ON COMPLEX TORI WITH MANY ENDOMORPHISMS

By

Atsushi SHIMIZU

The endomorphism ring of a complex torus T of dimension n is a free module of rank $\leq 2n^2$ as a Z-module. When T is an abelian variety it is wellknown that if the rank is equal to $2n^2$, T is isogenous to the direct sum of ncopies of an elliptic curve with complex multiplication. We will prove a similar result in a more general form, that is, let T and T' be two complex tori of dimension n and n' respectively, and if the Z-module of all homomorphisms of T into T' is of rank 2nn', then T and T' are isogenous to the direct sums of n and n' copies of an elliptic curve (Theorem 1-3). Next let T be a complex torus of dimension 2 and put $\operatorname{End}^Q(T) = \operatorname{End}(T) \otimes_Z Q$. Then using the types of $\operatorname{End}^Q(T)$ we will classify all T's with a non-trivial endomorphism ring. The result is given in the last part of §4. A complex torus T of dimension 2 which is not simple is an abelian variety, if and only if T is isogenous to the direct sum of two elliptic curves. On the other hand a simple torus T of dimension 2 such that $\operatorname{End}(T)$ is not isomorphic to Z is an abelian variety if and only if $\operatorname{End}^Q(T)$ contains some real quadratic field over Q. This is proved in §5.

NOTATIONS. We denote by Z, Q, R and C, respectively, the ring of rational integers, the field of rational numbers, real numbers and complex numbers. For a ring R, $M(n \times m, R)$ denotes the R-module composed of all matrices with n rows and m columns with coefficients in R. When n=m, it is the R-algebra of all square matrices of size n. We simply denote it by M(n, R). The group of all invertible elements of M(n, R) is denoted by GL(n, R).

Let T and T' be two complex tori. We denote by $\operatorname{Hom}(T, T')$ the set of all homomorphisms of T into T' and put $\operatorname{End}(T)=\operatorname{Hom}(T, T)$. We put $\operatorname{Hom}^{q}(T, T')=\operatorname{Hom}(T, T')\otimes Q$ and $\operatorname{End}^{q}(T)=\operatorname{End}(T)\otimes Q$. $\operatorname{End}^{q}(T)$ is naturally considered as an algebra over Q. T and T' are called isogenous and denoted by $T \sim T'$ if they are of the same dimension and there exists a homomorphism λ of the one onto the other; such a λ is called an isogeny. " \sim " is an equivalence relation. If T_1 and T'_1 are complex tori which are isogenous T and T'respectively, then $\operatorname{Hom}^{q}(T_1, T'_1)$ is isomorphic to $\operatorname{Hom}^{q}(T, T')$ and $\operatorname{End}^{q}(T_1)$

Received November 17, 1983.

isomorphic to $End^{Q}(T)$ as a Q-algebra.

Let G be a lattice subgroup of C^n and (g_1, \dots, g_{2n}) its base. Then the matrix $G=(g_1, \dots, g_{2n}) \in M(n \times 2n, C)$ is called the period matrix of the complex torus C^n/G . We shall often denoted by C^n/G the complex torus C^n/G .

§1. Complex tori with endomorphism rings of the maximal rank.

Let T and T' be two complex tori of dimension n and n' respectively.

THEOREM 1-1. Hom(T, T') is a free abelian group whose rank is at most 2nn'.

PROOF. We put T = E/G and T' = E'/G', where E, E' are complex linear spaces and G, G' are respectively their lattice subgroups. Take a C-base (g_1, \dots, g_n) of E which is also a part of a Z-base of G and let H_1 the subgroup of G generated by g_1, \dots, g_n . If λ is an element of Hom(T, T'), λ naturally induces a linear map L_{λ} of E to E'. Then making correspond to λ the homomorphism of H_1 into G' which maps (g_1, \dots, g_n) to $(L_{\lambda}(g_1), \dots, L_{\lambda}(g_n))$, we get an injective homomorphism of Hom(T, T') into $\text{Hom}(H_1, G')$. Since $\text{Hom}(H_1, G')$ is a free abelian group of rank 2nn', Hom(T, T') which is isomorphic to a subgroup of $\text{Hom}(H_1, G')$ is a free abelian group whose rank is at most 2nn'. (q. e. d.)

Let T and T' be the direct sums of r and r' complex tori T_1, \dots, T_r and T'_1, \dots, T'_r , respectively. Then, $\operatorname{Hom}(T, T')$ is isomorphic to the direct sum of all $\operatorname{Hom}(T_i, T'_{i'})$'s $(i=1, 2, \dots, r \text{ and } i'=1, 2, \dots, r')$. If T=T', they are isomorphic as rings, where for two elements $(\lambda_{ii'}), (\mu_{ii'})$ of $\bigoplus_{i,i'} \operatorname{Hom}(T_i, T_{i'}) (\lambda_{ii'})$ and $\mu_{ii'}$ are elements of $\operatorname{Hom}(T_i, T_{i'})$. We define the product of them by $(\sum_{j=1}^r \lambda_{ji'} \circ \mu_{ij}) \in \bigoplus_{i,i'} \operatorname{Hom}(T_i, T_{i'})$. Especially when $T_1 = T_2 = \cdots = T_r$, $\operatorname{End}(T)$ is isomorphic to $M(r, \operatorname{End}(T_1))$.

Let C be an elliptic curve with complex multiplication, that is, complex torus of dimension 1 with an endomorphism ring of rank 2, and let T and T' be complex tori which are isogenous to the direct sums of n and n' copies of C respectively. Then the rank of Hom(T, T') is clearly 2nn'. We shall prove the converse is true.

THEOREM 1-2. Let T and T' be complex tori of dimension n and n' respectively. If the rank of Hom(T, T') is 2nn', T and T' are respectively isogenous to the direct sums of n and n' copices of an elliptic curve C with complex multiplication.

PROOF. Notation being as in the proof of Theorem 1-1; choose a proper C-base of E and a proper Z-base of G, and we may assume that the period matrix of T is $(1_n, T)$ where 1_n is the unit matrix of size n and T is an element of M(n, C) such that the imaginary part of T is a regular matrix. Similarly we may assume that the period matrix of T' is $(1_{n'}, T')$ for some matrix T' of size n' which satisfies the same condition.

Now considering Hom(T, T') to be a subgroup of Hom(H_1 , G'), since they are of the same rank, there exists an integer λ such that $\lambda(\text{Hom}(H_1, G')) \subset$ Hom(T, T'). In other words, for any $S \in M(2n' \times n, \mathbb{Z})$ there exist $\omega \in M(n' \times n, \mathbb{C})$ and $\Omega \in M(2n' \times 2n, \mathbb{Z})$ such that

$$\omega 1_n = (1_n, T')\lambda S$$
 and $\omega (1_n, T) = (1_n, T')\Omega$.

For any $\alpha \in M(n' \times n, \mathbb{Z})$, putting $S = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$, there exists $\Omega = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ (A, B, C, $D \in M(n' \times n, \mathbb{Z})$) such that

$$\lambda \alpha(1_n, T) = (1_{n'}, T') \Omega = (A + T'C, B + T'D),$$

and especially $\lambda \alpha T = B + T'D$. If we denote by Im T and Re T the imaginary part of T and the real part of T respectively, we have i) $\lambda \alpha (\text{Im } T) = (\text{Im } T')D$ and ii) $\lambda \alpha (\text{Re } T) = B + (\text{Re } T')D$. Therefore for any element α of $M(n' \times n, Z)$ we have

- i') (Im T')⁻¹($\lambda \alpha$)(Im T) $\in M(n' \times n, \mathbb{Z})$
- ii') $(\lambda \alpha)(\operatorname{Re} T) (\operatorname{Re} T')(\operatorname{Im} T')^{-1}(\lambda \alpha)(\operatorname{Im} T) \in M(n' \times n, \mathbb{Z}).$

