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ON COMPLEX TORI WITH MANY ENDOMORPHISMS

By

Atsushi Shimizu

The endomorphism ring of a complex torus T of dimension n is a free

module of rank^2n2 as a Z-module. When T is an abelian variety it is well-

known that if the rank is equal to 2n2, T is isogenous to the direct sum of n

copies of an ellipticcurve with complex multiplication. We will prove a similar

result in a more general form, that is, let T and T' be two complex tori of

dimension n and n' respectively, and if the Z-module of all homomorphisms of

T into I" is of rank 2nn', then T and T' are isogenous to the direct sums of

n and n' copies of an ellipticcurve (Theorem 1-3). Next let T be a complex

torus of dimension 2 and put EndQ(T)=End(r)(g)zQ. Then using the types of

Ende(T) we will classify all T"s with a non-trivialendomorphism ring. The

result is given in the last part of§4. A complex torus T of dimension 2 which

is not simple is an abelian variety, if and only if T is isogenous to the direct

sum of two ellipticcurves. On the other hand a simple torus T of dimension 2

such that End(T) is not isomorphic to Z is an abelian variety if and only if

EndQ(T) contains some real quadratic fieldover Q. This is proved in §5.

Notations. We denote by Z, Q, R and C, respectively, the ring of rational

integers, the fieldof rational numbers, real numbers and complex numbers. For

a ring R, M(nXni, R) denotes the i?-module composed of all matrices with n

rows and m columns with coefficientsin R. When n=m, it is the i?-algebra of

all square matrices of size n. We simply denote it by M(n, R). The group of

allinvertible elements of M(n, R) is denoted by GL(n, R).

Let T and T be two complex tori. We denote by Hom(T, T') the set of

all homomorphisms of T into T and put End(T)=Hom(i; T). We put

Hom^CT, 2T/)=Hom(7', 2V)0Q and EndQ(r)-End(r)(g)Q. EndQ(T) is naturally

considered as an algebra over Q. T and T' are called isogenous and denoted

by 7T~27/if they are of the same dimension and there exists a homomorphism

X of the one onto the other; such a X is called an isogeny. *'~"is an equiva-

lence relation. If Tx and T[ are complex tori which are isogenous T and I"

respectively, then Hom0^, T[) is isomorphic to YiomQ{T, T) and End^CTx) is
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isomorphic to EndQ(T) as a Q-algebra.

Let G be a lattice subgroup of Cn and (glt ■･･,g2n) its base. Then the

matrix G={gu ･･･.g2n)^M(nx2n, C) is called the period matrix of the complex

torus Cn/G. We shall often denoted by Cn/G the complex torus Cn/G.

§1. Complex toriwith endomorphism rings of the maximal rank.

Let T and T" be two complex toriof dimension n and n' respectively.

Theorem 1-1. Hom(T, Tf) is a free abelian group whose rank is at most

2nn'.

Proof. We put T=E/G and Tf = E'/G't where E, E' are complex linear

spaces and G, G' are respectively their lattice subgroups. Take a C-base

(gi> ■■"
>
gn) of E which is also a part of a Z-base of G and let Hx the subgroup

of G generated by glt■■■,gn. If 2.is an element of Hom(T, T'), 7, naturally

induces a linear map L＼ of E to Er. Then making correspond to 1 the homo-

morphism of Ex into Gf which maps (gu ･･･,gn) to {Lx{gi), ■■･,Lx{gn)), we get

an injective homomorphism of Hom(T, T') into Hom(Hu G'). Since HomCi/j, G')

is a free abelian group of rank 2nn', Hom(T, T') which is isomorphic to a sub-

group of Hom(//:, G') is a free abelian group whose rank is at most 2nn'. (q. e.d.)

Let T and T' be the direct sums of r and r' complex tori Tlt ■■■,Tr and

T[, ･■,Tfr,respectively. Then, Hom(T, T') is isomorphic to the direct sum of

all HomCTi, T^O's 0 = 1, 2, ･■･, r and ≪v=l,2, ･･･,r'). If T=T', they are iso-

morphic as rings, where for two elements {2.u>),(tiu>)of cHom(Ti, 7*^)(^jj'
i,t'

and fin' are elements of Hom(Ti, T^).), we define the product of them by

(S5=iV°/≪ij)G 8Hom(Ti, TiO- Especially when T1=Ti= ■■■=Tr, End(T) is
i,i'

isomorphic to ilf(r,EndCTi)).

Let C be an ellipticcurve with complex multiplication,that is, complex

torus of dimension 1 with an endomorphism ring of rank 2, and let T and T'

be complex tori which are isogenous to the direct sums of n and n' copies of C

respectively. Then the rank of Hom(T, T') is clearly 2nn'. We shall prove the

converse is true.

Theorem 1-2. Let T and T' be complex tori of dimension n and n' respec-

tively. If the rank of llom(T, T') is 'Inn',T and T' are respectively isogenous

to the direct sums of n and n' copices of an ellipticcurve C with complex multi-

plication.
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Proof. Notation being as in the proof of Theorem 1-1; choose a proper

C-base of E and a proper if-base of G, and we may assume that the period

matrix of T is(ln,T) where ln is the unit matrix of size n and T is an element

of M{n, C) such that the imaginary part of T is a regular matrix. Similarly we

may assume that the period matrix of T' is (ln<,T') for some matrix T' of size

n' which satisfiesthe same condition.

Now considering Hom(T, T') to be a subgroup of Hom(//I, G'), since they

are of the same rank, there exists an integer 1 such that /l(Hom(//'1,G'))d

Hom(T, T'). In other words, for any SeM(2n'Xn, Z) there exist tueMCn'Xn, C)

and i2eM(2n'x2n, Z) such that

(aln=(ln. TOS and ≪>(!,.T)=(ln, T')^.

