
TSUKUBA J. MATH.

Vol. 4 No. 2 (1980). 269-279

ON PROJECTIYE NORMALITY AND DEFINING EQUATIONS

OF A PROJECTIVE CURVE OF GENUS THREE EMBED-

DED BY A COMPLETE LINEAR SYSTEM

Bv

Masaaki Homma

Introduction. Let $L : Cc*Ptl°a:>~1be the projective embedding of a complete

non-singular curve C of genus g by means of F(L), where L is a very ample

invertible sheaf on C. We will study the homogeneous coordinate ring and the

ideal of definitionI(L) of $L(C) in the case g=3. Our results are summarized

in the following table. (If the genus of C is less than three, answers to the

same kind of problems are easy.) In the table we will say that the homogeneous

ideal I(L) is generated strictly by its elements of degrees vu ･･･,vm if I(L) is

generated by its elements of degrees vlf･･■,vm and I(L) is not generated by its

elements of degrees vu ･■■,vjt･･･, vm for any v, (l^j'^m), where 0, means that

Vj is omitted.

d^3

d=4

d=5

d=6

There is no very ample invertible sheaf of degree d^3 on C.

If C is hyperelliptic,then C has no very ample invertible sheaf oi

degree 4.

If C is non-hyperelliptic,then there is only one very ample invertible

sheaf of degree 4 on C, which is the canonical sheaf (oc. </>a>c(C)is

projectively normal. The homogeneous ideal I(o)c)is generated strictly

by its element of degree 4.

There is no very ample invertible sheaf of degree 5 on C.

The set of very ample invertible sheaves of degree 6 on C coincides

with

Pice(C)-{wc(P+Q)＼P, QeC} .

If C is hyperelliptic,then for a very ample invertible sheaf L of degree

6 on C, <j>l(C)is not projectively normal and the homogeneous ideal I(L)

generated strictlyby its elements of degrees 2 and 4.

If C is non-hyperelliptic,then for a very ample invertible sheaf L of

degree 6 on C, <Pl(C)is projectively normal and the homogeneous ideal

I(L) is generated strictlyby its elements of degree 3.
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rf=7

d^8
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Any invertible sheaf of degree 7 on C is very ample. For an invertible

sheaf L of degree 7 on C, $l(C) is projectively normal and the homo-

geneous ideal I{L) is generated strictlyby its elements of degrees 2 and 3.

Any invertible sheaf of degree <iSg8 on C is very ample. For an

invertible sheaf L of degree d^S, <pL(C)is projectively normal and the

homogeneous ideal I(L) is generated strictlyby its elements of degree 2.

Notation and Terminology. We fixan algebraicallyclosedfieldK. We use

the word "curve" to mean a complete non-singularcurve over K. For a finite

dimensional vector space V, SmV means the m-th symmetric power of V. Let

L be an invertiblesheaf on a curve C. We denote by Lm the m-th tensorproduct

LRm. For the vector space of globalsectionsF{L), we define Im(L) (or simply

/≪)and I(L),by

/m(L)=Ker tSmr(L) ―> T(Lm)]

and

7(L)= c/,(£).

We denote by a>0 the canonical invertible sheaf on C, and by Picd(C) the set of

invertible sheaves of degree d on C. For a coherent sheaf 3 on C, h＼3) is the

dimension of the vector soace HHC. £F)over K.

§1. Known facts.

This section consists of two parts. In the first part we will state some

general facts concerning our problems. In the second part we will determine

the set of very ample invertible sheaves on a curve of genus three.

Let L be an invertible sheaf on a projective variety X. According to

Mumford [4], we say that L is normally generated if L is ample and the natural

map F(L)Rm~->r{Lm) is surjective for any positiveinteger m. Obviously, T(L)Rm

-*r{Lm) is surjective for all m^l if and only if F(Lm)(g)r(L) ―T(Lm+1) is surjec-

tive for all mSsl. If X is a normal variety and L is normally generated, then

L is very ample and ^i(C) is projectively normal, and the converse is true too.

The following theorem was proved by Mumford [4, Corollary to Theorem 61.