Put $(\operatorname{Im} T')^{-1} = (\beta_{pr}), \ \alpha = (\alpha_{rs}), \ \operatorname{Im} T = (a_{sr}), \ \text{and} \ i') \text{ implies}$

$$\lambda \sum_{r=1}^{n'} \sum_{s=1}^{n} \beta_{pr} \alpha_{rs} a_{sq} \in \mathbb{Z}$$

for any p, q ($p=1, \dots, n', q=1, \dots, n$). If we put α to be the matrix whose (r, s)-component is 1 and the others are all 0, we have $\lambda\beta_{pr}a_{sq} \in Z$ for any p, q, r, s. Especially putting p=r=1, we have $\lambda\beta_{11}a_{sq} \in Z$ for any s, q. Therefore there exist a real number a_1 which is independent of s, q and integers a_{sq}^* (s, $q=1, 2, \dots, n$) such that $a_{sq}=a_1a_{sq}^*$. Put $T_1=(a_{sq}^*)\in M(n, \mathbb{Z})$, and we have $\operatorname{Im} T=a_1T_1$, where $a_1\neq 0$ and det $T_1\neq 0$. Similarly there exist $b'\in \mathbb{R}$ and $T_0'\in M(n', \mathbb{Z})$ such that $(\operatorname{Im} T')^{-1}=b'T_0'$. Putting $a_1'=b'^{-1}(\det T_0')^{-1}$ and $T_1'=(\det T_0')T_0'^{-1}$, we have $\operatorname{Im} T'=a_1'T_1'$ where a_1' is a real number T_1' is an element of $M(n', \mathbb{Z})$. Now we have $T=\operatorname{Re} T+\sqrt{-1}a_1T_1$. Considering the isogeny whose rational representation is $\binom{1_n}{0} T_1^{-1}$, we can see that T is isogenous to $C^n/(1_n, (\operatorname{Re} T)T_1^{-1}+\sqrt{-1}a_11_n)$. So we may assume that $\operatorname{Im} T=a_11_n$. And similarly we may assume

Atsushi SHIMIZU

that Im $T'=a'_{1}1_{n'}$. Put $\mu=a_{1}a'_{1}-\lambda$, and we have by ii')

$$(\lambda \alpha)(\operatorname{Re} T) - \mu(\operatorname{Re} T')\alpha \in M(n' \times n, \mathbb{Z})$$

for any α . If we put **Re** $T = (c_{sq})$, **Re** $T' = (d_{pr})$ and $\alpha = (\alpha_{rs})$, we have

$$\lambda \sum_{s=1}^{n} \alpha_{ps} c_{sq} - \mu \sum_{r=1}^{n'} d_{pr} \alpha_{rq} \in \mathbb{Z}$$

for $p=1, \dots, n, s=1, \dots, n'$. Again putting α to be the matrix whose (r, q)component is 1 and the others are all 0, we have A) $\lambda c_{sq} \in Z$, if $s \neq q$, B) $\mu d_{pr} \in Z$,
if $p \neq r$, and C) $\lambda c_{ss} - \mu d_{rr} \in Z$, for any p, q, r, s. Therefore we have $\lambda (c_{sq}) - \mu d_{11} 1_n$ $\in M(n, Z)$ and $\mu (d_{pr}) - \lambda c_{11} 1_{n'} \in M(n', Z)$. Put $T_2 = \lambda (c_{sq}) - \mu d_{11} 1_n$ and $c = \mu d_{11}$, and
we have $\operatorname{Re} T = \lambda^{-1} (c 1_2 + T_2)$. So putting $z = \lambda^{-1} c + \sqrt{-1} a_1$, we have $T = z 1_n + \lambda^{-1} T_2$.
Consider the isogeny whose rational representation is $\begin{pmatrix} 1_n & -\lambda^{-1} T_2 \\ 0 & 1_n \end{pmatrix}$, and we can
see that T is isogenous to $C^n/(1_n, z 1_n)$ which is clearly isogenous to the direct
sum of n copies of C = C/(1, z). Similarly T' is isogenous to the direct sum of n' copies of some complex torus C' of dimension 1. Since $\operatorname{Hom}(T, T')$ is isomorphic to the direct sum of nn' copies of $\operatorname{Hom}(C, C')$, the rank of $\operatorname{Hom}(C, C')$ is 2, hence C is an elliptic curve with complex multiplication which is isomorphic
to C'. (q. e. d.)

§2. Period matrices of complex tori with many endomorphisms.

Let T be a complex torus whose $\operatorname{End}^{q}(T)$ contains a division sub-algebra Dwhich contains Q properly. Let Z be the center of D and K one of the maximal commutative subfields of D and denote the dimensions of the vector spaces D, K and Z over Q by d, e and f respectively. Then we have $d/f = (e/f)^2$, in other words $df = e^2$. On the other hand, considering a rational representation of D, the linear space Q^{2n} can be regarded as a D-module. Since D is a division algebra, a D-module is always free, hence denoting by r the rank of the module over D, we have rd = 2n. Now the following theorem has been proved.

THEOREM 2-1. Let D be a division algebra contained in $\text{End}^{\mathbf{q}}(T)$. If we donote by d, e and f, respectively, the dimensions over \mathbf{Q} of D, one of the maximal subfield of D and the center of D, we have

- i) $df = e^2$
- ii) f | e | d | 2n (where a | b means a divides b.)

COROLLARY 2-2. Let n be a positive odd integer which is square-free, and T a complex torus of dimension n. Then any division algebra which is contained in

 $End^{\boldsymbol{q}}(\boldsymbol{T})$ is commutative.

PROOF. Notations being as in Theorem 2-1, $(e/f)^2 = d/f$ divides 2*n*. Hence e/f=1, that is, *D* is commutative. (q. e. d.)

Next we shall inquire into the period matrix of T.

THEOREM 2-3. Let T = E/G be a complex torus of dimension n such that End^Q(T) contains a division algebra D which contains Q properly. Take any element ϕ of D which is not contained in Q. Choosing an adequate C-base of C-vector space E, the analytic representation of ϕ is a diagonal matrix

$$\begin{pmatrix} \alpha_1 & 0 \\ \ddots \\ 0 & \alpha_n \end{pmatrix}$$

where α_i is the image of ϕ by an isomorphism of $\mathbf{Q}(\phi)$ into \mathbf{C} (i=1, 2, ..., n). And put $h = [\mathbf{Q}(\phi) : \mathbf{Q}], s = 2n/h$ and

$$\Phi = \begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 \cdots & \alpha_1^{h-1} \\ \vdots & \vdots & & \vdots \\ 1 & \alpha_n & \alpha_n^2 \cdots & \alpha_n^{h-1} \end{pmatrix} \in M(n \times h, C).$$

And put

$$G(g_{ij}) = \left(\begin{pmatrix} g_{11} & 0 \\ 0 & g_{1n} \end{pmatrix} \varPhi \begin{pmatrix} g_{21} & 0 \\ 0 & g_{2n} \end{pmatrix} \varPhi \cdots \begin{pmatrix} g_{s1} & 0 \\ 0 & g_{sn} \end{pmatrix} \varPhi \right)$$

where g_{ij} (i=1, ..., s, j=1, ..., n) are sound given complex numbers. Then there exists ns complex numbers g_{ij} such that T is isogenous to the complex torus $T(g_{ij})$ whose period matrix is $G(g_{ij})$.

PROOF. Let ω be an analytic representation of ϕ and Ω a rational representation. Since the minimal polynomial f of Ω is also the minimal polynomial of ϕ when $Q(\phi)$ is regarded as an algebraic field over Q, f is irreducible. Clearly $f(\omega)=0$, so that the minimal polynomial of ω has no multiple root. Here choosing an adequate C-base of E,

$$\omega = \begin{pmatrix} \alpha_1 & 0 \\ \ddots \\ 0 & \alpha_n \end{pmatrix}$$

where $\alpha_1, \dots, \alpha_n$ are roots of the algebraic equation f(x)=0. On the other hand the characteristic polynomial F of Ω is s-th power of f. Therefore if we consider Ω to be a linear transformation on Q^{2n} , there exists an element P of $GL(2n, Q) \cap M(2n, Z)$ such that

where
$$A_1 = A_2 = \dots = A_s = \begin{pmatrix} A_1 & 0 \\ 0 & A_s \end{pmatrix}$$

 $A_1 = A_2 = \dots = A_s = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_0 \\ \vdots & \vdots & \vdots & -a_1 \\ 0 & \ddots & 0 & \vdots \\ 0 & 0 & 1 & -a_{h-1} \end{pmatrix} \in GL(h, Q),$

and $f(x) = x^{h} + a_{h-1}x^{h-1} + \dots + a_{0}$. Considering the isogeny whose rational representation is P, we may assume that the analytic representation ω of ϕ is a diagonal matrix $\begin{pmatrix} \alpha_1 & 0 \\ \ddots \\ 0 & \alpha_n \end{pmatrix}$ and the rational representation Ω of ϕ is $\begin{pmatrix} A_1 & 0 \\ \ddots \\ 0 & A_s \end{pmatrix}$. Then let G be the period matrix, and we have $\omega G = G \Omega$. We only have to compare each component of ωG with the corresponding component of $G\Omega$ to complete the proof. (q.e.d.)