For any a^M(n'Xn, Z), putting S=

MCn'Xn, Z)) such that

f^V there exists^=(r
*)
(A, B,C,D^

Xa(ln,T) = (＼n.,T')Q=(A+T'C, B+T'D),

and especiallyXaT ―B+T'D. If we denote by Im T and Re T the imaginary

part of T and the real part of T respectively,we have i)la(JmT)―(Jm.T')D

and ii)^a(ReT) = B+(ReT/)^>. Therefore for any element a of Min'Xn, Z)

we have

10

no

(ImTO^tfaXImTJeMCn'Xn, Z)

Ua)(ReT)-(Re T'XIm TO^tfaXIm T)^M{n'Xn, Z).

Put (ImT')~lr=(/3pr); a=(≪r,), Im T = (afr), and i') implies

n'
n

X S 2 Bprarsasq&Z

T=＼ S=l

for any p, q (/>=1, ･■･,n', q=l, ■･■, n). If we put a to be the matrix whose

(r, s)-component is 1 and the others are all 0, we have /tfiprasq<^Zfor any p, q,

r, s. Especially putting p=r=l, we have A^nasq^Z for any s, q. Therefore

there exist a real number ax which is independent of s, q and integers a% (s, q

―1, 2,■■■,n) such that asq=a,xafq. Put Ti―iaf^^Min, Z), and we have Im T ―

a{TXt where a^O and detT^O. Similarly there exist b'^R and TJeM(w', Z)

such that (Im T'Y^b'Tl Putting a^^-^det T'QYl and TJ=(det TJ)^"1, we

have Im T'―a[T[ where a[ is a real number T[ is an element of M{n', Z). Now

we have T=Re T+V―IgiT^ Considering the isogeny whose rational repre-

sentation is ( n
^,_1),
we can see that T is isogenous to Cn/(ln, (Re T)Trx+

V―lfliln). So we may assume that Im T=a,L. And similarly we may assume
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that ImT'=a[ln<. Put pt―a^'y"1!,and we have by ii')

(MKeTj-^ReTOaeM^'Xn, Z)

for any a. If we put ReT=(csg), ReT/=(rfpr) and a ―(ars)r we have

n n'

s=l r=l

for p=l, ■■･,n, s=l, ■･･,n'. Again putting a to be the matrix whose (r, q)-

component is 1 and the others are all 0, we have A) Xcsq^Z, if s^q, B) ftdpr^Z,

if p^r, and C) 2.css―fjtdrr^Z,for any p, q, r, s. Therefore we have X(csq)―ptdnln

(BM(n, Z) and //(^r)-^ulB'GM(n', Z). Put Tz=A(c8q)―{idnln and c=ftdu, and

we have Re T=X'1(ch+T2). So putting ^=^"Jc+V3! a,, we have T=^l≫+^-aT..

Consider the isogeny whose rationalrepresentationis ( re j, and we can
＼U In '

see that T is isogenous to Cn/(ln, zln) which is clearly isogenous to the direct

sum of n copies of C―C/0-, z). Similarly Tf is isogenous to the direct sum of

n' copies of some complex torus C of dimension 1. Since Hom(T, T') is iso-

morphic to the direct sum of nn' copies of Hom(C, C), the rank of Hom(C, C)

is 2, hence C is an ellipticcurve with complex multiplicationwhich is isomorphic

to C. (q.e.d.)

§2. Period matrices of complex tori with many endomorphisms.

Let T be a complex torus whose Ende(T) contains a division sub-algebra D

which contains Q properly. Let Z be the center of D and K one of the maxi-

mal commutative subfields of D and denote the dimensions of the vector spaces

D, K and Z over Q by d, e and / respectively. Then we have d/f=(e/f)2, in

other words df=e2. On the other hand, considering a rational representation of

D, the linear space QZn can be regarded as a .D-module. Since D is a division

algebra, a D-module is always free, hence denoting by r the rank of the module

over D, we have rd―2n. Now the following theorem has been proved.

Theorem 2-1. Let D be a division algebra contained in Ende(T). // we

donote by d, e and f, respectively,the dimensions over Q of D, one of the maxi-

mal subfieldof D and the center of D, we have

i) df=e2

ii) f＼e＼d＼2n(where a＼b means a divides b.)

Corollary 2-2. Let n be a positive odd integer which is square-free,and T

a complex torus of dimension n. Then any division algebra which is contained in
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EndQ(T) is commutative.
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Proof. Notations being as in Theorem 2-1, (e/f)2-=d/f divides 2n. Hence

e/f=l, that is, D is commutative, (q.e.d.)

Next we shallinquire into the period matrix of T

Theorem 2-3. Let T=E/G be a complex torus of dimension n such that

Ende(T) contains a division algebra D which contains Q properly. Take any

element $ of D which is not contained in Q. Choosing an adequate C-base of

C-vector space E, the analytic representation of (p is a diagonal matrix

(-･

■■

°)

＼0 aj

where a* is the image of <p by an isomorphism of Q{<p)into C (i=l, 2, ･･･,n).

And put /i=[Q(0):Q], s=2n/h and

0
(! a

a

1 a＼ ･■■ai

n Rn ''' (%n

JeM(nX/i, C)

And put

/(gii 0 ＼ lgn 0 ＼ [gsl 0 ＼ ＼

＼＼0 £ij ＼0 W ＼0 ^B/ /

where gtj (i=l, ■･･,$, 7=1, ･■･,n) are somd given complex numbers. Then there

exists ns complex numbers gtj such that T is isogenous to the complex torus

T(gij) whose period matrix is G(gij).

