cp S, there is an iso-

morphism

<Pr:(Cr,<dr≫ >(CrW, <^Cr)≫

such that

<Pr(Pr,i)= JP<pm,x(,<pHi),i~R>1≫°°-

The following proposition concerning the action of Son (Z/qZ)*―{ ―l} is easy

en x＼re±nmif t-ViA-nrnnf

(0)

(1)

Proposition 2.6.

For any re(ZlqZ)* ―{ ―1}, the order of the stabilizer Sr is 1,2 or 3.

We have

{rc(ZlaZ)*-＼-l}＼ ＼Sr＼=2)= n.a.2a-l),
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(2) For any r£(ZlqZ)*-{-l}, | Sr|=3 if and only if r2+ r+l = 0. // there is such

an r, then

{rz(ZlqZr-{-l} || Sr|=3} = {r,r2},

and this set is the S-orbitof r.

(3) We have.

|S＼(*/≪Z).-(-iH=f+^
iffq

U<7+l)/6, if q

= 1 mod 3.

=2 mod 3.

We see, in Corollary 2.5., that Cr and Cs are isomorphic if r and s are S-

equivalent. The converse is also true, this is our main result. To prove it, we

need a lemma.

For any r―1, ･ ･･, q ―2, we call Er primitive if Er as a subset of (Z/qZ)* satisfies,

vue(ZlqZ)*, uEr = Er => ≪= 1.

For example, if Er satisfies J^e^K^^Omodq, then Er is primitive.

Lemma 2.7. For any r―1, ■･･,q―2, we have

~12r(r+l) 2 e=r2 + r+l modq.

e Er

Proof. By the definition of Er, we see easily,

Er =
OieeZ＼(qa +

l)lr^e^(q(a + l)-l)Kr+l)},
rt=n

where the right hand side is disjoint. Furthermore, for a = 0, ･･■,r―1

{eeZ＼(qa+l)lr^e^(q(a + l)-l)l(r+l)}

= {eeZ＼[qalr-] + l^e^[q(a + l)l(r+l)]},

since q(a + 1)^0 modr+1, where [ ] is the Gauss symbol.

Note that the inequality [qalr]^[q(a + l)l(r + l)], and we have,

(i) £ e = V2Z{[q(a + l)/(r+1)]-foar/r]}･ {^(≪+ l)/(r +1)] + foa/r]+1}
e£E* a--o

= 1/22 {[qal(r+l)f + [qal(r+l)]＼ -1/2 2]{[^/r]2 + [qalr]}
a=i a=i

On the other hand, for any s = l, ･･･,^―1, we see

{#-[g6/s]s | 6 = 1, ■･ -,s-1} = {1, ･■･,s-1}

and then.
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(ii) s Z [qbls] = - s(s-1)/2, mod q.
6=1

s2 E [^/s]2=(s- l)s(2s -1)/6, mod q.
6=1

Our lemma is easily deduced from (i) and (ii).

Theorem 2.8. For any r and sG(ZjqZ)* ―{ ―l}, Cr and Cs are isomorphic if

and only if r and s are S-eauivalent.

Proof. Assume Cr and Cs isomorphic. By Proposition 2.2., there is an iso-

morphism

<p:(Cr,<8r≫―≫(CS,<#S≫.

In particular, there is a permutation % of {0,1, co} such that <p(Pr,i)~Ps,T(i-)(i=0,1,oo),

and then

Gr,i = G,.,≪>,*'= 0,1,00.

Assume Er is not primitive. Then neither is Es. By Lemma 2.7., these imply

r2+r+l=s2+s+l=0, and r and 5 are S-equivalent by Proposition 2.6. (2).

Assume £V is primitive. There are six possibilities of iz. For example, if

7T =

c

then, as subsets of (Z/gZ)*, Er and Es satisfythe equalitiesrEr―Es, Er――(s+l)Es

and ―(r+l)Er=sEs by Proposition 1.2.(2),and

srEr=sE,= -(r+l)Er.

Since Er is primitive, we have

s=-(r+l)/r=(W)(y).

The other five cases are similarly treated,and the proof is completed.

(1)

(2)

As a corollary,we characterize hyperellipticand trigonal curves in {Cr}

Corollary 2.9.

The curve Cr is hyperellipticif and only if r=l,g or 2g + l.

The curve Cr is trigonal if and only if r is S-equivalent to 2.