Conversely suppose complex numbers $\{g_{ij}\}$ are given. Is $G(g_{ij})$ the period matrix of some complex torus? Since $\begin{pmatrix} \omega & 0 \\ 0 & \overline{\omega} \end{pmatrix} \begin{pmatrix} G \\ \overline{G} \end{pmatrix} = \begin{pmatrix} G \\ \overline{G} \end{pmatrix} \Omega$, $\alpha_1, \cdots, \alpha_n$ have to satisfy the following condition (#);

(#) the image of ϕ by any isomorphism of $Q(\phi)$ into C appears just s times in $\alpha_1, \dots, \alpha_n, \bar{\alpha}_1, \dots, \bar{\alpha}_n$ (where $\bar{\alpha}$ means the complex conjugate of α).

THEOREM 2-4. We assume $\alpha_1, \dots, \alpha_n$ satisfy the condition (#). Then if g_{ij} $(i=1, \dots, s, j=1, \dots, n)$ are generally given, $G(g_{ij})$ is the period matrix of some complex torus. (That is, the subset in C^{sn} composed of all $\{g_{ij}\}$ such that $G(g_{ij})$ is a period matrix is open dense in C^{sn} .)

PROOF. Let X_{ij} $(i=1, \dots, s, j=1, \dots n)$ be *ns* variables, and we only have to prove that $\det\left(\frac{G(X_{ij})}{G(X_{ij})}\right)=0$ is a non-trivial equation. Let ϕ_1, \dots, ϕ_n be the images of ϕ by all the isomorphisms of $Q(\phi)$ into C, and put

$$\boldsymbol{\varPhi} \!=\! \begin{pmatrix} 1 & \phi_1 \cdots \phi_1^{h-1} \\ \vdots & \vdots & \vdots \\ 1 & \phi_n \cdots \phi_h^{h-1} \end{pmatrix}$$

Then we have

$$\det \begin{pmatrix} \underline{G(X_{ij})} \\ \overline{G(X_{ij})} \end{pmatrix} = \begin{vmatrix} X_{11}^* \varPhi \cdots X_{1s}^* \varPhi \\ \vdots \\ X_{s1}^* \varPhi \cdots X_{ss}^* \varPhi \end{vmatrix} = \begin{vmatrix} X_{11}^* \cdots X_{1s}^* \\ \vdots \\ X_{s1}^* \cdots X_{ss}^* \end{vmatrix} (\det \varPhi)^s$$

where X_{ij}^* (*i*, *j*=1, 2, ..., *s*) are diagonal matrices such that all X_{ij} and all \overline{X}_{ij} appear once and only once in their diagonal components. Since det $\Phi \neq 0$, we only have to prove the following lemma to complete the proof.

LEMMA 2-5. Let $f(x_1, \dots, x_m, y_1, \dots, y_m)$ be a polynomial of 2m variables $x_1, \dots, x_m, y_1, \dots, y_m$ with coefficients in C. If $f(z_1, \dots z_m, \overline{z}_1, \dots, \overline{z}_m)=0$ for any m complex numbers z_1, \dots, z_m , then f=0 as a polynomial.

PROOF. It is easily seen that we may assume m=1. Put $f(x, y)=F_p(x)y^p$ +...+ $F_0(x)$. If $f(z, \bar{z})=0$, \bar{z} is a root of the algebraic equation $F_p(z)y^p$ +...+ $F_0(z)=0$ with an unknown y. If p>0, \bar{z} is locally a holomorphic function of z on an open subset in C. That is a contradiction. Therefore p=0. Then it is clear that f=0 since $F_0(z)=0$ for any z. (q.e.d.)

§3. Invariant subtori.

Let T be a complex torus and T' its subtorus. We call T' invariant throughout this paper if the image of T' by any endomorphism of T is contained in T'. Of course T itself and $\{0\}$ are invariant subtori. We call each of them a trivial invariant subtorus.

THEOREM 3-1. If a complex torus T has no non-trivial invariant subtorus. Then T is isogenous to the direct sum of some copies of a simple torus. (A complex torus is called simple if it has no subtorus but itself and $\{0\}$.)

PROOF. Let T' be a simple subtorus which is not $\{0\}$. The set $\Lambda = \{\lambda(T') | \lambda \in \text{End}(T)\}$ is a finite set. In fact, since any $\lambda(T')$ is simple, if $\Lambda' = \{\lambda_1(T'), \dots, \lambda_m(T')\}$ be a subset of $\Lambda(\lambda_i(T') \neq \lambda_j(T'))$ if $i \neq j$, $T_0 = \lambda_1(T') + \dots + \lambda_m(T')$ is isogenous to the direct sum $\lambda_1(T') \oplus \dots \oplus \lambda_m(T')$ which is isogenous to the direct sum of m copies of T'. So Λ is a finite set. Put $\Lambda' = \Lambda$ especially, and $T_0 = \lambda_1(T') + \dots + \lambda_m(T')$ is an invariant subtorus which is not $\{0\}$. Therefore $T_0 = T$, that is, T is isogenous to the direct sum of m copies of a simple subtorus T'. (q. e. d.)

THEOREM 3-2. Let T' be an invariant subtorus of a complex torus T. Then we have

- i) $\operatorname{rank}_{Z}\operatorname{End}(T) \leq \operatorname{rank}_{Z}\operatorname{End}(T/T') + \operatorname{rank}_{Z}\operatorname{Hom}(T, T')$
- ii) $\operatorname{rank}_{\mathbb{Z}}\operatorname{End}(\mathbb{T}) \leq \operatorname{rank}_{\mathbb{Z}}\operatorname{End}(\mathbb{T}') + \operatorname{rank}_{\mathbb{Z}}\operatorname{Hom}(\mathbb{T}/\mathbb{T}', \mathbb{T}).$

PROOF. We define an homomorphism $\Phi : \operatorname{End}(T) \to \operatorname{End}(T')$ by the natural restriction. It is clear that the kernel of Φ can be considered to be a subset of $\operatorname{Hom}(T/T', T)$, so ii) is proved. Considering similarly the natural homomorphism

 $\Phi': \operatorname{End}(T) \rightarrow \operatorname{End}(T/T')$, we have i). (q.e.d.)

COROLLARY 3-3. Let T be a complex torus of dimension n. If rank_zEnd(T) $>2n^2-2n+2$, there exists an integer m>1 such that T is isogenous to the direct sum of m copies of a simple torus.

PROOF. Let T' be an invariant subtorus and k its dimension. By ii) we have $2n^2-2n+2 < \operatorname{rank}_{Z} \operatorname{End}(T) \leq \operatorname{rank}_{Z} \operatorname{End}(T') + \operatorname{rank}_{Z} \operatorname{Hom}(T/T', T) \leq 2k^2+2(n-k)n$. So we have k=0 or n. On the other hand if T is simple, $\operatorname{rank}_{Z} \operatorname{End}(T) \leq 2n$. Therefore T is isogenous to the direct sum of m copies of a simple torus for some m > 1. (q. e. d.)

We will use the corollary to prove the following proposition which is a special case of Theorem 1-2

PROPOSITION. Let T be complex torus of dimension n. If the rank of End(T) is $2n^2$, T is isogenous to the direct sum of n copies of an elliptic curve C with complex multiplication.

PROOF. We may assume n > 1. Then since $\operatorname{rank}_{\mathbf{Z}}\operatorname{End}(\mathbf{T}) = 2n^2 > 2n^2 - 2n - 2$, \mathbf{T} is isogenous to the direct sum of some copies of a simple torus \mathbf{T}' . Let rbe the dimension of \mathbf{T}' , and $\operatorname{rank}_{\mathbf{Z}}\operatorname{End}(\mathbf{T}) = \operatorname{rank}_{\mathbf{Z}}M(n/r, \operatorname{End}(\mathbf{T}'))$, therefore $2n^2$ $\leq (n/r)^2(2r) = 2n^2/r$. So r = 1 and $\operatorname{rank}_{\mathbf{Z}}\operatorname{End}(\mathbf{T}') = 2$. (q. e. d.)

REMARK. Let T and T_1 be two complex tori and T' and T'_1 their subtori respectively. We call the pair (T', T'_1) I-pair if the image of T' by any homomorphism of T into T_1 is contained in T'_1 . If T and T_1 have no non-trivial I-pair, T_1 is isogenous to the direct sum of copies of a simple torus. And we have equations which are similar to i) and ii) in Theorem 3-2. Therefore if Hom (T, T_1) is of the maximal rank, T_1 is isogenous to the direct sum of copies of an elliptic curve. Considering dual tori, we can see that T is also isogenous to the direct sum of copies of an elliptic curve. Thus Theorem 1-2 itself can be proved.