Proof. Let o> be an analytic representation of 0 and Q a rational represen-

tation. Since the minimal polynomial / of Q is also the minimal polynomial of

<j)when Q(0) is regarded as an algebraic fieldover Q, f is irreducible. Clearly

/(<y)=0, so that the minimal polynomial of w has no multiple root. Here choosing

an adequate C-base of E,

＼0 aj

where au ･･･,an are roots of the algebraic equation f(x)=0. On the other hand

the characteristicpolynomial F of Q is s-th power of /. Therefore if we con-

sider Q to be a linear transformation on Q2n, there exists an element P of

GL(2n, Q)r＼M(2n, Z) such that



302

where Ai ― /12―■

resentation is

diagonal matrix

let G be the pc

au

Then we have
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(Ax 0＼

＼0 Aj

■^*s

0

1

≪&-

0

6

Xf,0

0 -Go

― at

1 a a._
i

eGL(/i, Q)

given. Is G(gij) the period

―ipjQ, ax, ･･･, an have to

y* y*
-A 11 ･ -A- is

X si X ss

(det <P)S

all Xij and all Xtj

Since det$^O, we

0

and f{x)~xhJrah-1xh'1-＼-･■■+a0. Considering the isogeny whose rational rep-

re may assume that the analytic representation <y of d> is a
0＼ " IA1 0＼

and the rational representation Q of ^ is "-. . Then
aj ＼0 ^/

matrix, and we have q)G = GQ. We only have to compare

each component of coG with the correspondingcomponent of GQ to completethe

proof, (q.e.d.)

Conversely suppose complex numbers {giA are

matrix of some complex torus? Since (
~)＼r)

satisfy the following condition (#);

(#) the image of 6 by any isomorphism of Q{6) into C appears just s times in

, an, au ■■■,cxn (where a means the complex conjugate of a)

Theorem 2-4. We assume au ■■■,an satisfy the condition (#). Then if gtj

(z'―l,■･･,s, j = l, ･･･, n) are generally given, G(gij) is the period matrix of some

complex torus. (That is, the subset in Csn composed of all {gi}) such that G{gt])

is a period matrix is open dense in Csn.)

Proof. Let Xtj (i=l, ■■■,s, 'j=l, ■■■n) be ns variables, and we only have

to prove that detf^, vtJ Wo is a non-trivial equation. Let 6U ■･･,6h be the

images of ^ by all the isomorphisms of Q(^) into C, and put

-X%0

x^o-x f.0

where X% (i,j=l,2,~-,s) are diagonal matrices such that

appear once and only once in their diagonal components.
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only have to prove the following lemma to complete the proof.
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Lemma 2-5. Let f(xl7 ■■･,xm> ylf ■■■,ym) be a polynomial of 2m variables

Xi, ･･･, xm, ylf ■-･,ym with coefficients in C. If f(zu ■■■zm,Zi, ･･･, 5OT)=0 for

any m complex numbers zx, ■■■,zm, then f=0 as a polynomial.

Proof. It is easily seen that we may assume m = l. Put f(x, y) = Fv{x)yv

-r ･■■+F0(x). If f(z, z)=0, z is a root of the algebraic equation Fp{z)yv+ ■■･+

F0(z)=0 with an unknown y. If p>0, z is locally a holomorphic function of z

on an open subset in C. That is a contradiction. Therefore p=0. Then it is

clear that /=0 since Fo(z)=0 for any z. (q.e. d.)

§3. Invariant subtori.

Let T be a complex torus and 7" its subtorus. We callT' invariant through-

out thispaper if the image of T' by any endomorphism of T is contained in T'.

Of course T itself and {0} are invariant subtori. We calleach of them a trivial

invariant subtorus.

Theorem 3-1. // a complex torus T has no non-trivial invariant subtorus.

Then T is isogenous to the direct sum of some copies of a simple torus. (A com-

plex torus is called simple if it has no suhtorus but itselfand {0}.)

Proof. Let T' be a simple subtorus which is not {0}. The set A =

{X(T')＼Xe=End(T)} is a finite set. In fact, since any 1{T') is simple, if Ar ―

＼UT'＼ -,lm{J')＼ be a subset of A (UT')^UD if i*j), T0=Xt(T')+ - +

%m(T') is isogenous to the direct sum 2t(7")0 ･･■d&J.m{T') which is isogenous to

the direct sum of m copies of T'. So A is a finiteset. Put A'―A especially,

and T0=/J1(T/)+ ･･･+^ (5r'/)is an invariant subtorus which is not {0}. There-

fore T0=T, that is, T is isogenous to the direct sum of m copies of a simple

subtorus T'. (q.e. d.)

Theorem 3-2. Let T' be an invariant svbtorus of a complex torus T. Then

we have

i) rankzEnd(r)^rankirEnd(r/r/)+rank2Hom(T, T')

ii) rankzEndCD^rankzEncKrO+rankzHomfr/T". T).

Proof. We define an homomorphism @ :End(T)―>End(T') by the natural

restriction. It is clear that the kernel of 0 can be considered to be a subset of

Uom(T/T', T), so ii)is proved. Considering similarlythe natural homomorphism
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@':End(T)^End(T/T'), we have i). (q.e.d.)

Corollary 3-3. Let T be a complex torus of dimension n. //rank^End(T)

>2nz―2n-{-2, there existsan integer m>l such that T is isogenous to the direct

sum of m copies of a simple torus.

Proof. Let T' be an invariant subtorus and k its dimension. By ii) we have

2n2-2n+2<rank2End(r)^rankzEnd(r/)+rank^Hom(r/f1/, T)^2k2+2(n-k)n.

