A TRANSFORMATION GROUP OF
 THE PYTHAGOREAN NUMBERS

Jun Morita

Our purpose in this note is to study a transformation group of the Pythagorean numbers using the theory of Kac-Moody Lie algebras. We will essentially use the conjugacy theorem, established by Kac [1], for null roots in infinite root systems. Mariani [3] has also given a transformation group of the Pythagorean numbers in a different way. We will discuss about the relationship.

It is well-known that all the integral solutions, called the Pythagorean numbers, of the Pythagorean equation:

$$
x^{2}+y^{2}=z^{2}
$$

are given by

$$
\left\{\begin{array} { l }
{ x = n (a ^ { 2 } - b ^ { 2 }) } \\
{ y = 2 n a b } \\
{ z = n (a ^ { 2 } + b ^ { 2 }) }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x=2 n a b \\
y=n\left(a^{2}-b^{2}\right) \\
z=n\left(a^{2}+b^{2}\right)
\end{array}\right.\right.
$$

for all $n, a, b \in \boldsymbol{Z}$.
Put $M=\left\{(x, y, z) \in Z^{3} \mid x^{2}+y^{2}=z^{2}, \operatorname{gcd}(x, y, z)=1\right\}$, the set of all the primitive Pythagorean numbers, and $M^{\prime}=\{(x, y, z) \in M \mid y=$ even, $z>0\}$. We choose the following basic transformations of M :

$$
\begin{aligned}
r_{1}:(x, y, z) & \longmapsto(-x, y, z), \\
r_{3}:(x, y, z) & \longmapsto(x,-y, z), \\
-I:(x, y, z) & \longmapsto(-x,-y,-z), \\
t:(x, y, z) & \longmapsto(y, x, z) .
\end{aligned}
$$

These are arising from the symmetries of the Pythagorean equation. Furthermore we can find an important transformation of M :

$$
r_{2}:(x, y, z) \longmapsto(-x-2 y+2 z,-2 x-y+2 z,-2 x-2 y+3 z) .
$$

Let W be the subgroup of $G L_{3}(\mathbb{Z})$ generated by the $r_{i}(1 \leq i \leq 3)$, and G the subgroup of $G L_{3}(\boldsymbol{Z})$ generated by W, t and $-I$. Put $O_{2,1}(\mathbb{Z})=O(2,1) \cap G L_{3}(\boldsymbol{Z})$, the orthogonal group over \boldsymbol{Z} defined by the quadratic form $x^{2}+y^{2}-z^{2}$.

Theorem. (a) $M^{\prime}=W .(1,0,1)$ and $M=G .(1,0,1)$.
Received May 7, 1985. Revised September 24, 1985.
(b) $[G: W]=4$ and $G=O_{2.1}(Z)$.
(c) The stabilizer of ($1,0,1$) in W is the infinite dihedral group generated by r_{2} and r_{3}.

Proof. We choose the following generalized Cartan matrix of hyperbolic type (cf. [2]) :

$$
A=\left(\begin{array}{rrr}
2 & -2 & 0 \\
-2 & 2 & -2 \\
0 & -2 & 2
\end{array}\right)
$$

Let $A=\sum_{i=1}^{3} Z \alpha_{i}$ be the root lattice and Δ the root system associated with A. We define the bilinear form on Λ by

$$
\left(\left(\alpha_{i}, \alpha_{j}\right)\right)=\left(\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 1 & -1 \\
0 & -1 & 1
\end{array}\right) .
$$

Then $\alpha \in \Delta$ if $\alpha \in A$ has the property (α, α)=0 (cf. [1], [4]). Such an element is called a null root. Put $N=\left\{\alpha \in \Lambda \left\lvert\, \frac{1}{n} \alpha \notin(n=2,3, \cdots)\right.,(\alpha, \alpha)=0\right\}$, the set of primitive null roots.

Let $\beta_{1}=-\alpha_{1}, \beta_{2}=-\alpha_{3}, \beta_{3}=\alpha_{1}+\alpha_{2}+\alpha_{3}$. Then $\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ is a new basis of Λ and $\left(\beta_{3}, \beta_{3}\right)=-1$. Therefore an element $\beta=x \beta_{1}+y \beta_{2}+z \beta_{3}$ is a null root if and only if

$$
(\beta, \beta)=x^{2}+y^{2}-z^{2}=0,
$$

that is, (x, y, z) is a Pythagorean number. We identify M with N. Then r_{i} is the reflection with respect to α_{i}, and W is the Weyl group of Δ. In general, it has been established by Kac [1; Lemma 1.9d)] that a null root is conjugate to a null root of an affine subdiagram under the action of the Weyl group. Therefore, in our case, we see $N=W \cdot\left(\pm \alpha_{1} \pm \alpha_{2}\right) \cup W \cdot\left(\pm \alpha_{2} \pm \alpha_{3}\right)$, which implies (a). (b): The index $[G: W]$ is 4 since $G=(W \rtimes\langle t\rangle) \times\{ \pm I\}$. An element $\alpha \in A$ with (α, α) $=1$ is a root, so $\left\{g\left(\alpha_{i}\right) \mid 1 \leq i \leq 3\right\}$ is a fundamental system of Δ for all $g \in O_{2,1}(\boldsymbol{Z})$. Therefore the conjugacy theorem of Kac for fundamental systems (cf. [2]) leads to $G=O_{2,1}(\mathbb{Z})$. (c) follows from the fact that $\alpha_{2}+\alpha_{3}$ is in the (standard) fundamental domain for the action of W on the positive imaginary roots (cf. [2]).

Let ϕ be the isomorphism of W into $P G L_{2}(\mathbb{Z})$ defined by $\phi\left(r_{1}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \phi\left(r_{2}\right)$ $=\left(\begin{array}{rr}-1 & 2 \\ 0 & 1\end{array}\right)$, and $\phi\left(r_{3}\right)=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right) \bmod \left(\begin{array}{rr} \pm 1 & 0 \\ 0 & \pm 1\end{array}\right)$. The group which Mariani [3] has constructed is $\phi(W)$. However, his theorems 2 and 3 are misunderstanding -he claims that $\phi(W)$ is isomorphic to $G L_{2}(\mathbb{Z})$ in Theorem 2 and that the sta-
bilizer of an element of M^{\prime} is the direct product of an infinite cyclic group and a group of order 2 in Theorem 3. To be exact, $\phi(W)$ is a subgroup of $P G L_{2}(\boldsymbol{Z})$ with the group index $\left[P G L_{2}(\mathbb{Z}): \phi(W)\right]=3$ and the stabilizer of an element of M^{\prime} is an infinite dihedral group.

The author wishes to express his sincere gratitude to Professor S. Uchiyama for his valuable advice.

References

[1] Kac, V. G., Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57-92.
[2] Kac, V. G., "Infinite dimensional Lie algebras," Progress in Math. 44, Birkhäuser, Boston, 1983.
[3] Mariani, J., The group of the Pythagorean numbers, Amer. Math. Monthly 69 (1962), 125-128.
[4] Moody, R. V., Root systems of hyperbolic type, Adv. in Math. 33 (1979), 144-160.

Institute of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki, 305 Japan