Now let T be a complex torus such that a division algebra D is contained in $\operatorname{End}^{Q}(T)$ as a subalgebra. If T' is a non-trivial invariant subtorus, Φ and Φ' in the proof of Theorem 3-2 induce the following Q-algebra homomorphisms;

$$\begin{split} \varPhi^{\boldsymbol{q}} &: \operatorname{End}^{\boldsymbol{q}}(\boldsymbol{T}) {\rightarrow} \operatorname{End}^{\boldsymbol{q}}(\boldsymbol{T}') \\ \varPhi^{\prime \boldsymbol{q}} &: \operatorname{End}^{\boldsymbol{q}}(\boldsymbol{T}) {\rightarrow} \operatorname{End}^{\boldsymbol{q}}(\boldsymbol{T}/\boldsymbol{T}') \,. \end{split}$$

 Φ^{q} is injective on *D*. In fact, if not, there exists an element of *D* such that $\Phi^{q}(\phi)=0$ then $\phi(T')=\{0\}$. But such a ϕ cannot be an isogeny. Similarly Φ'^{q} is injective on *D*, too. Hence we may consider *D* a subalgebra of $\operatorname{End}^{q}(T')$ and $\operatorname{End}^{q}(T/T')$.

THEOREM 3-3. Let T be a complex torus of dimension n. If $\operatorname{End}^{q}(T)$ contains a division algebra of dimension 2n as a Q-vector space, T is isogenous to the direct sum of some copies of a simple torus.

PROOF. If T has a non-trivial invariant subtorus T', $End^{q}(T')$ contains a division algebra of dimension 2n. But this is impossible. Hence T has no non-trivial invariant subtorus, so that, by theorem 3-1, T is isogenous to the direct sum of some copies of a simple torus. (q. e. d.)

§4. Complex tori of dimension 2.

Throughout this section T will denote a complex torus of dimension 2. In this section we will study the structure of $\operatorname{End}^{q}(T)$.

(1) The case that T is simple.

If T is simple any endomorphism is an isogeny, so $\operatorname{End}^{q}(T)$ is a division algebra. Let K be one of the maximal commutative subfields of $\operatorname{End}^{q}(T)$ and d its degree over Q, and d divides 4, so d=1, 2 or 4. If d=1, $\operatorname{End}^{q}(T)=Q$.

a) The case of d=4.

In this case $\operatorname{End}^{q}(T) = K$ is isomorphic to a quartic field Q[X]/(f(X)) over Q where f(X) is an irreducible polynomial of degree 4. By Theorem 2-3, there exist complex numbers ζ , ξ such that $\{\zeta, \xi, \overline{\zeta}, \overline{\xi}\}$ is the set of all roots of the equation f(X)=0 and T is isogenous to

$$T'(\zeta, \xi) = C^2 / \begin{pmatrix} 1 & \zeta & \zeta^2 & \zeta^3 \\ 1 & \xi & \xi^2 & \xi^3 \end{pmatrix}.$$

Conversely let f(X) be an irreducible polynomial of degree 4 and ζ , ξ two complex numbers such that $\{\zeta, \xi, \overline{\zeta}, \overline{\xi}\}$ is the set of all roots of the equation f(X)=0. Then $T'(\zeta, \xi)$ is a complex torus such that $\operatorname{End}^{q}(T'(\zeta, \xi))$ contains a division algebra $Q(\zeta)$ of dimension 4. If $T'(\zeta, \xi)$ is not simple, by Theorems 3-3, $T'(\zeta, \xi)$ is isogenous to the direct sum of two copies of an eliptic curve C=C/(1, z). In other words there exist $\omega \in GL(2, C)$ and $\Omega \in GL(4, Q)$ such that

$$\begin{pmatrix} 1 & \zeta & \zeta^2 & \zeta^3 \\ 1 & \xi & \xi^2 & \xi^3 \end{pmatrix} \mathcal{Q} = \omega \begin{pmatrix} 1 & z & 0 & 0 \\ 0 & 0 & 1 & z \end{pmatrix}.$$
 (1)

Let F be the minimal Galois extension of Q containing $Q(\zeta)$, G^{*} its Galois group

and σ one of elements of G^* such that $\zeta^{\sigma} = \xi$. Put $\omega = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ and (1) implies that $\alpha, \beta, \alpha z$ and βz are all contained in $Q(\zeta)$ and $\gamma, \delta, \gamma z$ and δz are in $Q(\xi)$ and moreover $\alpha^{\sigma} = \gamma, (\alpha z)^{\sigma} = \gamma z, \beta^{\sigma} = \delta, (\beta z)^{\sigma} = \delta z$. So z is contained in both $Q(\zeta)$ and $Q(\xi)$, and $z^{\sigma} = z$. We put K' = Q(z), then $Q(\zeta)$ is a quadratic extension of K' and ξ is the conjugate of ζ over K'. Therefore $Q(\zeta) = Q(\xi)$ and $Q(\xi) = Q(\xi)$. By the way there exist only four distinct elements in all ζ^{ρ} ($\rho \in G^*$), and there exist at most two elements ρ of G^* such that $\zeta^{\rho} = \zeta$. In fact if $\zeta^{\rho} = \zeta, \xi^{\rho} = \xi$, so ξ^{ρ} must be ξ or ξ . Hence the order of G^* is 4 or 8. Making ζ, ξ, ξ, ξ correspond to 1, 2, 3, 4 respectively we consider G^* to be a subgroup of the symmetric group S_4 . Then $G^* = V_4 = \{id, (12)(34), (13)(23), (14)(23)\}$ or $G^* = V_4 \cup (12)V_4 = \{id, (12), (12)(34), (34), (13)(24), (1423), (1324), (14)(23)\}$ where "id" means the unit element of the group.

Conversely if G^* is one of those subgroups, putting $z=\zeta+\xi$, it is easily seen that $T'(\zeta, \xi)$ is not simple.

b) The case of d=2.

In this case K is isomorphic to a quadratic field $Q(\sqrt{m})$ where m is a square-free integer. By Theorem 2-3 T is isogenous to

$$C^2 / \begin{pmatrix} a \sqrt{m} a & b \sqrt{m} b \\ c & \sqrt{m} c & d & \sqrt{m} d \end{pmatrix}$$
 or $C^2 / \begin{pmatrix} a & \sqrt{m} a & b & \sqrt{m} b \\ c & -\sqrt{m} c & d & -\sqrt{m} d \end{pmatrix}$

for some complex numbers a, b, c, d. Since T is simple, $abcd \neq 0$, so we may assume a=c=1. But $\begin{pmatrix} 1 & \sqrt{m} & b & \sqrt{m} & b \\ 1 & \sqrt{m} & d & \sqrt{m} & d \end{pmatrix}$ cannot be a period matrix of a simple torus. Hence T is isogenous to a complex torus

$$T_{1}(m; b, d) = C^{2} / \begin{pmatrix} 1 & \sqrt{m} & b & b\sqrt{m} \\ 1 & -\sqrt{m} & d & -d\sqrt{m} \end{pmatrix}$$

where b, d are complex numbers such that b, $d \in \mathbf{R}$ if m > 0 and $b \neq \overline{d}$ if m < 0. Conversely if such m, b, d are given, $\begin{pmatrix} 1 & \sqrt{m} & b & b\sqrt{m} \\ 1 & -\sqrt{m} & d & -d\sqrt{m} \end{pmatrix}$ is certainly a period matrix of some complex torus $T_1(m; b, d)$.

LEMMA 4-1. $T_1(m; b, d)$ defined above is not simple if and only if the following condition i^* is satisfied.

i*) There exist rational numbers x, y and an element z of $Q(\sqrt{m})$ with are not all zero and satisfy

- (†) $2xbd+zb+z^{\sigma}d+2y=0$ (where z^{σ} means the conjugate of z).
- (††) $N(z/2)+xy \in N(Q(\sqrt{m}))$ (where $N(z)=zz^{\sigma}$ for $z \in Q(\sqrt{m})$).