So we have k―0 or n. On the other hand if T is simple, rank^End(T)^2n.

Therefore T is isogenous to the direct sum of m copies of a simple torus for

some m>l. (q. e.d.)

We will use the corollary to prove the following proposition which is a

special case of Theorem 1-2

Proposition. Let T be complex torus of dimension n. If the rank of End(T)

is 2n2, T is isogenous to the direct sum of n copies of an ellipticcurve C with

complex multiplication.

Proof. We may assume n>l. Then since rankzEnd(J')=2n2>2n2―2n―2,

T is isogenous to the directsum of some copies of a simple torus T'. Let r

be the dimension of 7", and rankzEnd(r)=rank^M(n/r, End(7")),therefore2n2

^(n/r)2(2r)=2n2/r. So r=l and rank^End(T')=2. (q.e.d.)

Remark. Let T and Tx be two complex tori and T' and T[ their subtori

respectively. We call the pair (T', T[) I-pair if the image of T' by any homo-

morphism of T into Tx is contained in T[. If T and Tx have no non-trivial

I-pair, Tx is isogenous to the direct sum of copies of a simple torus. And we

have equations which are similar to i) and ii) in Theorem 3-2. Therefore if

Hom(7T, Tx) is of the maximal rank, Tx is isogenous to the direct sum of copies

of an ellipticcurve. Considering dual tori,we can see that T is also isogenous

to the direct sum of copies of an ellipticcurve. Thus Theorem 1-2 itself can

be proved.

Now let T be a complex torus such that a division algebra D is contained

in Ende(J') as a subalgebra. If T' is a non-trivialinvariant subtorus, 0 and 0'

in the proof of Theorem 3-2 induce the following Q-algebra homomorphisms;

0Q :EndQ(T)-+EndQ(T')

0fQ: EndQ(T)-*EndQ(T/Tf).
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0Q is injective on D. In fact,if not, there exists an element of D such that

$0(0):=0 then 0(7")= {0}. But such a <f>cannot be an isogeny. Similarly @'Q is

injective on D, too. Hence we may consider D a subalgebra of EndQ(I") and

EndQ(T/T').

Theorem 3-3. Let T be a complex torus of dimension n. If EndQ(T) con-

tains a division algebra of dimension 2n as a Q-vector space, T is isogenous to the

direct sum of some copies of a simple torus,

Proof. If T has a non-trivialinvariant subtorus T', Ende(T") contains a

division algebra of dimension 2n. But thisis impossible. Hence T has no non-

trivialinvariant subtorus, so that, by theorem 3-1, T is isogenous to the direct

sum of some copies of a simple torus, (q.e.d.)

§4. Complex tori of dimension 2.

Throughout this section T will denote a complex torus of dimension 2. In

this section we will study the structure of EndQ(T).

(1) The case that T is simple.

If T is simple any endomorphism is an isogeny, so EndQ(T) is a division

algebra. Let K be one of the maximal commutative subfields of EndQ(T) and d

its degree over Q, and d divides 4, so d=l, 2 or 4. If d ―＼,EndQ(r)=Q.

a) The case of d=L

In this case EndQ(T)―K is isomorphic to a quartic field Q＼_X~＼/{f{X))over

Q where f{X) is an irreducible polynomial of degree 4. By Theorem 2-3, there

exist complex numbers £,$ such that {£,£,C,1} is the set of all roots of the

equation f(X)=0 and T is isogenous to

Conversely let /(Z) be an irreducible polynomial of degree 4 and C,£ two com-

plex numbers such that {££,C, 1} is the set of all roots of the equation f(X)―0.

Then !F'(C,£)is a complex torus such that End°(T/(C,£)) contains a division

algebra Q(Q of dimension 4. If T'(C f) is not simple, by Theorems 3-3, ST'CC£)

is isogenous to the direct sum of two copies of an elipticcurve C―C/0-, z). In

other words there exist a)^GL{2, C) and i2eGL(4. Q) such that

z 0 0＼

0 1 z)
(1)

Let F be the minimal Galois extension of Q containing Q(C), G* its Galois group
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and o one of elements of G* such that £ff=f. Put a>--( ' j and (1) implies that

a, /5,az and pz are all contained in Q(C) and f, <5,fz and 8z are in Q(£) and

moreover ≪"=?', (≪£)"―/% fia=d, (f}z)"=dz. So 2 is contained in both Q(Q and

Q(£), and z"=z. We put K'―Q{z), then Q(Q is a quadratic extension of/f'and

I is the conjugate of C over K＼ Therefore Q(O = Q(|) and Q(C)=Q(I). By the

way there exist only four distinct elements in all C,p(p^G*), and there exist at

most two elements p of G* such that C"C- In fact if CP:=C £/>=£,so C must

be C or |. Hence the order of G* is 4 or 8. Making £,|, C, I correspond to

1, 2, 3, 4 respectively we consider G* to be a subgroup of the symmetric group

S4. Then G*=F4={zd, (12)(34), (13)(23), (14)(23)} or G*=F4W(12)F4= {id, (12),

(12)(34), (34), (13)(24), (1423), (1324), (14)(23)} where "zd" means the unit element

of the group.

Conversely if G* is one of those subgroups, putting z=C+l> it is easily seen

that T'(C 6) is not simple.

b) The case of d=2.

In this case K is isomorphic to a quadratic field Q{＼/m) where m is a

square-free integer. By Theorem 2-3 T is isogenous to

/a Vma b Vmb＼
fy(a
^ma b Vmb＼

＼cVmc d Vmd) ** Vc ―Vmc d ―Vmd/

for some complex numbers a, b, c, d. Since T is simple, abcdi=0, so we may

assume a=c=l. But f, ,― . ,― .) cannot be a period matrix of a simple

torus. Hence T is isogenous to a complex torus

M ―Vm d ―d-vmf

where b, d are complex numbers such that b, d&R if ra>0 and ft^J if m<0.