Theorem 1.1. Let L be an invertible sheaf of degree d on a curve of genus

g. If ds^2gJrl, then L is normally generated.

A proof of the following "Noether's Theorem" is found in [61.
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Theorem 1.2. Let C be a curve. Then the following conditions are eqivalent:

(1) C is non-hyper elliptic,and

(2) the canonical sheaf coc is normally generated.

Concerning the ideal of definitionI(L) of $l(C), Saint-Donat [5] proved,

Theorem 1.3. Let L be an invertible sheaf of degree d on a curve of genus g.

(a) // d^2g+l, then I(L) is generated by I2 and Is.

(b) // d^2g+2, then I(L) is generated by L.

In the previous paper [3], we learned a slight generalization of Theorem 1.3(a):

Theorem 1.4. // L is a normally generated invertible sheaf on a curve C

with H＼C, L)―(0), then I(L) is Generated by h and L.

An invertiblesheaf L on C is very ample if and only if F(L) separatestwo

distinctoointsand infinitelynear noints,so we have:

Proposition 1.5. An invertible sheaf on C is very ample if and only if

h＼C, L(-P-Q))=h＼C, L)~2

for any P, QeC (including the case P=O).

A precise proof of Proposition 1.5 can be found in [2, IV Proposition 3.1].

Corollary 1.5.1. // L is an invertible sheaf on a curve of genus g, whose

degree is not less than 2g-+l, then L is very ample.

Corollary 1.5.2. An invertiblesheaf L of degree 2g on a curve C of

genus g is not very ample if and onlyif L is isomorphic to a)c(P+Q) for some

toints P, OeC (mav be P=O).

The following two propositions are useful to determine the set of very ample

invertible sheaves on a curve of genus three. The first one is "Halphen's

Theorem" [2, IV Proposition 6.1], and the second one is famous as "Clifford's

Thonrpm"

Proposition. 1.6.

Then C has a very

only if d^g+3.

Let C be a curve of genus g^2, and let d be an integer,

ample invertiblesheaf L of degree d with h＼L)=O if and
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Proposition 1.7. Let L be an invertible sheaf on C with h°(L)>0 and

hKL)>0. Then

2(/i°(L)-l)^degL.

Furthermore, equality occurs if and only if either L = OC or L^o)c or C is

hyperellipticand L = (f*OPi(l))Rr(O^r^g―1), where f: C-+P1 is a double covering.

Corollary 1.7.1. Let C be a curve of genus g^l, and let L be an invertible

sheaf on C with h＼L)>Q and h＼L)>0. Then

h＼L)^g.

Furthermore, equality occurs if and only if L = a)c.

Remark 1.8. Let L be an invertiblesheaf on a curve of genus g^2. Then

L is very ample if and only if degL^2^+l.

Proof. In the case of£=0 or 1, our remark can be proved easily. If g―1 and

L is very ample, then we have h＼L)=0 by Corollary 1.7.1. Therefore our remark

follows from Corollary 1.5.1and Proposition 1.6.

Proposition 1.9. Let C be a curve of genus three. Then we have

d The set of very ample invertible sheaves of degree d on C.

d^3 None.

d=A
None, if C is hyperelliptic.

{(oA, if C is non-hyperelliptic.

d=b None.

d=6 Pic6(C)-{(oc(P+Q)＼P, Q^C) .

d>7 Picd(C).

Proof. In the case of d^6, our results follows from Corollaries 1.5.1 and

1.5.2. By Halphen's Theorem there is no very ample invertible sheaf L of degree

d2S5 with h＼L)=0. By virtue of Corollary 1.7.1,a possibilityof a very ample

invertible sheaf L of degree d^5 with /i1(L)>0 is only the canonical invertible

sheaf o)c. On the other hand, o)c is very ample if and only if C is non-hyper-

elliptic.This completes the proof.
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§2. Protective normality.

In this section we will determine the set of normally generated invertible

sheaves on a curve C of genus three. The answer to the same kind of problem

for a curve of genus g^2 is easy. Indeed, by Remark 1.8 and by Theorem 1.1

an invertible sheaf L is normally generated if and only if L is very ample.