PROOF. Let x, y, z_1 , z_2 , b_1 , b_2 , b_3 , b_4 are given rational numbers such that

 $(x, y, z_1, z_2) \neq (0, 0, 0, 0)$ and $(b_1, b_2, b_3, b_4) \neq (0, 0, 0, 0)$ and consider simultaneous equations with unknowns X_1, X_2, X_3, X_4 ,

(1)
$$\begin{cases} x = b_3 X_4 - b_4 X_3 \\ y = b_1 X_2 - b_2 X_1 \\ z_1 = b_1 X_4 - b_2 X_3 - b_4 X_1 + b_3 X_2 \\ z_2 = b_1 X_3 - m b_2 X_4 - b_3 X_1 + m b_4 X_2 , \end{cases}$$

that is,

Put $z=z_1+\sqrt{m}^{-1}z_2$. If x, y, z satisfy (†) and (1) has a solution $X_i=a_i$ (i=1, 2, 3, 4), $T_1(m; b, d)$ is not simple. In fact let \mathcal{Q} be an element of GL(4, Q) such that

$$\Omega = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \\ a_4 & b_4 \end{pmatrix}$$

and ω an element of $GL(2, \mathbb{C})$ such that

$$\omega = \begin{pmatrix} -\alpha & \beta \\ & & \\ & * & * \end{pmatrix}$$

where $\alpha = b_1 - b_2 \sqrt{m} + b_3 d - b_4 d \sqrt{m}$, $\beta = b_1 + b_2 \sqrt{m} + b_3 b + b_4 b \sqrt{m}$. Then we have by (1) and (†)

$$\omega \begin{pmatrix} 1 & \sqrt{m} & b & b\sqrt{m} \\ 1 & -\sqrt{m} & d & -d\sqrt{m} \end{pmatrix} \Omega = \begin{pmatrix} 0 & 0 & * & * \\ * & * & * & * \end{pmatrix}.$$

Conversely if $T_1(m; b, d)$ is not simple, there exist such an ω and an Ω . Therefore there exist x, y, z which satisfy (†) and b_1 , b_2 , b_3 , b_4 such that (1) has a solution.

On the other hand (1) has a solution if and only if

$$\operatorname{rank}\begin{pmatrix} 0 & 0 & -b_4 & b_3 & x \\ -b_2 & b_1 & 0 & 0 & y \\ -b_4 & b_3 & -b_2 & b_1 & z_1 \\ -b_3 & mb_4 & b_1 & -mb_2 & z_2 \end{pmatrix} = \operatorname{rank}\begin{pmatrix} 0 & 0 & -b_4 & b_3 \\ -b_2 & b_1 & 0 & 0 \\ -b_4 & b_3 & -b_2 & b_1 \\ -b_3 & mb_4 & b_1 & -mb_2 \end{pmatrix}$$

It is easily seen that this equation is equivalent to the following equation (2);

(2)
$$x(b_1^2 - mb_2^2) + y(b_3^2 - mb_4^2) + z_2(b_1b_4 - b_2b_3) - z_1(b_1b_3 - mb_2b_4) = 0.$$

Put $\varepsilon = b_1 + \sqrt{m} b_2$ and $\eta = b_3 + \sqrt{m} b_4$, and (2) implies

(3)
$$\varepsilon \varepsilon^{\sigma} x + \eta \eta^{\sigma} y - (\varepsilon \eta^{\sigma} z + \varepsilon^{\sigma} \eta z^{\sigma})/2 = 0.$$

There exist ε and η which are not both zero and satisfy (3) if and only if (††) is satisfied. In fact, put $\nu = 2y\eta - z\varepsilon$, and (3) implies

$$(N(z/2)-xy)\varepsilon\varepsilon^{\sigma}=\nu v^{\sigma}/4 \in N(Q(\sqrt{m})).$$

Hence the proof is completed.

Let R be a commutative ring and α , β elements of R. We denote by $(\alpha, \beta)_R$ the quaternion over R which is generated as a R-module by $\{1, e_1, e_2, e_3\}$ where 1 is the unit and $e_1^2 = \alpha$, $e_2^2 = \beta$, $e_1e_2 = -e_2e_1 = e_3$.

We will call a complex torus of dimension 2 which is isogenous to $T_1(m; b, d)$ such that there exist x, y, z which satisfy (†) but there exist no x, y, z which satisfy both (†) and (††) of a quaternion type. By the above lemma a complex torus of a quaternion type is simple.

THEOKEM 4-2. Let T be a simple complex torus of dimension 2. End(T) is a non-commutative ring of rank 4 if and only if T is of a quatenion type. In this case, T is isogenous to $T_1(m; b, d)$ such that bd=q is a rational number and End^q(T) is isomorphic to $(m, q)_q$.

PROOF. First assume that T is of a quaterion type. Then we may assume that $T=T_1(m; b, d)$ and there exist x, y, z such that $2xbd+zb+z^{\sigma}d+2y=0$. Since $(\dagger\dagger)$ is not satisfied, $xy \neq 0$ and we may assume x=1. If we put $b'=b-z^{\sigma}$, d'=d-z and $q=zz^{\sigma}-y\in Q$, then b'd'=q and $T=T_1(m; b, d)$ is isogenous to $T_1(m; b', d')$ by an isogeny the rational representation of which is

$$M \begin{pmatrix} 1 & 0 & -z_1 & mz_2 \\ 0 & 1 & z_2 & -z_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where $z=z_1+z_2\sqrt{m}$ and M is an integer which is large enough to make coefficients integral. It can be easily seen that $\operatorname{End}^{\mathbf{q}}(\mathbf{T}_1(m; b', d'))$ is a quatenion generated as a \mathbf{Q} -module by four elements whose analytic representations are

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \sqrt{m} & 0 \\ 0 & -\sqrt{m} \end{pmatrix}, \begin{pmatrix} 0 & b' \\ d' & 0 \end{pmatrix}, \begin{pmatrix} 0 & \sqrt{m}b' \\ -\sqrt{m}d' & 0 \end{pmatrix}.$$

That implies the "if" part of the theorem, so we next prove the "only if" part of the theorem. If $\operatorname{End}(T)$ is a non-commutative ring of rank 4, T is clearly isogenous to $T_1(m; b, d)$ for some complex numbers b, d, and we may assume that $T = T_1(m; b, d)$. We denote by ϕ the endomorphism whose analytic representation is $\binom{\sqrt{m} \ 0}{0 - \sqrt{m}}$. Let ψ be an endomorphism which is not commutative with ϕ and $\binom{s \ u}{v \ t}$ its analytic representation. Since

$$\binom{\sqrt{m}}{0} \binom{s}{v} \binom{s}{v} \binom{\sqrt{m}}{0} \binom{-2u}{1} \binom{\sqrt{m}}{0} \binom{-2u}{-2v} \binom{-2u}{0},$$

There exists an endomorphism ϕ' whose rational representation is $\begin{pmatrix} 0 & u' \\ v' & 0 \end{pmatrix}$ for some u', v'. Since End(T) is not commutative, the degree of ϕ' over Q is 2, so there exist rational numbers a_1, a_2 such that $\phi'^2 + a_1\phi' + a_2 = 0$. Hence

$$\binom{u'v' \quad 0}{0 \quad u'v'} + a_1 \binom{0 \quad u'}{v' \quad 0} + a_2 = 0$$

That implies $a_1=0$ and u'v' is a rational number. Let $\Omega = (\Omega_{ij})$ be the rational representation of ϕ' , and

$$\begin{pmatrix} 0 & u' \\ v' & 0 \end{pmatrix} \begin{pmatrix} 1 & \sqrt{m} & b & b\sqrt{m} \\ 1 & -\sqrt{m} & d & -d\sqrt{m} \end{pmatrix} = \begin{pmatrix} 1 & \sqrt{m} & b & b\sqrt{m} \\ 1 & -\sqrt{m} & d & -d\sqrt{m} \end{pmatrix} \begin{pmatrix} \mathcal{Q}_{11} & \mathcal{Q}_{12} & \mathcal{Q}_{13} & \mathcal{Q}_{14} \\ \mathcal{Q}_{21} & \mathcal{Q}_{22} & \mathcal{Q}_{23} & \mathcal{Q}_{24} \\ \mathcal{Q}_{31} & \mathcal{Q}_{32} & \mathcal{Q}_{33} & \mathcal{Q}_{34} \\ \mathcal{Q}_{41} & \mathcal{Q}_{42} & \mathcal{Q}_{43} & \mathcal{Q}_{44} \end{pmatrix}$$

Put $\alpha_1 = \Omega_{11} + \sqrt{m} \Omega_{21}$ and $\alpha_2 = \Omega_{31} + \sqrt{m} \Omega_{41}$, and $u' = \alpha_1 + b\alpha_2$ and $v' = \alpha_1^{\alpha} + d\alpha_2^{\alpha}$ where α_1 and α_2 are not both zero. Since u'v' is a rational number, putting $x = \alpha_2 \alpha_2^{\alpha}/2$, $y = (\alpha_1 \alpha_1^{\alpha} - u'v')/2$ and $z = \alpha_2 \alpha_2^{\alpha}$, the equation (†) is satisfied. In fact

$$0 = (\alpha_1 + b\alpha_2)(\alpha_1^{\sigma} + d\alpha_2^{\sigma}) - u'v' = \alpha_2 \alpha_2^{\sigma} b d + \alpha_2 \alpha_1^{\sigma} b + \alpha_2^{\sigma} \alpha_1 d + \alpha_1 \alpha_1^{\sigma} - u'v'. \quad (q. e. d.)$$

(2) The case that T is not simple nor isogenous to the direct sum of two elliptic curves.

