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BOUNDED DOMAINS
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Akio Kodama and Hirohiko Shima

Introduction.

This paper is a continuation of our previous one [9] and we retain the

terminology and notations there.

Let M be a Kahler manifold and let Aut (M) be the group of holomorphic

isometries of M. M is said to be homogeneous if the group Aut (M) acts transi-

tively on M. In [9], the second named author investigated the structures of

homogeneous Kahler manifolds admitting simply transitive solvable Lie groups.

In the present paper, by using the same methods as in [9] we show the following

Main Theorem. Let M be a connected homogeneous Kdhler manifold of

complex dimension n on which a solvableLie group G acts transitivelyas a group

of holomorphic isometries. Assume that one of the following conditionsis satisfied:

(C.I) The canonical hermitian form h of M is non-degenerate.

(C.2) M contains no complex line, that is, there is no holomorphic map of C

into M except constant maps.

Then M is holornorphicallyequivalent to a homogeneous bounded domain in Cn.

As an immediate consequence of this theorem, we obtain the following

Corollary. Let M be a homogeneous Kdhler manifold which is homeo-

morphic to an Euclidean space. We assume that the identity component of Aut (M)

has finite center and that one of the conditions(C.I) and (C.2) in the Main Theo-

rem is satisfied. Then M is hoiomorphically equivalent to a homogeneous bounded

domain.

Recall that for a homogeneous complex manifold M the condition (C.2) is

equivalent to the hyperboiicity of M [8]. Therefore, our Corollary provides a

partial affirmative answer to a problem posed by Kobayashi [6, Problem 12, p,

133]. In a recent paper [10], Shimizu investigated the structures of homogeneous
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Kahler manifolds of complex dimension two and proved that the "fundamental

conjecture" due to Vinberg and Gindikin [3], [11] is true in this case. Using

this,he also classifiedcomplex two dimensional homogeneous Kahler manifolds

and resolved affirmatively the Kobayashi's problem cited above for complex two

dimensional Kahler manifolds.

Recently, Dorfmeister informed us that he succeeded in making clear the

structures of homogeneous Kahler manifolds admitting a transitive solvable Lie

group and gave in such a case an affirmative answer for Vinberg-Gindikin's

fundamental conjecture [2].

This paper is organized as follows. In section 1 we prove our Main Theorem

in the case where G acts simply transitivelyon M. In section 2 we deal with

the general case and reduce the problem to the special case in section 1. In

section 3 we give a proof of Corollary.

1. Proof of Theorem: Simply transitive case.

In this section we always assume that G acts simply transitivelyon M.

We denote by (g, /, p) the Kahler algebra corresponding to G. We set

0(Z)=Trfl(ad(/*)-/-ad(*)).

V(X, Y) = a/2)'<j>(LJX,O for X, 7£3j

and call<p and rj the Koszul form and the canonical hermitian form of (g, /, p)

respectively. If M satisfiesthe condition (C.2), then (g, /, p) satisfiesthe con-

dition

(C.2)' If IJX, X]=Q, then X=0.

In fact,if there exists a non-zero element X in g such that ＼_JX,X]=0, then

{JX}-＼-{X} is a /-invariant commutative subalgebra and so it corresponds to a

locally flathomogeneous Kahler submanifold of M, which contradicts(C.2).

In order to prove our Main Theorem it is enough to verify the following

theorem by the same reasoning as in [9].

Theorem 1. Assume that one of the following conditions is satisfied:

(C.I)' The canonical hermitian form rjis non-degenerate.

(C.2)' // IJX, X2=0, then X=0.

Then the canonical hermitian form 7]is positivedefinite,and hence (g, /, </>)

is a proper J-algebra.

In [9] we already proved Theorem 1 under the condition (C.I)'. For the
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purpose of later use, we shall now recall the proof. We showed by induction

on n that there exists decomposition

(1.1) 0=wS({/£*} + {£*}+l>≫)+gB
*=1

of g Into direct sum of vector spaces with the following properties:

1) Putting Qk― {JEk} + {Ek} -＼-pk,Qk is a /-invariant subalgebra such that

UEk, Ek-] = Ek, UEk> pk-]Cipk

LEk!pky-= {0}, lpk, pk-]d{Ek),

Jpk = Pk

and the real parts of the eigenvalues of ad(JEk) on pk are equal to 1/2.

n-l
2) If we put g1 = 8 and g*+1:= 2 9i+8n, then g*+1 is a /-invariant sub-

i=k +l

algebra such that

UEk, g*+1]cgfe+1, [£,,g*+1]={0},

[D≫, g&+1]ci|),

and the real parts of the eigenvalues of ad(JEk) on qk+1 are equal to 0.