, ,.,,,, . /I Vm & bVm＼ .
^
. . . ,

Conversely if such m, b, d are given, (n ,― , , ,― j is certainly a period
＼1 ― Vm d ―dVm'

matrix of some complex torus T,(m: ft,d).

LEMMA 4-1. Tx{m; b, d) defined above is not simple if and only if the fol-

lowing conditioni*) is satisfied.

i*) There exist rational numbers x, y and an element z of Q(Vm) with are not

all zero and satisfy

(t) 2xbd-{-zbJrzad-＼-2y=0 {where za means the conjugate of z).

(tt) N(z/2)+xyeiN(Q(Vm)) (where N(z)=zz" for zs=Q(Vm)).

Proof. Let x, y, zu z≪,bu b*.b3,b4 are given rational numbers such that
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(x, y, zu z2)^(0, 0, 0, 0) and (bL> b2, b3, bi)^(0, 0, 0, 0) and consider simultaneous

equations with unknowns X, X2, Xs, Xit

(1)

that is

x=b-iXi―biXi

y=biX2―b2X1

z1=b1Xi-biXi-biX1+biXi

z.z:=b1Xz―mb'iXi―bzXlJrmbiX2

0 0 -bi bs

■bt bi 0 0

-bi b3 ―bz bi

-b3 mbi bi ―mb2

'X,

x2

x3

x,

X

y

Z-z

Put z=zi-＼-Vm~1z2. If x, y, z satisfy(f) and (1) has a solution Xi=at (z= l, 2,

3, 4), T1{m; b, d) is not simple. In fact let Q be an element of GL{A, Q) such

that

Q
a2 b2

as b3

a* bi

and a) an element of GL{2, C) such that

*

-a A

* */

where a=bi―b2.^mJrb-id―bid's/m,^bx+bzVm+bsb+bibVm. Then we have

by (1) and (f)

< Vm b bVm＼o_/Q

―Vm d ―dVm/ ＼*

0 * *＼

Conversely if Tx{m; b, d) is not simple, there exist such an a> and an Q. There-

fore there exist x, y, z which satisfy (t) and bltb2,bz, b±such that (1) has a

solution.

On the other hand (1) has a solutionif and only if

0

rank
b2

b,

b3

0

bi

mbi

0

0

-lh

-bt

-ba

0

b

b3

mbi

0

-bt

b,

h

0

by

―mb*
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It is easily seen that this equation is equivalent to the following equation (2);

(2) x(bl-mbl)-＼-y(.bl-mbl)+zi(b1bi-biba)-z1(b1bs~nibibi)=O.

Put £=bi-＼-Vmbz and r]―bs+Vmb4, and (2) implies

(3) ee'x+iM°y-(67]°z+6'i)za)/2=0.

There exist e and r/ which are not both zero and satisfy (3) if and only if (ft)

is satisfied. In fact, put v=2y7}―ze, and (3) implies

(N(z/2)-xy)eea=vva/4eN(Q(Vm)).

Hence the proof is completed.

Let R be a commutative ring and a, /3elements of R. We denote by (a, fi)R

the quatenion over R which is generated as a i?-module by {1, eu e2, e3} where

1 is the unit and e＼―a,el=fi, e1e2~―e2e1=e3.

We will calla complex torus of dimension 2 which isisogenous to Tx{m; b, d)

such that there exist x, y, z which satisfy(t) but there exist no x, y, z which

satisfy both (t) and (tt) of a quatenion type. By the above lemma a complex

torus of a quatenion type is simple.

Theorem 4-2. Let T be a simple complex torus of dimension 2. End(T) is

a non-commutative ring of rank 4 if and only if T is of a quatenion type. In

this case, T is isogenous to T^m; b, d) such that bd―q is a rational number and

Ende(T) is isomorphic to (m, q)Q.

Proof. First assume that T is of a quatenion type. Then we may assume

that T―Txim; b, d) and there exist x, y, z such that 2xbd-＼-zbJvzad-＼-2y―§.Since

(tf) is not satisfied,xy^O and we may assume x=l. If we put b'=-b―za, d'=

d―z and q―zza―y^Q, then b'd'=q and T=T1(m; b, d) is isogenous to 2＼(m;

b'',d') by an isogeny the rational representation of which is

M

1 0 ―Zi mzz

0 1 z% ―Zi

0 0 10

0 0 0 1

where z=z1-＼-zzVm and M is an integer which is large enough to make coeffi-

cientsintegral It can be easily seen that End^TVm; b',d'))is a quatenion

generated as a Q-module by four elements whose analyticrepresentationsare

(5 !) /O b＼ ( 0 Vmb'＼

＼d' 0/' ＼-Vmd' 0 /
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That implies the "if" part of the theorem, so we next prove the "only if" part

of the theorem. If End(T) is a non-commutative ring of rank 4, T is clearly

isogenous to Tx{m; b, d) for some complex numbers b, d, and we may assume

that T~ T^m; b, d). We denote by 6 the endomorphism whose analytic repre-

sentation is

with <h and

(
A
,―). Let d) be an endomorphism which is not commutative

V 0 ―vm/

(su) its analytic representation. Since

/Vm 0 ＼/su＼/Vm 0 ＼-i /s w＼_/ 0 ―2m＼

V 0 -VmAy fA 0 -Vm) ~＼ut)＼-2v 0 /'