If T has a subtorus of dimension 1, we may assume the period matrix of T is

$$\begin{pmatrix} 1 & z_1 & 0 & w \\ 0 & 0 & 1 & z_2 \end{pmatrix}$$

for some complex numbers z_1 , z_2 , w.

LEMMA 4-3. The complex torus $T = C^2 / \begin{pmatrix} 1 & z_1 & 0 & w \\ 0 & 0 & 1 & z_2 \end{pmatrix}$ is isogenous to the direct sum of two elliptic curves if and only if $w = q_0 + q_1 z_1 + q_2 z_2 + q_3 z_1 z_2$ for some rational

numbers q_0 , q_1 , q_2 , q_3 .

PROOF. If $w=q_0+q_1z_1+q_2z_2+q_3z_1z_2$, it is easy to transform $\begin{pmatrix} 1 & z_1 & 0 & w \\ 0 & 0 & 1 & z_2 \end{pmatrix}$ by some isogeny into $\begin{pmatrix} 1 & z_1 & 0 & 0 \\ 0 & 0 & 1 & z_2 \end{pmatrix}$. Conversely if **T** is isogenous to the direct sum of elliptic curves, there exist an element $\omega = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of GL(2, C) and an element $\Omega = (a_{ij})$ of GL(4, Q) and complex numbers x, y such that

$$\omega \begin{pmatrix} 1 & z_1 & 0 & w \\ 0 & 0 & 1 & z_2 \end{pmatrix} = \begin{pmatrix} 1 & x & 0 & 0 \\ 0 & 0 & 1 & y \end{pmatrix} \Omega$$

that is,

$$\begin{pmatrix} a & az_1 & b & aw+bz_2 \\ c & cz_1 & d & cw+dz_2 \end{pmatrix} = \begin{pmatrix} a_{11}+a_{21}x & a_{12}+a_{22}x & a_{13}+a_{23}x & a_{14}+a_{24}x \\ a_{31}+a_{41}y & a_{32}+a_{42}y & a_{33}+a_{43}y & a_{34}+a_{44}y \end{pmatrix}.$$

Eliminating x from the equation of the first line, we have

$$\begin{array}{l} (a_{11}a_{22}-a_{21}a_{12})w = (a_{22}a_{14}-a_{24}a_{11}) + (a_{24}a_{11}-a_{12}a_{21})z_1 + (a_{12}a_{23}-a_{22}a_{13})z_2 \\ \\ + (a_{21}a_{13}-a_{23}a_{11})z_1z_2 \, . \end{array}$$

Considering the second line, if necessary, we may assume $a=a_{11}+a_{21}x\neq 0$. Since z_1 is not a rational number, $a=a_{11}+a_{21}x$ and $az_1=a_{12}+a_{22}x$ are linearly independent over Q, hence $a_{11}a_{22}-a_{21}a_{12}\neq 0$. Therefore w is a linear combination of 1, z_1 , z_2 , z_1z_2 with coefficients in Q. (q. e. d.)

LEMMA 4-4. Let T be a complex torus which is not simple nor isogenous to the direct sum of two elliptic curves. Then T has the unique subtorus T' of dimension 1, which is invariant. If $\operatorname{End}^{q}(T) \neq Q$, T' is isogenous to the factor torus T/T'. Therefore T is isogenous to a complex torus of the following type;

$$T_2(z; w) = C^2 / \begin{pmatrix} 1 & z & 0 & w \\ 0 & 0 & 1 & z \end{pmatrix}.$$

PROOF. Of course T has a subtorus T' of dimension 1. If there exists another subtorus T'' of dimension 1, T is isogenous to $T' \oplus T''$. Hence T' is the unique subtorus of dimension 1. Now assume that $\operatorname{End}^{q}(T) \neq Q$. If there exists an endomorphism ϕ such that $\phi(T) = T'$, T' is contained in the kernel of ϕ , so ϕ induces an isogeny of T/T' to T'. If there does not exist such a ϕ , $\operatorname{End}^{q}(T)$ is division algebra. We have seen in §3 that $\operatorname{End}^{q}(T) \neq Q$, we have $\operatorname{End}^{q}(T') \cong \operatorname{End}^{q}(T') \cong \operatorname{End}^{q}(T/T')$. So T' is isogenous to T/T'. (q. e. d.)

Now to study the endomorphism ring of $T_2(z; w)$ we prepare a lemma.

LEMMA 4-5. Let T = E/G be a complex torus of dimension n and T' an invariant subtorus of dimension r. If $(1_r T')$ and $(1_s T'')$ are the period matrices of T' and T/T' respectively where r+s=n, then we can choose a C-base of E and a Z-base of G such that the period matrix is of the following type;

$$\begin{pmatrix} 1_r & 0 & T' & * \\ 0 & 1_s & 0 & T'' \end{pmatrix}.$$

Then the analytic representation ω and the rational representation Ω of any element of $\operatorname{End}^{q}(T)$ are matrices of the following types;

PROOF. Putting T = E/G, T' = E'/G' ($E \subset E'$), E' is invariant by the linear extension of any endomorphism. The lemma follows immediately.

We now pass on to the consideration on a complex torus

$$T_2 = T_2(z; w) = C^2 / \begin{pmatrix} 1 & 0 & z & w \\ 0 & 1 & 0 & z \end{pmatrix}$$

and $\operatorname{End}^{q}(T_2)$. Let

$$\omega = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \text{ and } \Omega = \begin{pmatrix} a_{11} & a_{12} & b_{11} & b_{12} \\ a_{21} & a_{22} & b_{21} & b_{22} \\ c_{11} & c_{12} & d_{11} & d_{12} \\ c_{21} & c_{22} & d_{21} & d_{22} \end{pmatrix}$$

be the analytic representation and the rational representation of an endomorphism of T_2 . $\gamma = a_{21} = b_{21} = c_{21} = d_{21} = 0$ by lemma 4-5. Since

$$\omega \begin{pmatrix} 1 & 0 & z & w \\ 0 & 1 & 0 & z \end{pmatrix} = \begin{pmatrix} 1 & 0 & z & w \\ 0 & 1 & 0 & z \end{pmatrix} \Omega,$$

we have

i)
$$c_{11}z^2 + (a_{11}-d_{11})z - b_{11} = 0$$

ii)
$$c_{22}z^2 + (a_{22}-d_{22})z - b_{22} = 0$$

iii) $\{(a_{11}-d_{22})+(c_{11}+c_{22})z\}w=b_{12}+(d_{12}-a_{12})z-c_{12}z^2$.

a) The case of $[Q(z): Q] \ge 3$.

Then i) and ii) imply that $a_{11}=d_{11}$, $a_{22}=d_{22}$, $c_{11}=b_{11}=c_{22}=b_{22}=0$, and hence iii) implies

$$(a_{11}-d_{22})w=b_{12}+(d_{12}-a_{12})z-c_{12}z^2$$

If $a_{11} \neq d_{22}$, T_2 is isogenous to the direct sum of two elliptic curves. Therefore $a_{11}=d_{22}$ and $b_{12}=c_{12}=0$, $d_{12}=a_{12}$. Hence the rational representation of End⁹(T_2) is

$$\left\{ egin{pmatrix} a & b & 0 & 0 \ 0 & a & 0 & 0 \ 0 & 0 & a & b \ 0 & 0 & 0 & a \end{pmatrix}
ight| a, \ b \in oldsymbol{Q}
ight\}.$$

The dimension of $\operatorname{End}^{q}(T_2)$ over Q is 2, and the analytic representation of a base is

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

End^q(T_2) is isomorphic to $Q[X]/(X^2)$.

b) The case of [Q(z):Q]=2.