In the case of genus three, by Theorem 1.1 an invertible sheaf L is normally

generated if deg L^l, and by Theorem 1.2 the canonical invertible sheaf o)c is

normally generated if C is non-hyperelliptic. Therefore, to show our tableit

sufficesto prove the following theorem.

Theorem 2.1. Let C be a curve of genus three,and let L be a very ample

invertiblesheaf of degree 6 on C. Then L is normally generated if and onlyif

C is non-hyperelliptic.

Proof. (Step 1) First we will show that L is normally generated if and only

if <j>L(C)is not contained any quadric surface in P3. Indeed, L is normally

generated if and only if F(Lm)RF(L)->F(Lm+1) is surjective for all ra^l. By

the lemma of Castelnuovo [4], these maps are surjective when m^2. Hence,

L is normally generated,

&F(L)RF(L)―>F(L2) is surjective,

&S2F(L) ―> F{L2) is surjective.

Since dim S2F(L)―dim F(L2), these conditions are equivalent to the condition that

S2F(L)->F(L2) is injective. The last condition means that <j>L(C)is not contained

any quadric surface in P3.

It is well known that a quadric surface in P3 is a union of planes (may be

non-reduced) or an irreducible quadric cone, which is a projective cone of a 2-

uple embedding of Pl, or a non-singular quadric surface, which is a Segre

embedding of P1xP1 into P'6. Obviousely, a union of planes dose not contain

(f)L(C).In the next step, we will show that an irreducible quadric cone does not

contain $L(C), either.

(Step 2) Let F be an irreducible quadric cone with vertex 0 in Pz. Let

P3XP2I3F―>FdP3

be the monoidal transformation of F with center 0. Then p2＼F factors through

a 2-uple embedding of P1:
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p t＼l
^P.

pi

and then F-^P1 coincides with the geometrically ruled surface Proj (S(Opic

Opl(-2)))-^P1 [2, V(5) Example 2.11.4].

If Co is the inverse image -k~1(O)of O and / is a fibre of q of a point,

then Pic (F) is isomorphic to ZC0Q)Zf. A canonical divisor KF of F is linearly

equivalent to ―2C0―4/, and the intersection pairing on F is given by

Q=-2, C0-/=l and /2=0 [1, p. 33].

Let D be a curve of genus g on F, and let I) be the strict transform of D

on F. Assume that D is linearly equivalent to aC0-＼-bf. Then by the adjunction

formula, we have

2g-2=-2(a2-ab+b).

If the vertex 0 lies on D, then 1=£)-CO― ―2a+6. Therefore we have g=a(a ―1),

so £is even. If the vertex 0 does not lie on D, then 0=2) ･(?()=―2a-＼-b. Therefore

we have g=(a ―I)2, so g is a square number. We conclude that any curve of

genus 3 does not lie on F.

(Step 3) In this step, we will show that if a curve C of genus 3 and degree

6 in F3 lies on a non-singular quadric surface F, then C is hyperelliptic.

First, note that

Pic (F)=Pic (P1Xi>1)=J&tPic (P^e^fPic (PV)=ZRZ,

where />fCpl(l) corresponds to (1, 0) and p*Opl(l) corresponds to (0, 1). Obviously,

a canonical divisor KF corresponds to (―2, ―2), and a hyperplane section on F

corresponds to (1, 1). The intersection pairing on F is given by D-D/=ab'+ba'

for two divisors D and D' corresponding to (a, b) and (a', b') respectively.

Assume that C corresponds to (a, b). Then we have

6=degJ,8C=(C-H)|,s=(C-//|F)F=fl+6,

where H is a hyperplane of Ps, and

2-3-2=C-(C+KF)=2ab-2a-2b.

Hence, we have "a―4, b=2" or "a=2, b=4". Since F=PlxP＼ we may assume

that C corresponds to (4, 2) Consider the diagram:
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If /: C-^-P1 is defined by the restriction of px to C, then /is surjective and then

deg/=deg/*Oi,1(l)=deg/>!fOi,1(1)lc=2-

Therefore C is hyperelliptic.