There exists an endomorphism <//whose rational representation is f j for

some u', v'. Since End(T) is not commutative, the degree of (pf over Q is 2, so

there exist rational numbers alf a2 such that </>/2+ai0/+a2r=O. Hence

lu'v' 0 ＼ /O m'＼ .(
0 uV)+aL' o)+aa=O

That implies a^O and u'v' is a rational number. Let Q=(Qtj) be the rational

representation of <p',and

/O u'yl

W OAl

Vm b bVm＼_/l

―Vm d ―dVm/ Vl

■s/m b bVm

Vm d ―dVm

iJll iei2 '^13 **14

i*21 "*22 "*23 "*24

itf31 i^32 ≪≪>33"a34

i^41 ii/42 ^43 "*44

Put a1=Q11+VmQ2i and a2=Q31 + VmQil, and u'=a1-{-baz and v'―a＼+&a＼

where ax and <x2 are not both zero. Since u'v'is a rational number, putting

x-=a2a%/2, y―(a1a1―u/v')/2 and z=a2a"2, the equation (t) is satisfied. In fact

0=(a1+6a2)(≪^+rfa?)―u'vf=a2aa2bd+a2a1b+aa2a1d+a1a'i―u'v'. (q. e.d.)

(2) The case that T is not simple nor isogenous to the directsum of two

ellipticcurves.

If T has a subtorusof dimension 1, we may assume the period matrix of

T is
/I zx 0 w＼

VO 0 1 zj

for some complex numbers zu z2, w.

Lemma 4-3. The complex torus T=C2/(f
* ) is isogenous to the direct

VI)I) 1 Z%/

sum of two ellipticcurves if and only if w―q^Jrqxz1-＼-qiZ^qzziz<i. for some rational
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numbers q0, qu qz, q3.
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Proof. If w~qo-＼-qiZ1Jrq2z.2+qsz1z2, it is easy to transform ( * ) by

inn ^
some isogeny into ( * ). Conversely if T is isogenous to the direct sum

＼U U 1 2y

of elliptic curves, there exist an element o)=( ,} of GL(2, C) and an element
＼r a/

@=(aij) of GL{A, Q) and complex numbers x, y such that

that is,

/a azx
b

d

<

aw+bzz＼

cw-＼-dzJ

zx 0 w＼_/l x 0 0＼~

0 1 zj~ VO 0 1 y)

_/an + atlx ^12 1^22-^

aS2+a4Zy

au+a2ix＼

aai+alty'

Eliminating x from the equation of the firstline, we have

(a11azz―a2ia12)w=(az%ali―a2iali)+(a2ian―al2a21)z1-＼-(a12a23―a22a13)z2

Considering the second line,if necessary, we may assume a=an-＼-azlxi^Q. Since

zx is not a rational number, a―an+a21x and az1=an+a2Z^ are linearly independ-

ent over Q, hence ana2.2―a2ia12^Q. Therefore w is a linear combination of 1,

Z＼,zz, ZiZ-zwith coefficientsin Q. (q.e. d.)

Lemma 4-4. Let T be a complex torus which is not simple nor isogenous to

the direct sum of two ellipticcurves. Then T has the unique subtorus T' of

dimension 1, which is invariant. If EndQ(T)^Q, T' is isogenous to the factor

torus T/T'. Therefore T is isogenous to a complex torus of the following type;

T&',w)=C*lL
0 i
J.

Proof. Of course T has a subtorus T' of dimension 1. If there exists

another subtorus T" of dimension 1, T is isogenous to T'@T". Hence T' is

the unique subtorus of dimension 1. Now assume that Ende(7')^Q. If there

exists an endomorphism <j>such that <p{T)=Tr, T' is contained in the kernel of

<f>,so <j>induces an isogeny of T/T' to T'. If there does not exist such a <p,

Ende(T) is division algebra. We have seen in §3 that Ende(T) is considered to

be a subalgebra of Ende(r') and of EndQ(T/T'). Since EndQ(T)^Q, we have

Ende(7T/)=End°(7T)=EndQ(2T/T/). So T' is isogenous to T/T'. (q.e.d.)

Now to study the endomorphism ring of T2(z;w) we prepare a lemma.



On complex toriwith many endomorphisms 311

Lemma 4-5. Let T=E/G be a complex torus of dimension n and T' an

invariant subtorus of dimension r. If (lr Tf) and (ls T") are the period matrices

of T' and TJT' respectivelywhere r-{-s=n, then we can choose a C-base of E

and a Z-base of G such that the period matrix is of the following type;

/lr 0 T' * ＼

Vo 1, 0 T")-

Then the analytic representation o> and the rational representation Q of any

element of End^T) are matrices of the following types;

* *

ft>=

0 ±

y―

r

1

t

s

I

/―.

*

Q=

0

*

0

*

*

*

*

*

0

*

0

r
1

t

s

T

r

I

T

s
1

Proof. Putting T--=E/G, T'^E'JG' (EaE'), E' is invariant by the linear

extension of any endomorphism. The lemma follows immediately.

We now pass on to the consideration on a complex torus

and EndQ(T2). Let

w―

7V=7Vz;u/) =

＼r
oj

<

and Q=

0 z

1 0 z '

flu fliz 6n b12

0-21 ^22 O2.I O22

C11 Cj2 an Gj2

^21 C22 "21 "22

be the analytic representation and the rationalrepresentation of an endomorphism

of T2. Y=a21=bo1^=c2i=d21―0 by lemma 4-5. Since

/I 0 z w＼ /I 0
Ho

1 0 *H> 1

z

0 >
we have

i) cnz2jr(an―dn)z―6n=0

ii) c22z2+(a2z~ d22)z―bZ2=0

lii) Kan―dn)+(cn+ciZ)z} w~b12+(d12―a12)z~-c12z2
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a) The case of [Q(*):Q]^3.