Then we may assume that $z=\sqrt{m}$ where *m* is a square-free integer. i) and ii) imply $a_{11}=d_{11}$, $mc_{11}=b_{11}$, $a_{22}=d_{22}$, $mc_{22}=b_{22}$. If $(a_{11}-d_{22})+(c_{11}+c_{22})z\neq 0$, *w* is an element of Q(z) and hence T_2 is isogenous to the direct sum of two elliptic curves. Therefore $(a_{11}-d_{22})+(c_{11}+c_{22})z=0$. This equation implies $a_{11}=d_{22}$, $c_{11}+c_{22}=0$ and $b_{12}=mc_{12}$, $d_{12}=a_{12}$. It follows that the rational representation of End^{*Q*}(T_2) is

(a	b	тс	d	
0	a	0	-mc	$a, b, c, d \in \mathbf{Q}$.
$\int c$	d	а	-mc b	
((0	- <i>c</i>	0	a)

The dimension of $\operatorname{End}^{q}(T)$ over Q is 4 and the analytic representation of a base is

$$l_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, e_1 = \begin{pmatrix} \sqrt{m} & -w \\ 0 & -\sqrt{m} \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & \sqrt{m} \\ 0 & 0 \end{pmatrix}.$$

There are the following equation among those four elements;

 $e_1 1_2 = e_1$, $e_2 1_2 = e_2$, $e_1^2 = m 1_2$, $e_2^2 = 0$, $e_1 e_2 = -e_2 e_1 = e_3$. Hence End^Q(T) is isomorphic to $(m, 0)_{Q}$.

(3) The case that T is isogenous to the direct sum of two elliptic curves.

There is no difficulty in this case. We may assume that $T = T' \oplus T''$ for some elliptic curves T' and T''. If T' is isogenous to T'', $\operatorname{End}^{q}(T) \cong$ $M(2, \operatorname{End}^{q}(T'))$. And if T' is not isogenous to T'', $\operatorname{End}^{q}(T) \cong \operatorname{End}^{q}(T') \oplus \operatorname{End}^{q}(T'')$.

Now we will summarize the facts we have seen in this section. Let m, m' be integers which are square-free and z, z' complex numbers which are not contained in R nor any quadratic field over Q. Consider complex tori of the following types.

I)

$$T'(\zeta, \hat{\xi}) = C^2 / \begin{pmatrix} 1 & \zeta & \zeta^2 & \zeta^3 \\ 1 & \xi & \xi^2 & \xi^3 \end{pmatrix}$$

where ζ , ξ are algebraic numbers of degree 4 over Q such that $\{\zeta, \xi, \bar{\zeta}, \bar{\xi}\}$ is the set of all conjugates of ζ over Q. Moreover if we consider the Galois group G^* of $F = Q(\zeta, \xi, \bar{\zeta}, \bar{\xi})$ to be a subgroup of S_4 by the correspondence $1 \leftrightarrow \zeta$, $2 \leftrightarrow \xi$, $3 \leftrightarrow \bar{\zeta}$, $4 \leftrightarrow \bar{\xi}$, G is not V_4 nor $V_4 \cup (12)V_4$.

II) (complex tori of quatenion types)

$$\boldsymbol{T}_{1}(m; b, d) = \boldsymbol{C}^{2} / \begin{pmatrix} 1 & \sqrt{m} & b & b\sqrt{m} \\ 1 & -\sqrt{m} & d & -d\sqrt{m} \end{pmatrix}$$

where b, d are complex numbers which are not contained in $Q(\sqrt{m})$, and bd=q is a rational number which is not contained in $N(Q(\sqrt{m}))$. And there is no element α of $Q(\sqrt{m})$ but zero such that $\alpha b + \alpha^{\sigma} d$ is a rational number. Moreover if m>0, b, d are not real number, and if m<0, $b\neq \bar{d}$.

III) Simple complex tori of the following type

$$T_1(m; b, d) = C^2 / \begin{pmatrix} 1 & \sqrt{m} & b & b\sqrt{m} \\ 1 & -\sqrt{m} & d & -d\sqrt{m} \end{pmatrix}$$

which are not isogenous to any complex torus of the type (I) nor the type (II). If m>0, b, d are not contained in \mathbf{R} , and if m<0, $b\neq \overline{d}$. IV)

$$T_{2}(\sqrt{m}; w) = C^{2} / \begin{pmatrix} 1 & \sqrt{m} & 0 & w \\ 0 & 0 & 1 & \sqrt{m} \end{pmatrix}$$

where m < 0, and w is not contained in $Q(\sqrt{m})$. V)

$$T_2(z; w) = C^2 / \begin{pmatrix} 1 & z & 0 & w \\ 0 & 0 & 1 & z \end{pmatrix}$$

where w is not contained in $Q+Qz+Qz^2$.

VI)
$$T_3(\sqrt{m}, \sqrt{m}) = C/(1 \sqrt{m}) \oplus C/(1 \sqrt{m})$$

where m < 0.

$$\mathbf{VI} \qquad \mathbf{T}_{3}(\sqrt{m}, \sqrt{m'}) = \mathbf{C}/(1 \sqrt{m}) \oplus \mathbf{C}/(1 \sqrt{m'})$$

where m, m' < 0 and $m \neq m'$.

$$T_{3}(\sqrt{m}, z) = C/(1 \sqrt{m}) \oplus C/(1 z)$$

where m < 0.

 $\begin{array}{ll} \text{IX} & T_{3}(z,\,z) = C/(1\,\,z) \oplus C/(1\,\,z) \,. \\ \text{X} & T_{3}(z,\,z') = C/(1\,\,z) \oplus C/(1\,\,z') \end{array}$

where $z' \oplus Q(z)$.

Then a complex torus T of dimension 2 is isogenous to a complex torus of one of the above types if and only if $\operatorname{End}^{q}(T)$ is isomorphic to a Q-algebra of the following corresponding type.

- 1) Algebraic fields $Q(\zeta)$ of degree 4 over Q.
- II) Quatenions $(m, q)_q$ such that q is not contained in $N(Q(\sqrt{m}))$.
- III) Quadratic fields $Q(\sqrt{m})$.
- IV) Quatenions $(m, 0)_q$.
- V) $Q[X]/(X^2)$.
- VI) $M(2, Q(\sqrt{m}))$ where m < 0.
- VII) $Q(\sqrt{m}) \oplus Q(\sqrt{m'})$ where $m, m' < 0, m \neq m'$.
- VII) $Q(\sqrt{m}) \oplus Q$ where m < 0.
- IX) $M(2, \mathbf{Q})$.
- X) $Q \oplus Q$.

§5. Abelian varietis of dimension 2.

A complex torus T is called an abelian variety if T can be embedded in some projective space, in other words, if there exists an ample Riemann form on T. A complex torus of dimension 2 of the type VI), VII), VII), IX) or X) is an abelian variety. And a complex torus of the type IV) or V) is not an abelian variety. Then we will study complex tori of types I), II) and III), that is, simple tori.

Let T = E/G be a complex torus of dimension n where E is C-vector space and G is its lattice subgroup. Fix bases of E and G, and let G be the period matrix of T with respect to those bases. Put $(C \ \overline{C}) = \left(\frac{G}{G}\right)^{-1}$ where $C \in$ $M(2n \times n, C)$. There exists a one-to-one correspondence between the set of hermitian forms on T (namely the set of hermitian forms H on $E \times E$ such

that H(g, g') is integral for any $g, g' \in G$) and the set of skew-symmetric matrices M of degree 2n with coefficients in Z which satisfy

(1) ${}^{t}CMC = 0.$

In this correspondence an ample Riemann form on T corresponds to an M which satisfies (1) and

(2) $\sqrt{-1} \overline{C} MC > 0$ (namely $\sqrt{-1} \overline{C} MC$ is positive definite.)