3) 7] is positive definite on !]({/£*} + {Ek}+pk) and the factors of the

decomposition (1.1) of g are mutually orthogonal with respect to -q.

For the proof of the above facts we used the following two propositions

successively.

Proposition 2. Suppose we have a decomposition (1.1) with the properties

given there for an integer n^l. Then there exists Eni^0 in g such that

UEn, Enl = En and [_En, g≫]<={£,}.

Proposition 3. Let En be an element in g as in Proposition 2. Then we

obtain a decomposition

(1.2) g"={/£re} + {£re}+^+gra+1

of Qn into direct sum of vector spaces such that: ,

1) Qn―{JEn} + {En}+pn and Qn+1 has the properties stated as above.

2) 7]is positivedefiniteon Qn and the factors of the decomposition (1.2) are

mutually orthogonal with respect to rj.

The condition (C.I)' was only used for the proof of Proposition 2 and the
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results of Proposition 3 are valid only if g" admits an element En as in Proposi-

tion 2. Therefore, for the proof of Theorem 1 it sufficesto show Proposition 2

under the condition (C.2)'.

Now we shall prove Proposition 2 under the assumption (C.2)'. We first

show that gn contains a one dimensional ideal. Since qn is solvable, by Lie's

theorem there exist E, Feg" such that J5=£0or F^O and

IX, E-]^l(X)E+n(X)F,

IX, Fl = -~fi(X)E+Z(X)F

for all Xeg", where X and p. are linear functions on g". Let r be the ideal of

g* generated by E and F. Assume that E, F are linearlyindependent. Setting

Qf=Jt+x, (g',/, p) is a Kahler subalgebra of Qn. Let -q1 and </>'denote the

canonical hermitian form and the Koszul form of (g',/, p) respectively. We

have now two cases to consider. We consider the first

Case 1: 77'is non-degenerate on r.

If we suppose (p'=0 on r, then

2rj＼X,Y)=f(UX, 0=0 for all X, Fer,

which contradicts our assumption. Thus (p'=£0on r and so there exists a unique

non-zero element Aer such that

We have then

2r]'{A, X)=(f}'{X) for all ler.

2r/(UA, A], X)=<I>'{LJX, UA, AJ＼)

=<f>'(LUX, JA1, AJ)+<P'(IJA, UX, AJ])

= 4>'(UUX, A1+JIX, JA], AD+f(UA, UX, AH)

=4>'<UX, AD+pdX, JAD+pdJX, A])

=(I>'(UX, AD=2V'(A, X)

for alller. This implies

(1.3) UA,A1 = A.

Choose a non-zero element B^x in such a way that A, B is a basis of r and

IX, Al = X/(X)A+fjt/(X)B,

(1-4)

IX, Bl = -p＼X)A+?L＼X)B

for all leg", where 1' and // are linear functions on Qn (Cf. [9, §3]). By a

routine calculation,we have then by using (1.4) that
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</>'(C)=U'UC) forCer.

Moreover,it followsfrom (1.3)and (1.4)

(1.6) njA) = l and fi'(JA)= O

By using (1.4),(1.5) and (1.6),we obtain

rj'{A, A＼ V'(A, B)＼

ri＼B, A), V'(B, B)

83

which yields fx'(JB)=£O,because rj' is non-degenerate. On the other hand, it

follows from Jacobi identity that

0=11/4 JB＼ Al + UiJB, A], m + HA, JA], JB-]

= -X'UB)fi'UB)A+a-fJi'(JB))fi'UB)B .

Therefore we conclude that X/(JB)―0, //(/£)= 1 and so

UAA] = A, UB, A~]= B,

UA,B] = B, UB,B3 = -A.

This combined with the relation(K.5) in [9,§1] yields a contradiction:

0=pdJA, 51 JB) + p(£B,JB＼ JA)+p(£JB, JA}, B)

= p(B)JB)+p(A>JA)<0.

Next we consider the second

Case 2: rj'is degenerate on r.

Let A be a non-zero element in r such that r]'(A,X)―0 for all Jer. Then

we have

0=f(UA, E~])=KJA)(P'{E)+ptUA)4>'{F),

0=4>'<lJA, Fl)=-fiUAW(E)+KJAW(F).