Then i) and ii)imply that an―du, a22,=d22,cn=--bli---c22=--b22-=§,and hence

111)implies

(cn―diz)w=b12+(di2―al2)z―c12z＼

If an^d.22, T2 is isogenous to the direct sum of two ellipticcurves. There-

fore an=d22 and b12=c1o.=0, d12=a12. Hence the rational representation of

Ende(T2) is

a b 0 0

0 a 0 0

0 0 a b

0 0 0a

The dimension of EndQ(T2) over Q is 2, and the analytic representation of a

base is

A On /O K

Vo v' Vo o^

EndQ(T2) is isomorphic to Q[Z]/(Z2).

b) The case of [Q(z):Q]=2.

Then we may assume that z=Vm where m is a square-free integer, i) and

ii)imply an=dn, mcn~bn, a2Z=d2z, mc^―b^. If (a11―d22)+(cni'C22)z^0, w is

an element of Q(z) and hence T2 is isogenous to the direct sum of two elliptic

curves. Therefore (an―dZ2)+ {cllJrc^)z = Q. This equation implies an = d2z,

^11+^22=0 and by≪―mc12,dn=a12. It follows that the rational representation of

Ende(T2) is

a b me d

0

c

a 0 ―777

dab

The dimension of

base is

0 -c 0

EndQ(T) over Q

Wo i)' e^

a

c

I

IS

/Vm ―w＼

＼ 0 -Vm/

a, b, c, d^Q

1

4 and the analytic representation of a

fi l＼ ft

There are the following equation among those four elements;

Hence Ende(T) is isomorphic to (m, 0)Q.

(3) The case that T is isogenous to the direct sum of two ellipticcurves.
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There is no difficultyin this case. We may assume that T―T'@T" for

some ellipticcurves T' and T". If T' is isogenous to T", En69{T)~

M{2, Ende(7T0)- And if T' is not isogenous to T", Ende(T)^Ende(T/)cEnd°(T/').

Now we will summarize the facts we have seen in this section. Let m, m'

be integers which are square-free and z, z' complex numbers which are not

contained in R nor any quadratic fieldover Q. Consider complex tori of the

following types.

I)

/I C C C3＼r(C, f)=cv(1 * ^ J.)

where £,£ are algebraic numbers of degree 4 over Q such that {£,£,C, f} is

the set of allconjugates of C over Q. Moreover if we consider the Galois group

G* of F―Q(£,£,C, f) to be a subgroup of S4 by the correspondence 1<―>C,

2<―>£,3<―>C, 4≪->|, G is not V4 nor 74W(12)y4.

II) (complex tori of quatenion types)

T^iOn b, d)―C2{ /― /―)
M -Vm 6?―dVm/

where b, d are complex numbers which are not contained in Q(Vm), and bd―q

is a rational number which is not contained in N(Q(Vm)). And there is no

element a of Q(Vm) but zero such that ab+aad is a rational number. Moreover

if m>0, &, <iare not real number, and if ra<0, 6^rf.

HI) Simple complex tori of the following type

M ―vm a ―dVm/

which are not isogenous to any complex torus of the type (I) nor the type (II).

If m>0, b, d are not contained in R, and if m<0, b^d.

IV)

W ( f― ＼ ^2/Z1 ^m 0 W ＼

where m<0, and w is not contained in Q(Vm).

V)

T.2(z;w)=C2/
/I z 0 w＼

Vo 0 1 z)

where w is not containedin Q+Qz+Qz2.

VI) T3(Vm, Vm)=C/(l VmWC/a Vm)
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where m<0.

YE)
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Ts(Vm, Vm') = C/(l V?nWC/(l Vmr)

where m, in'<0 and mi^m!.

＼I)

where ra<0.

K)

X)

T3(Vm,2)=C7(l Vm)0C/(l z)

r,(*,*)=cy(iz)ec/(i*).

Tiz, z')=c/a z)@c/a zf)

where z'&Q(z).

Then a complex torus T of dimension 2 is isogenous to a complex torus of

one of the above types if and only if EndQ(T) is isomorphic to a Q-algebra of

the following corresponding type.

I)

n)

in)

IV)

V)

VI)

w)

W)

K)

X)

Algebraic fieldsQ(Q of degree 4 over Q.

Quatenions (m, q)Q such that q is not contained in N(Q(Vm)).

Quadratic fields Q(Vm).

Quatenions (m, 0)Q.

M(2, QWm)) where m<0.

Q(Vni)(&Q(Vm?) where m, ;n'<0, mi-m'.

Q(Vm)RQ where ?n<Q.

M(2, Q).

§ 5. Abelian varietis of dimension 2.

A complex torus T is called an abelian variety if T can be embedded in

some projective space, in other words, if there exists an ample Riemann form

on T. A complex torus of dimension 2 of the type VI), M), W), DC) or X) is

an abelian variety. And a complex torus of the type IV) or V) is not an abelian

variety. Then we will study complex tori of types I), n) and in), that is,

simple tori.

Let T―E/G be a complex torus of dimension n where E is C-vector space

and G is its lattice subgroup. Fix bases of E and G, and let G be the period

matrix of T with respect to those bases. Put (C C) = ( p J where Ce

M(2nXn, C). There exists a one-to-one correspondence between the set of

hermitian forms on T (namely the set of hermitian forms H on ExE such
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that H(g, gr) is integral for any g,g'^G) and the set of skew-symmetric

matrices M of degree In with coefficientsin Z which satisfy

(1) {CMC=0.

In this correspondence an ample Riemann form on T corresponds to an M which

satisfies(1) and

(2) -v^PCMOO (namely V^VCMC is positive definite.)