Proof. Both (1) and (2) are clear from Proposition 3.3. in [2] and the above
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Remark 2.10. Assume k = C and let /r be the Jacobian variety of CV. Taking

account of the theory of complex multiplication of abelian varieties[5],Lemma

2.7.shows that Jr is simple if |Sr |＼=3,and that Jr is isogenous to the three fold

product of an abelian variety X of dimension (#―1)/6 if | Sr|=3. Furthermore, by

the results of [3], we see that Jr and Js are isogenous if and only if r and s are

S-equivalent, and that X as above is simple.

§3. Orders of automorphisms groups.

As before, let C be a curve of genus g= {q―Y)j2 with an automorphism 0 of

order q. Each element of Aut (C, <#≫ induces a permutation of the set of fixed

points of 0, Fix (6*),and we have a group homomorphism of Aut (C, <0≫ into the

group of permutations of Fix (6).

Lemma 3.1. The kernel of above homomorphism is <#>.

Proof. If <^ Aut(C, <#≫ is identity on Fix(#), then the induced automorphism

(p of Cj(oy is identity on n(Fix (0)),where % is the projection C ―> C/<(9>. Since

the genus of 1(6} is 0 and |Fix {0)＼- 3,q>is identity on CKO}. But the natural

homomorphism

Aut (C, <<?≫― Aut (C/<0≫

has the kernel (()}, we have w£(0).

Proposition 3.2. For any r―1, ･･･,#―2, we have

|Aut(Cr,<0r≫|=0|Sr|.

Proof. Assume |SV| = 1. Then the cardinality of the set Gr = {Gr,o,Gr,1,Gr)OO}

is 3. Hence any element of Aut (Cr, <#r>)is identity on Fix (&r)= {Pr,o,Pr,u Pr,Jj.

Suppose | Sr|=2. Then |Gr|=2, so that there is no element of Aut {Cr,(Or})

of order 3.

If |Sr|=3, then it sufficesto show that there is no element of Aut (Cr,</A-≫of

order 2. Let i be an automorphism of Aut (Cr,<0,-≫of order 2. Then the genus

g' of Crj(i) satisfies

(*) l^g'<g,

because Cr is not hyperelliptic. Since i induces a permutation of order 2 on the

set Fix {Or) of cardinality 3, i and dr have a common fixed point. Let H be the

stabilizerof this point in Aut (Cr), and let p be the characteristicexponent of the

ground fieldk. Since ^-Sylow subgroups of H are normal and the quotient group
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of // by the p-Sylow subgroup is cyclic,we see that the order of i0ri~"0;xis a power

of p.

On the other hand, i normalizes (0r), so that iBri'xOrl£{Ory.Hence we have

idr=0ri

because of (p,q) = l. Consequently, 0r induces an. automorphism of order q on

CrKi) with a fixed point. This contradicts(*).

Now, we consider the fullautomorphism group Aut (C) in the case of charac-

teristiczero. When the genus is 2 or 3, Aut (C) is well known. If the genus is

2, then all curves in question are isomorphic and the order of Aut (C) is 10. If the

genus is 3, there are two isomorphy classes,hyperellipticone and non-hyperelliptic

one. In the firstcase, the order is 14. In the second case, the order is 168, and

the curves are isomorphic to well known Klein curve. In general, we have the

following.

Theorem 3.3. Assume the characteristicof the ground fieldis zero. Then for

any r=l, ■･･,q―2, we have

Aut(Cr)|=0|£>V

except that Cr is isomorphic to Klein curve.

Remark. By the result of §2, Cr is isomorphic to Klein curve if and only if

a―3 and r―2 or 4.

Proof. Let C be a curve of genus g = (q―l)/2with an automorphism 0 of

order q. It sufficesto show that <#> is normal in Aut(C) provided g^5.

Put G = Aut(C). Assume <#> is not normal in G. Then the cardinalityof the

set of g-Sylow subgroups is at leastq+1, and we have

(*) (2flr+ l)(2flr+2)= ^+l)^|G|.

On the other hand, let{Qu---,Qv} be a maximal set of inequivalent fixed

points of G―{lc<}and let m% be the order of the stabilizerof Qi in G. We may

assume Wi^--'^mB. Since the genus of CjG is zero,Hurwitz formula gives

2g-2 = ＼G＼(n-2-tVm)

Using above formula, we see easily

(1)

except the following two cases;

IG |^24fo-l)
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(3)
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n ―3 and mi―2, m3 ―5.

n ―3 and ms^7.

(For example, see [1].)

The inequality (I) contradicts (*) because of g^5.

since one of Wi,m2 and m3 is divisibleby q^ll. For

following inequality in the case (3),

77

The case (2) does not occur,

the same reason, we have

G|^(2g-2)/(l-l/2-l/3-l/ll)<27((/-l).

This contradicts (*) again.
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