This implies X(JA) = ft(JA)=0 or 0'(£)= ^'(F)=O. If X(JA)=fiUA)=0, then we

obtain [JA, E2 = UA, F]=0 and so [JA, A}=0. This contradicts the condition

(C.2)'. Suppose <p'(E)=<p'(F)=0. Since f(C)=4Z(JC) for all Cer. we have

JLUE)=X(JF)=0,

and hence

UE, Er]=ft(JE)F, UE, Fl = -pUE)E ,

IJF, El=/tUF)F, UF, n = -t*UF)E

This combined with Jacobi identity yields
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0=[I/£, E-],JF] + ＼LE,JFl m + UF, JE1 El

=-.(fi(JEr+fiUFY)-F,

and therefore pt(JE) = fi(JF)= O. Thus we conclude

[A r]={0},

which contradicts the condition (C.2)'.

Therefore, in any cases,it is impossible that E, F are linearly independent.

Consequently, r is a one dimensional ideal of gn. Let E be a non-zero element

in r. By the condition (C.2)' we have then

[JE, E]=XE for some 1^0.

If we put En = (l/A)E, En has the desired property in Proposition 2, completing

the proof.

2. Proof of Theorem (continued): General case.

Let G be a connected solvable Lie group acting transitivelyon M and let K

be the isotropy subgroup of G at a point o of M. We may identify M with the

quotient space G/K. We denote by g the Lie algebra of G and by ! the sub-

aSgebra of g corresponding to K.

We firstprove the theorem, under the condition (C.2). Since G is solvable,

the topological closure G of G in Aut (A/) is also a solvable Lie group. There-

fore, without loss of generality we may assume that G is closed in Aut (M) and

accordingly K is compact in G [6]. Now, putting n=[g, g], we here claim

ttn1^"{0}･ Indeed, let X be an arbitrary element in nr＼i. Then, since ! is the

subalgebra corresponding to the compact Lie subgroup K and n=[g, g] is a nil-

potent Lie subalgebra, ad (X) is a semi-simple and nilpotent endomorphism of g.

Hence a.d(X)―0. On the other hand, we know that the center of g is trivial

[6, p. 133]. Therefore we have X=0, as desired. Next, choose any vector sub-

space a of g in such a way that g= f+n+a is a direct sum of vector subspaces.

Put §=n+fl- Then § is an ideal of g. Let S be the analytic subgroup of G

corresponding to§. Since Sr＼K is discrete(and hence finite)and dimS=dim§

=dim g/!=dim M, S acts transitivelyon M [7, Corollary 4.8, p. 178], so that

M=S/(Sr＼K) and k : S=S/ {e}->M=S/(SnK) is a covering map, where z is

the natural projection and e is the identity element of S. Therefore, S admits

an 5-invariant Kahler structure such that %: S-+M is holomorphic. Being a

covering manifold of the hyperbolic manifold M, S is also hyperbolic [6]. As

an immediate consequence of section 1, we now conclude that S is holomorphically
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equivalent to a homogeneous bounded domain, and hence so is M [5, Proposition

6.3,p. 44].

It remains to prove the Main Theorem under the condition (C.I). But the

proof can be done along the same line as in the firstcase as follows. Replacing

G by the closure G if necessarily,we may assume that G is closed in Aut (M).

So K is compact. Since the canonical hermitian form h of M is non-degenerate

by our assumption, we know that the center of q is trivial[4]. Therefore, we

obtain a holomorphic covering space %: S=S/ {e}->M=S/(Sr＼K) with the same

properties as in the firstcase. Itis obvious that S=S/{e} has the non-degenerate

canonical hermitian form. Repeating the same arguments as in the firstcase,

we therefore obtain the Main Theorem, completing the proof.

3. Proof of Corollary.

Let G be the identity component of Aut (M) and K the isotropy subgroup

of G at a point o of M. Then K is a maximal compact subgroup of G, since

M=G/K is homeomorphic to an Euclidean space. Therefore, denoting by Z the

center of G, we can see by our assumption that Z is contained in K. Hence Z

is trivial,because G acts effectivelyon M. Form now on, we identify G with

the matrix group Ad (G). Let G=G1G% be a Levi decomposition of G, where

Gx is a connected semi-simple Lie subgroup of G with finitecenter and G2 is the

radical of G. Let G1=K1Si be a Iwasawa decomposition of Gl} where Kt is a

maximal compact subgroup in Gx and Si is a closed solvable Lie subgroup of Gx.

Then, since Kx is a compact subgroup and K is a maximal one in G, there exists

an element go^G such that g^1･K1-g^CLK. Thus, putting o=g0-o and H=G2SU

we have K1-o=o and accordingly

M=G'd=GiS1K1'O=H-d,

which says that the solvable Lie subgroup H of Aut (M) acts transitivelyon M.

Our Corollary is therefore an immediate consequence of the Main Theorem, com-

pleting the proof.
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