(Step 4) The finalstep, for a given hyperelliptic curve C of genus 3 and a

given very ample invertible sheaf L of degree 6 on C, we construct a non-singular

quadric surface in P3 containing <f>L(C).

Since C is hyperelliptic,there is a morphism /: C-+P1 of degree 2. We put

Mo―f*0pl(l), and M=LRMo1. Then the canonical map

(#) r(M)<g>r(M0) ―> AD

is an isomorphism. To prove this,note that F(M0) is a base point free pencil

By the "base point free pencil trick" [6], we have an isomorphism Ker [T{M)

Rr(M0)->F(L)]=r(M0M^1). Assume that f(M0M^)^(O). Then there are

two points P and Q on C such that M^M^-QdP+Q). Hence L=M20(P+Q)

=(oc(P+Q). This contradicts the very ampleness of L. Therefore the map (#)

is injective. On the other hand, dim r(M)<g>r(M0)=dim F(L), so the map (#) is

an isomorphism. By the isomorphism (#) we obtain the following commutative

diagram:

c

This completes our proof.

P1XP1

r

pz

Segre embedding

§3. Defining equations.

In this section we will study the homogeneous ideal I{L) for a curve of

eenus ff<3 with a verv amole invertible sheaf L.

Remark 3.1. Let C be a curve of genus g^2, and let L be a very ample

invertiblesheaf of degree d on C.

(a) If d>2g-＼-2,then I(L) is generated strictlyby h.
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(b) If g―2 and d=5 (=2g-＼-l),then I{L) is generated strictlyby h and IB.

(c) If g=l and d=3 (=2^+1), then /(L) is generated strictlyby I3.

(d) If g=0 and d=l (=2g+l), then 7(L)=(0).

A proof of this remark is easy, so we omit it.

Theorem 3.2. Let L be a very ample invertible sheal of degree d on a

curve C of genus three.

(a) // d^8, then I(L) is generated strictlyby Iz.

(b) // d= 7, then I(L) is generated strictly by /2 and /3.

(c) // C is non-hyperelliptic and d=6, then I(L) is generated strictlyby Is.

(d) // C is non-hyperelliptic and L=o)c, then I(ojc)is generated strictlyby Ft.

Proof, (a) It is a special case of Theorem 1.3 (b).

(b) By Theorem 1.3 (a),I{L) is generated by h and /3. Assume that I(L)

is generated by /2. Since dim /2(L)=3, $L(C) is a complete intersections of three

quadric hypersurfaces in Pi. Therefore we have degpi$L(C)=8. This contradicts

the fact degL=7.

(c) By Theorem 1.4,I(L) is generated by h and I3. On the other hand, by

the proof of Theorem 2.1 we have L2(L)~(0).

(d) It is well known that (j)mc{C)is plane quartic.

Q. E. D.

By this theorem, to show our table it sufficesto prove the following theorem.

Theorem 3.3. Let L be a very ample invertible sheaf of degree 6 on a

hyper ellipticcurve C of genus 3. Then I(L) is generated strictlyby I2 and /4.

A proof of the theorem will be given at the last part of this section.

Let Mu ･･･,Mr be invertible sheaves on a projective variety. <R.(Mlf･･･, Mr)

denotes the kernel of the canonical map:

Lemma 3.4. Let L be an ample invertible sheaf on a projective variety, and

let m be a positiveinteger greater than 1. Assume that

r(L)8cm-" ―>r(Lm~i)

and

r(Lrm ―> r(Ln)

are surjective. Then

F(Q6?)3l{Lm~＼ L) ―> SL(Lm, L)
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is surjective if and only if

is surjective.

Im(DRr(L) ―> Im+1(L)

277

Definition 3.5. (1) Let X be a normal closed subuariety of PN, and let

R(X)= c R(X)t be the homogeneous coordinate ring of X. R{X) denotes the
i=o

normalization of R(X). It is well known that R(X) is a graded ring too. We

can define the non-negative integer n(XczPN) by

n(X(ZPir)=Min {n^N＼RdQi^R(X)i for all i^n} .