T is an abelian variety if and only if there exists a skew-symmetric matrix M

which satisfies(1) and (2). If G=(1B T), C=("T)(T-T)-1. Put M=(^
^)

where A, B, D^M(n, Z) and lA = -A, [D--=-D. Then (1), (2) imply respec-

tively

(D 'TAT-'TB+'BT+D^O,

i
(2') V^i'TAT-'TB+'BT+D^O.

When (I')is satisfied,(20 is equivalent to the following condition;

(2") V^K'TA+'BYT-T^O.

When n=2, put T=

implies
V 0/ ＼―x 0/ Vr s/ V― v 0/

i) x(ad-rP)-(qa+sr)+(pp+rd)+y=O

and (2")implies

^c
'-xr r+xa＼/a-a i3-/3＼
-xd s+xB/＼f-r 8-8 J'

which is equivalent to the following two conditions;

a) V^l{p(a―a)+q(T―r) + x(af―ar)}>0,

b) (-l){(p-xr)(s+xP)-{r+xa)(.q-xd)} {(a-a)(d-d)-(f~r)(P-P)} >0.

When i) is satisfiedb) is equivalent to the following;

c) {-xy+(ps-rq)} {(a-a)(8-d)-(f-r)(P-P)} <0.

Now let T be a simple torus of dimension 2 with non-trivialendomorphisms.

First we prove that if T is an abelian variety Ende(T) contains some quadratic

fieldover Q. In fact,if it does not, T is isogenous to a complex torus of the

type

/I C C2 C＼

7Vi e p ?)
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where the Galois group G* of Q(C, £,C,£)over Q is isomorphic to the alterna-

tive group At or the symmetric group 54. T is isogenous to

If T is an abelian variety, so is T', hence there exist integers x, y, p, q, r, s

which are not all zero and satisfyi), that is,

0=*(C2!2)- W(-IC)+s(C+a} + {/>(-fC(C+f))+K£2+£C+C2)} +y

But if G*=Ai or S4, this is impossible. Therefore if T is an abelian variety,

Ende(7") contains a quadratic fieldQ(Vm). Then T is isogenous to a complex

torus

w r u j＼ /-2//1 ^m b bVm＼
| T^m>b>d)=C＼l-Vm d-dVm)

for some complex numbers b, d. Since thisis isomorphism to

Ti=cy
c 0 u mv＼

1 v u )

where u=(b+d)/2 and v=(b―d)/2Vm, T is an abelian variety if and only if

there exist integers x, y, p, q,r, s which satisfy the following i'),a') and c').

i') bdx+zb+zad+y=O (where z=Zi-{-z2/Vni, zl=(r―q)/2 and z―(pm―s)/2.)

a') V^ipiu―u)+q{v―v)Jrx(uv―vu)} >0

c') {-xy+(ps-rq)}F(b, d)<0 (where F(b, <*)= {?
-b){d-d) if m>0＼
-d)(d-b) if m<0.)

Lemma 5-1. // m>0, there exist x, y, p, q,r, s which satisfy V) and a'),c').

Therefore T is an abelian variety.

Proof. Put x=y―0, r―q, s=mp, and i')is of course satisfied and ar), c')

imply

a") V^l{(p+q/Vm)(b-b)+(p-q/Vm)(d-d)} >0

c") (mp2-q2)(b-b)(d-d)<0.

Put XMp+q/V'm)V^l(b-b), Y=(p-q/VmW-T(d-d), and a"), c") imply

X+Y>0 and XY>0. We only have to take p, q which make X and Y positive,

(q.e.d.)

Lemma 5-2. // ra<0 and T is not of a quatenion type, T is not an abelian
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variety.

Proof. Since T is not quatenion type, x, y, z which satisfy i') are all zero,

so x=y=0, mp=s, r=q. Then if m<0, c') implies

(mp2-q2)(b-d)(d-b) = -(mp2-q2)＼b-d＼2<0.

But since m<0. this is impossible. Hence T cannot be an abelian variety, (q. e. d.)

Now we assume that T is of a quatenion type. There exist an integer g0

which is not contained in MQ(Vra)) such that T is isogenous to

T,_r2//1
Vm b bVm＼

where bd=q0. If ra>0 or qo>0, T" is an abelian variety by Lemma 5-1. So

we assume m<0 and qo<O. If there exists an element z of Q(Vm) such that

zb+z"d is a rationalnumber r0, putting %=0, ;y= ―r0,the condition i*) of Lemma

4-1 is satisfied. Therefore since bd=q0 is a rational number, there exists no z

but zero which satisfiesi') with some x, y. Hence if 7" is an abelian variety,

y=―x0, r=q, s―pm and

-(x2q0-＼-mp2-q2)＼b-d＼2<0.

But this is impossible. Therefore we have proved the following lemma.

Lemma 5-3. Let T be a complex torus of a quatenion type such that End^J1)

= (m, q)Q. If m>0 or q>0, T is an abelian variety. If ra<0 and q<0, T is not

abelian variety.

And the followingtheorem has been proved.

Theorem 5-4. Let T be a simple complex torusof dimension 2 with non-

trivialendomorphisms. Then T is an abelian varietyif and onlyif EndQ(T)

containsa real quadraticfieldover Q as a sub-Q-algebra.

Remark. Let p(T) be the rank of the additive group of allhermitian forms

on T, which is equal to the Picard number of T. When T is a simple torus of

dimension 2 such that End(T)^Z, we have seen above that if End°(T) contains

no quadratic fieldover Q, p(T)―0, if End°(7") contains a quadratic field but T

is not of a quatenion type, p(T)=2, and if T is of a quatenion type, p(T)=3.
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