T is an abelian variety if and only if there exists a skew-symmetric matrix M which satisfies (1) and (2). If $G = (1_n T)$, $C = \begin{pmatrix} -\overline{T} \\ 1_n \end{pmatrix} (T - \overline{T})^{-1}$. Put $M = \begin{pmatrix} A & B \\ \iota B & D \end{pmatrix}$ where $A, B, D \in M(n, \mathbb{Z})$ and $\iota A = -A, \iota D = -D$. Then (1), (2) imply respectively

$$(1') \quad {}^{t}TAT - {}^{t}TB + {}^{t}BT + D = 0,$$

$$(2') \quad \sqrt{-1}({}^{t}TA\overline{T} - {}^{t}TB + {}^{t}B\overline{T} + D) > 0.$$

When (1') is satisfied, (2') is equivalent to the following condition;

 $(2'') \quad \sqrt{-1}({}^tTA \! + \! {}^tB)(\overline{T} \! - \! T) \! > \! 0 \, .$

When n=2, put $T=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$, $A=\begin{pmatrix} 0 & x \\ -x & 0 \end{pmatrix}$, $B=\begin{pmatrix} p & q \\ r & s \end{pmatrix}$ and $D=\begin{pmatrix} 0 & y \\ -y & 0 \end{pmatrix}$, and (1') implies

i)
$$x(\alpha\delta - \gamma\beta) - (q\alpha + s\gamma) + (p\beta + r\delta) + y = 0$$

and (2'') implies

$$\sqrt{-1} \begin{pmatrix} p - x\gamma & r + xlpha \\ q - x\delta & s + xeta \end{pmatrix} \begin{pmatrix} ar{lpha} - lpha & ar{eta} - eta \\ ar{\gamma} - \gamma & ar{\delta} - \delta \end{pmatrix} > 0,$$

which is equivalent to the following two conditions;

a)
$$\sqrt{-1} \{ p(\bar{\alpha}-\alpha) + q(\bar{\gamma}-\gamma) + x(\alpha\bar{\gamma}-\bar{\alpha}\gamma) \} > 0 ,$$

b) $(-1) \{ (p-x\gamma)(s+x\beta) - (r+x\alpha)(q-x\delta) \} \{ (\bar{\alpha}-\alpha)(\bar{\delta}-\delta) - (\bar{\gamma}-\gamma)(\bar{\beta}-\beta) \} > 0 .$

When i) is satisfied b) is equivalent to the following;

c) $\{-xy+(ps-rq)\} \{(\bar{\alpha}-\alpha)(\bar{\delta}-\delta)-(\bar{\gamma}-\gamma)(\bar{\beta}-\beta)\} < 0.$

Now let T be a simple torus of dimension 2 with non-trivial endomorphisms. First we prove that if T is an abelian variety $\operatorname{End}^{Q}(T)$ contains some quadratic field over Q. In fact, if it does not, T is isogenous to a complex torus of the type

é

where the Galois group G^* of $Q(\zeta, \xi, \overline{\zeta}, \overline{\xi})$ over Q is isomorphic to the alternative group A_4 or the symmetric group S_4 . T is isogenous to

$$T' = C^2 / \begin{pmatrix} 1 & 0 & -\xi\zeta & -\xi\zeta(\xi+\zeta) \\ 0 & 1 & \xi+\zeta & \xi^2+\xi\zeta+\zeta^2 \end{pmatrix}.$$

If T is an abelian variety, so is T', hence there exist integers x, y, p, q, r, s which are not all zero and satisfy i), that is,

$$\begin{split} 0 &= x(\zeta^2 \xi^2) - \{q(-\xi\zeta) + s(\zeta + \xi)\} + \{p(-\xi\zeta(\zeta + \xi)) + r(\xi^2 + \xi\zeta + \zeta^2)\} + y \\ &= (x\xi^2 - p\xi + r)\zeta^2 + (-p\xi^2 + q\xi + r\xi - s)\zeta + (r\xi^2 - s\xi + y) \,. \end{split}$$

But if $G^* = A_4$ or S_4 , this is impossible. Therefore if T is an abelian variety, $\operatorname{End}^{\mathbf{q}}(T)$ contains a quadratic field $\mathbf{Q}(\sqrt{m})$. Then T is isogenous to a complex torus

$$\boldsymbol{T}_{1}(m; b, d) = C^{2} / \begin{pmatrix} 1 & \sqrt{m} & b & b\sqrt{m} \\ 1 & -\sqrt{m} & d & -d\sqrt{m} \end{pmatrix}$$

for some complex numbers b, d. Since this is isomorphism to

$$T_{1}^{\prime} = C^{2} / \begin{pmatrix} 1 & 0 & u & mv \\ 0 & 1 & v & u \end{pmatrix}$$

where u=(b+d)/2 and $v=(b-d)/2\sqrt{m}$, **T** is an abelian variety if and only if there exist integers x, y, p, q, r, s which satisfy the following i'), a') and c').

i') $bdx+zb+z^{\sigma}d+y=0$ (where $z=z_1+z_2/\sqrt{m}$, $z_1=(r-q)/2$ and z=(pm-s)/2.)

a')
$$\sqrt{-1} \{ p(u-\bar{u}) + q(v-\bar{v}) + x(u\bar{v}-v\bar{u}) \} > 0$$

c') $\{-xy+(ps-rq)\}F(b, d) < 0 \text{ (where } F(b, d) = \begin{cases} (b-\bar{b})(d-\bar{d}) & \text{if } m > 0 \\ (b-\bar{d})(d-\bar{b}) & \text{if } m < 0. \end{cases}$

LEMMA 5-1. If m>0, there exist x, y, p, q, r, s which satisfy i') and a'), c'). Therefore **T** is an abelian variety.

PROOF. Put x=y=0, r=q, s=mp, and i') is of course satisfied and a'), c') imply

a")
$$\sqrt{-1} \{ (p+q/\sqrt{m})(b-\bar{b}) + (p-q/\sqrt{m})(d-\bar{d}) \} > 0$$

c")
$$(mp^2-q^2)(b-\bar{b})(d-\bar{d})<0.$$

Put $X=(p+q/\sqrt{m})\sqrt{-1}(b-\bar{b})$, $Y=(p-q/\sqrt{m})\sqrt{-1}(d-\bar{d})$, and a"), c") imply X+Y>0 and XY>0. We only have to take p, q which make X and Y positive. (q. e. d.)

LEMMA 5-2. If m < 0 and T is not of a quaternion type, T is not an abelian

variety.

PROOF. Since T is not quaternion type, x, y, z which satisfy i') are all zero, so x=y=0, mp=s, r=q. Then if m<0, c') implies

$$(mp^2-q^2)(b-\bar{d})(d-\bar{b}) = -(mp^2-q^2)|b-\bar{d}|^2 < 0.$$

But since m < 0, this is impossible. Hence **T** cannot be an abelian variety. (q. e. d.)

Now we assume that T is of a quaterian type. There exist an integer q_0 which is not contained in $N(Q(\sqrt{m}))$ such that T is isogenous to

$$T'' = C^{2} / \begin{pmatrix} 1 & \sqrt{m} & b & b\sqrt{m} \\ 1 & -\sqrt{m} & d & -d\sqrt{m} \end{pmatrix}$$

where $bd=q_0$. If m>0 or $q_0>0$, T'' is an abelian variety by Lemma 5-1. So we assume m<0 and $q_0<0$. If there exists an element z of $Q(\sqrt{m})$ such that $zb+z^{\sigma}d$ is a rational number r_0 , putting x=0, $y=-r_0$, the condition i*) of Lemma 4-1 is satisfied. Therefore since $bd=q_0$ is a rational number, there exists no z but zero which satisfies i') with some x, y. Hence if T' is an abelian variety, $y=-x_0$, r=q, s=pm and

$$-(x^2q_0+mp^2-q^2)|b-\bar{d}|^2<0.$$

But this is impossible. Therefore we have proved the following lemma.

LEMMA 5-3. Let T be a complex torus of a quaternion type such that $\operatorname{End}^{q}(T) \cong (m, q)_{q}$. If m > 0 or q > 0, T is an abelian variety. If m < 0 and q < 0, T is not abelian variety.

And the following theorem has been proved.

THEOREM 5-4. Let T be a simple complex torus of dimension 2 with nontrivial endomorphisms. Then T is an abelian variety if and only if $\operatorname{End}^{q}(T)$ contains a real quadratic field over Q as a sub-Q-algebra.

REMARK. Let $\rho(T)$ be the rank of the additive group of all hermitian forms on T, which is equal to the Picard number of T. When T is a simple torus of dimension 2 such that $\operatorname{End}(T) \neq Z$, we have seen above that if $\operatorname{End}^{Q}(T)$ contains no quadratic field over Q, $\rho(T)=0$, if $\operatorname{End}^{Q}(T)$ contains a quadratic field but Tis not of a quatenion type, $\rho(T)=2$, and if T is of a quatenion type, $\rho(T)=3$.

Atsushi Shimizu

References

- [1] Albert, A. A., A solution of the principal problem in the theory of Riemann matrices. Ann. Math., 35 (1934), 500-515.
- [2] -----, On the construction of Riemann matrices, I, II, Ann. Math., 35 (1934), 1-28, 36 (1935), 376-394.
- [3] Koizumi S., Theta function (in Japanese), Kinokuniya, Tokyo (1982).
- [4] Munford, D., Abelian varieties, Tata Inst. Studies in Math., Oxford Univ. press, London and New York (1961).
- [5] Shimura, G. & Taniyama, Y., Complex multiplication of abelian varieties, Math. Soc. Japan (1961).
- [6] Yoshihara, H., Structure of complex thri with the endomorphisms of maximal degree, Tsukuba J. Math. 4 (1980), 303-311.