(2) Let L be a very ample invertible sheaf on the normal projective variety

X. We define the non-negative integer n(L) by

It is easy to show that

n(L)=Min {n^N |/Wf->r(L*) is surjectivefor alli^n＼

Corollary 3.6. Let L be a very ample invertiblesheaf on an n-dimensional

protectivevariety X. Assume thatHl{X, Lj)―(0)for any integers i,j>0. If

a=Max(n+3, w(L)+l), thenI{L) is generated by I2,･･･,/≪.

The proofs of Lemma 3.4and Corollary3.6are similarto those of [3, Pro-

position1.2 and Corollary1.3].

Next, we will calculaten{L) for a very ample invertiblesheaf L of degree

6 on a hyperellipticcurve of genus 3.

Proposition 3.7. Let L be a very ample invertible sheaf of degree 6 on a

hyperelliptic curve C of genus 3. Then F(L)Rm―>r(Lm) is surjective for all

m^3, i.e., n(L)=3.

Proof.(*> We prove the surjectivity of /3m:r(L)Rm -≫F(Lm) (m^3) by Induc-

tion on m. For a given m^3, we consider the following commutative diagram:

(*) The author expresses his heartfelt thanks to the referee for a valuable sugges-

tion, which simplified the proof.
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m)Rcm+1)
^^

≪*･r(Lm)<g>r(L)

mm+i)

By the induction hypothesis fim is surjective,and also /?m01 is surjective. By

the lemma of Castelnuvo jm is surjective,and also /3m+1is surjective. Therefore,

to prove our assertion,it sufficesto prove the surjectivity of /33. By Step 4 in

the proof of Theorem 2.1,there is an irreduciblequadric surface Q in P3 contain-

ing ^i(C). The curve <j>l{C)can not be contained in a quadric surface other

than Q, because <j>LiP)is not contained in any Pz and deg <f>L(C)=6. Hence we

have Ii(L)=K-q, where q is a quadratic form defining the quadric surface Q. If

$l(.Q is contained in an irreducible cubic surface H, then (pLiP) coincides with

the complete intersection Qr＼H, because <f>L(C)and Qr＼H have degree 6. But

the genus of a curve which is a complete intersection of surfaces of degrees 2

and 3 is equal to 4. This is a contradiction. Therefore, we have IZ(L)=K'qRSi(&

･･･ciT-<7Rs4, where {slf･･･s4} is a basis of JHX) and the symbel R means a

svmmetric nroduct. Consider the exact seauence

0 ---> h(L) ―^ SSF(L) -^> r{U).

The left hand vector space has dimension 4 by the above result, the middle

vector space has dimension 20, and right hand vector space has dimension 16

by the theorem of Riemann-Roch. So we conclude that /38is surjective.

Q. E. D.

Proof of Theorem 3.3. By Corollary 3.6 and Proposition 3.7, I(L) is

generated by I2, h and ^4- By the proof of Proposition 3.7, I2=K-q and

h=K-qRs1R ･･･0/<"-<7Rs4. Therefore, I(L) is generated by I2 and /4. Obviously,

/2 does not generate /(L). This completes the proof.

References

[ 1 ] Hartshorne, R., The classificationof curves in Pz and related topics (lecture note

in Japanese). Math. Res. Note 2, Kyoto Univ. (1977).

[2] Hartshorne, R., Algebraic geometry. Graduate Text in Math. 52, Springer, Berlin-

Heidelberg-New york, 1977.

[3] Homma, M., On the equations defining a projective curve embedded by a non-



Defining equations of a curve of genus three 279

special divisor. Tsukuba J. Math. 3 (2) (1979), 31-39.

[ 4 ] Mumford, D., Varieties defined by quadratic equations. C. I. M. E., Cremonese,

Rome (1969), 29-100.

[5] Saint-Donat, B., Sur les equations definissant une courbe algebrique. C.R. Acad.

Sc. Paris 274 (1972), 324-327 and 487-489.

[ 6 ] Saint-Donat, B., On Petri's analysis of the linear system of quadrics through a

canonical curve. Math. Ann 206 (1973), 157-175.

Institute of Mathematics

University of Tsukuba

Ibaraki, 305 Japan


